diff --git a/.devops/nix/package.nix b/.devops/nix/package.nix index b88e6ca809f1f..043c4364b956a 100644 --- a/.devops/nix/package.nix +++ b/.devops/nix/package.nix @@ -31,6 +31,7 @@ # Increases the runtime closure size by ~700M useMpi ? false, useRocm ? config.rocmSupport, + rocmGpuTargets ? builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets, enableCurl ? true, useVulkan ? false, llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake @@ -188,7 +189,7 @@ effectiveStdenv.mkDerivation (finalAttrs: { ] ++ optionals useRocm [ (cmakeFeature "CMAKE_HIP_COMPILER" "${rocmPackages.llvm.clang}/bin/clang") - (cmakeFeature "CMAKE_HIP_ARCHITECTURES" (builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets)) + (cmakeFeature "CMAKE_HIP_ARCHITECTURES" rocmGpuTargets) ] ++ optionals useMetalKit [ (lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1") diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 022d31fb2434b..a377eff38fbe0 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -317,7 +317,7 @@ jobs: wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add - sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list sudo apt-get update -y - sudo apt-get install -y build-essential vulkan-sdk + sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk - name: Build id: cmake_build @@ -327,6 +327,12 @@ jobs: cmake -DGGML_VULKAN=ON .. cmake --build . --config Release -j $(nproc) + - name: Test + id: cmake_test + run: | + cd build + ctest -L main --verbose --timeout 900 + ubuntu-22-cmake-hip: runs-on: ubuntu-22.04 container: rocm/dev-ubuntu-22.04:6.0.2 diff --git a/Makefile b/Makefile index bcea450e46be4..19ae0d5f1c87b 100644 --- a/Makefile +++ b/Makefile @@ -22,6 +22,7 @@ BUILD_TARGETS = \ llama-infill \ llama-llava-cli \ llama-minicpmv-cli\ + llama-qwen2vl-cli\ llama-lookahead \ llama-lookup \ llama-lookup-create \ @@ -1404,6 +1405,14 @@ llama-minicpmv-cli: examples/llava/minicpmv-cli.cpp \ $(OBJ_ALL) $(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual +llama-qwen2vl-cli: examples/llava/qwen2vl-cli.cpp \ + examples/llava/llava.cpp \ + examples/llava/llava.h \ + examples/llava/clip.cpp \ + examples/llava/clip.h \ + $(OBJ_ALL) + $(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual + ifeq ($(UNAME_S),Darwin) swift: examples/batched.swift (cd examples/batched.swift; make build) diff --git a/README.md b/README.md index 54466c2501c08..3f3971d7eb263 100644 --- a/README.md +++ b/README.md @@ -98,6 +98,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo - [x] [Jais](https://huggingface.co/inceptionai/jais-13b-chat) - [x] [Bielik-11B-v2.3](https://huggingface.co/collections/speakleash/bielik-11b-v23-66ee813238d9b526a072408a) - [x] [RWKV-6](https://github.com/BlinkDL/RWKV-LM) +- [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct) #### Multimodal @@ -110,6 +111,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo - [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM) - [x] [Moondream](https://huggingface.co/vikhyatk/moondream2) - [x] [Bunny](https://github.com/BAAI-DCAI/Bunny) +- [x] [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d) @@ -219,7 +221,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo | [SYCL](docs/backend/SYCL.md) | Intel and Nvidia GPU | | [MUSA](docs/build.md#musa) | Moore Threads MTT GPU | | [CUDA](docs/build.md#cuda) | Nvidia GPU | -| [hipBLAS](docs/build.md#hipblas) | AMD GPU | +| [HIP](docs/build.md#hip) | AMD GPU | | [Vulkan](docs/build.md#vulkan) | GPU | | [CANN](docs/build.md#cann) | Ascend NPU | @@ -412,7 +414,7 @@ To learn more about model quantization, [read this documentation](examples/quant [^1]: [examples/perplexity/README.md](examples/perplexity/README.md) [^2]: [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity) -## [`llama-bench`](example/bench) +## [`llama-bench`](examples/llama-bench) #### Benchmark the performance of the inference for various parameters. diff --git a/common/arg.cpp b/common/arg.cpp index 39bc874c818bb..e5ddd8318f787 100644 --- a/common/arg.cpp +++ b/common/arg.cpp @@ -119,29 +119,33 @@ std::string common_arg::to_string() { // utils // -static void common_params_handle_model_default(common_params & params) { - if (!params.hf_repo.empty()) { +static void common_params_handle_model_default( + std::string & model, + std::string & model_url, + std::string & hf_repo, + std::string & hf_file) { + if (!hf_repo.empty()) { // short-hand to avoid specifying --hf-file -> default it to --model - if (params.hf_file.empty()) { - if (params.model.empty()) { + if (hf_file.empty()) { + if (model.empty()) { throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n"); } - params.hf_file = params.model; - } else if (params.model.empty()) { + hf_file = model; + } else if (model.empty()) { // this is to avoid different repo having same file name, or same file name in different subdirs - std::string filename = params.hf_repo + "_" + params.hf_file; + std::string filename = hf_repo + "_" + hf_file; // to make sure we don't have any slashes in the filename string_replace_all(filename, "/", "_"); - params.model = fs_get_cache_file(filename); + model = fs_get_cache_file(filename); } - } else if (!params.model_url.empty()) { - if (params.model.empty()) { - auto f = string_split(params.model_url, '#').front(); + } else if (!model_url.empty()) { + if (model.empty()) { + auto f = string_split(model_url, '#').front(); f = string_split(f, '?').front(); - params.model = fs_get_cache_file(string_split(f, '/').back()); + model = fs_get_cache_file(string_split(f, '/').back()); } - } else if (params.model.empty()) { - params.model = DEFAULT_MODEL_PATH; + } else if (model.empty()) { + model = DEFAULT_MODEL_PATH; } } @@ -276,7 +280,9 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n"); } - common_params_handle_model_default(params); + // TODO: refactor model params in a common struct + common_params_handle_model_default(params.model, params.model_url, params.hf_repo, params.hf_file); + common_params_handle_model_default(params.vocoder.model, params.vocoder.model_url, params.vocoder.hf_repo, params.vocoder.hf_file); if (params.escape) { string_process_escapes(params.prompt); @@ -842,7 +848,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex } ).set_sparam()); add_opt(common_arg( - {"--sampling-seq"}, "SEQUENCE", + {"--sampling-seq", "--sampler-seq"}, "SEQUENCE", string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()), [](common_params & params, const std::string & value) { params.sampling.samplers = common_sampler_types_from_chars(value); @@ -855,13 +861,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.sampling.ignore_eos = true; } ).set_sparam()); - add_opt(common_arg( - {"--penalize-nl"}, - string_format("penalize newline tokens (default: %s)", params.sampling.penalize_nl ? "true" : "false"), - [](common_params & params) { - params.sampling.penalize_nl = true; - } - ).set_sparam()); add_opt(common_arg( {"--temp"}, "N", string_format("temperature (default: %.1f)", (double)params.sampling.temp), @@ -916,6 +915,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex {"--repeat-last-n"}, "N", string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n), [](common_params & params, int value) { + if (value < -1) { + throw std::runtime_error(string_format("error: invalid repeat-last-n = %d\n", value)); + } params.sampling.penalty_last_n = value; params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n); } @@ -970,6 +972,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex {"--dry-penalty-last-n"}, "N", string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n), [](common_params & params, int value) { + if (value < -1) { + throw std::runtime_error(string_format("error: invalid dry-penalty-last-n = %d\n", value)); + } params.sampling.dry_penalty_last_n = value; } ).set_sparam()); @@ -1582,6 +1587,20 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.hf_file = value; } ).set_env("LLAMA_ARG_HF_FILE")); + add_opt(common_arg( + {"-hfrv", "--hf-repo-v"}, "REPO", + "Hugging Face model repository for the vocoder model (default: unused)", + [](common_params & params, const std::string & value) { + params.vocoder.hf_repo = value; + } + ).set_env("LLAMA_ARG_HF_REPO_V")); + add_opt(common_arg( + {"-hffv", "--hf-file-v"}, "FILE", + "Hugging Face model file for the vocoder model (default: unused)", + [](common_params & params, const std::string & value) { + params.vocoder.hf_file = value; + } + ).set_env("LLAMA_ARG_HF_FILE_V")); add_opt(common_arg( {"-hft", "--hf-token"}, "TOKEN", "Hugging Face access token (default: value from HF_TOKEN environment variable)", @@ -2179,5 +2198,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT")); + add_opt(common_arg( + {"-mv", "--model-vocoder"}, "FNAME", + "vocoder model for audio generation (default: unused)", + [](common_params & params, const std::string & value) { + params.vocoder.model = value; + } + ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER})); + return ctx_arg; } diff --git a/common/common.cpp b/common/common.cpp index 3adfb0329377f..20be9291161ca 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -940,6 +940,25 @@ struct common_init_result common_init_from_params(common_params & params) { params.sampling.ignore_eos = false; } + if (params.sampling.ignore_eos) { + for (llama_token i = 0; i < llama_n_vocab(model); i++) { + if (llama_token_is_eog(model, i)) { + LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY); + params.sampling.logit_bias.push_back({i, -INFINITY}); + } + } + } + + if (params.sampling.penalty_last_n == -1) { + LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx)); + params.sampling.penalty_last_n = llama_n_ctx(lctx); + } + + if (params.sampling.dry_penalty_last_n == -1) { + LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx)); + params.sampling.dry_penalty_last_n = llama_n_ctx(lctx); + } + if (params.warmup) { LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__); @@ -1076,7 +1095,7 @@ struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_p #define CURL_MAX_RETRY 3 #define CURL_RETRY_DELAY_SECONDS 2 -static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_attempts, int retry_delay_seconds) { +static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) { int remaining_attempts = max_attempts; while (remaining_attempts > 0) { @@ -1100,7 +1119,6 @@ static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_ } static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) { - // Initialize libcurl std::unique_ptr curl(curl_easy_init(), &curl_easy_cleanup); if (!curl) { @@ -1173,11 +1191,13 @@ static bool common_download_file(const std::string & url, const std::string & pa std::string etag; std::string last_modified; }; + common_load_model_from_url_headers headers; + { typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *); auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t { - common_load_model_from_url_headers *headers = (common_load_model_from_url_headers *) userdata; + common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata; static std::regex header_regex("([^:]+): (.*)\r\n"); static std::regex etag_regex("ETag", std::regex_constants::icase); @@ -1761,7 +1781,9 @@ void common_embd_normalize(const float * inp, float * out, int n, int embd_norm) break; case 0: // max absolute for (int i = 0; i < n; i++) { - if (sum < std::abs(inp[i])) sum = std::abs(inp[i]); + if (sum < std::abs(inp[i])) { + sum = std::abs(inp[i]); + } } sum /= 32760.0; // make an int16 range break; diff --git a/common/common.h b/common/common.h index 9e47b70a4e906..1d2bd932c211d 100644 --- a/common/common.h +++ b/common/common.h @@ -80,6 +80,7 @@ enum llama_example { LLAMA_EXAMPLE_LLAVA, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_PARALLEL, + LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_COUNT, }; @@ -95,6 +96,7 @@ enum common_sampler_type { COMMON_SAMPLER_TYPE_TEMPERATURE = 7, COMMON_SAMPLER_TYPE_XTC = 8, COMMON_SAMPLER_TYPE_INFILL = 9, + COMMON_SAMPLER_TYPE_PENALTIES = 10, }; // dimensionality reduction methods, used by cvector-generator @@ -130,7 +132,6 @@ struct common_params_sampling { int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 float mirostat_tau = 5.00f; // target entropy float mirostat_eta = 0.10f; // learning rate - bool penalize_nl = false; // consider newlines as a repeatable token bool ignore_eos = false; bool no_perf = false; // disable performance metrics bool timing_per_token = false; @@ -139,6 +140,7 @@ struct common_params_sampling { std::vector samplers = { + COMMON_SAMPLER_TYPE_PENALTIES, COMMON_SAMPLER_TYPE_DRY, COMMON_SAMPLER_TYPE_TOP_K, COMMON_SAMPLER_TYPE_TYPICAL_P, @@ -158,6 +160,7 @@ struct common_params_sampling { struct common_params_speculative { std::vector devices; // devices to use for offloading + int32_t n_ctx = 0; // draft context size int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding @@ -171,6 +174,14 @@ struct common_params_speculative { std::string model = ""; // draft model for speculative decoding // NOLINT }; +struct common_params_vocoder { + std::string hf_repo = ""; // HF repo // NOLINT + std::string hf_file = ""; // HF file // NOLINT + + std::string model = ""; // model path // NOLINT + std::string model_url = ""; // model url to download // NOLINT +}; + struct common_params { int32_t n_predict = -1; // new tokens to predict int32_t n_ctx = 4096; // context size @@ -193,11 +204,13 @@ struct common_params { float defrag_thold = 0.1f; // KV cache defragmentation threshold // offload params - std::vector devices; // devices to use for offloading - int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) - int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors - float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs - enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs + std::vector devices; // devices to use for offloading + + int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) + int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors + float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs + + enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs struct cpu_params cpuparams; struct cpu_params cpuparams_batch; @@ -211,8 +224,9 @@ struct common_params { enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings - struct common_params_sampling sampling; + struct common_params_sampling sampling; struct common_params_speculative speculative; + struct common_params_vocoder vocoder; std::string model = ""; // model path // NOLINT std::string model_alias = ""; // model alias // NOLINT @@ -593,7 +607,8 @@ void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_si // Embedding utils // -void common_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2); +// TODO: repace embd_norm with an enum +void common_embd_normalize(const float * inp, float * out, int n, int embd_norm); float common_embd_similarity_cos(const float * embd1, const float * embd2, int n); diff --git a/common/sampling.cpp b/common/sampling.cpp index 0c4699a89c8b2..e83a971c74d52 100644 --- a/common/sampling.cpp +++ b/common/sampling.cpp @@ -161,32 +161,20 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co params.logit_bias.size(), params.logit_bias.data())); - llama_sampler_chain_add(result->chain, - llama_sampler_init_penalties( - llama_n_vocab (model), - llama_token_eos(model), - llama_token_nl (model), - params.penalty_last_n, - params.penalty_repeat, - params.penalty_freq, - params.penalty_present, - params.penalize_nl, - params.ignore_eos)); - if (params.mirostat == 0) { for (const auto & cnstr : params.samplers) { switch (cnstr) { - case COMMON_SAMPLER_TYPE_DRY: + case COMMON_SAMPLER_TYPE_DRY: { - std::vector c_breakers; + std::vector c_breakers; c_breakers.reserve(params.dry_sequence_breakers.size()); - for (const auto& str : params.dry_sequence_breakers) { + for (const auto & str : params.dry_sequence_breakers) { c_breakers.push_back(str.c_str()); } llama_sampler_chain_add(result->chain, llama_sampler_init_dry (model, params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size())); } - break; + break; case COMMON_SAMPLER_TYPE_TOP_K: llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k)); break; @@ -208,6 +196,9 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co case COMMON_SAMPLER_TYPE_INFILL: llama_sampler_chain_add(result->chain, llama_sampler_init_infill (model)); break; + case COMMON_SAMPLER_TYPE_PENALTIES: + llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present)); + break; default: GGML_ASSERT(false && "unknown sampler type"); } @@ -415,6 +406,7 @@ char common_sampler_type_to_chr(enum common_sampler_type cnstr) { case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't'; case COMMON_SAMPLER_TYPE_XTC: return 'x'; case COMMON_SAMPLER_TYPE_INFILL: return 'i'; + case COMMON_SAMPLER_TYPE_PENALTIES: return 'e'; default : return '?'; } } @@ -429,6 +421,7 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr) { case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature"; case COMMON_SAMPLER_TYPE_XTC: return "xtc"; case COMMON_SAMPLER_TYPE_INFILL: return "infill"; + case COMMON_SAMPLER_TYPE_PENALTIES: return "penalties"; default : return ""; } } @@ -443,6 +436,7 @@ std::vector common_sampler_types_from_names(const std::vect { "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE }, { "xtc", COMMON_SAMPLER_TYPE_XTC }, { "infill", COMMON_SAMPLER_TYPE_INFILL }, + { "penalties", COMMON_SAMPLER_TYPE_PENALTIES }, }; // since samplers names are written multiple ways @@ -489,6 +483,7 @@ std::vector common_sampler_types_from_chars(const std::stri { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE }, { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC }, { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_INFILL), COMMON_SAMPLER_TYPE_INFILL }, + { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_PENALTIES), COMMON_SAMPLER_TYPE_PENALTIES }, }; std::vector samplers; diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index c74b47d096a0c..cbfca5274af1d 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -221,17 +221,17 @@ def set_gguf_parameters(self): self.gguf_writer.add_context_length(n_ctx) logger.info(f"gguf: context length = {n_ctx}") - n_embd = self.find_hparam(["hidden_size", "n_embd"]) - self.gguf_writer.add_embedding_length(n_embd) - logger.info(f"gguf: embedding length = {n_embd}") + if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None: + self.gguf_writer.add_embedding_length(n_embd) + logger.info(f"gguf: embedding length = {n_embd}") if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None: self.gguf_writer.add_feed_forward_length(n_ff) logger.info(f"gguf: feed forward length = {n_ff}") - n_head = self.find_hparam(["num_attention_heads", "n_head"]) - self.gguf_writer.add_head_count(n_head) - logger.info(f"gguf: head count = {n_head}") + if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None: + self.gguf_writer.add_head_count(n_head) + logger.info(f"gguf: head count = {n_head}") if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None: self.gguf_writer.add_head_count_kv(n_head_kv) @@ -296,7 +296,9 @@ def prepare_tensors(self): break for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)): - data = data_torch.squeeze().numpy() + # TODO: why do we squeeze here? + # data = data_torch.squeeze().numpy() + data = data_torch.numpy() # if data ends up empty, it means data_torch was a scalar tensor -> restore if len(data.shape) == 0: @@ -324,6 +326,8 @@ def prepare_tensors(self): gguf.MODEL_TENSOR.TIME_MIX_W2, gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1, gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2, + gguf.MODEL_TENSOR.POSNET_NORM1, + gguf.MODEL_TENSOR.POSNET_NORM2, ) ) or not new_name.endswith(".weight") @@ -664,6 +668,9 @@ def get_vocab_base_pre(self, tokenizer) -> str: if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65": # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base res = "roberta-bpe" + if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb": + # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct + res = "gigachat" if res is None: logger.warning("\n") @@ -686,6 +693,9 @@ def get_vocab_base_pre(self, tokenizer) -> str: return res # Marker: End get_vocab_base_pre + def _set_vocab_none(self) -> None: + self.gguf_writer.add_tokenizer_model("none") + def _set_vocab_gpt2(self) -> None: tokens, toktypes, tokpre = self.get_vocab_base() self.gguf_writer.add_tokenizer_model("gpt2") @@ -2001,6 +2011,67 @@ def set_gguf_parameters(self): self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"]) +@Model.register("Qwen2VLForConditionalGeneration") +class Qwen2VLModel(Model): + model_arch = gguf.MODEL_ARCH.QWEN2VL + + def set_gguf_parameters(self): + super().set_gguf_parameters() + mrope_section = self.hparams["rope_scaling"]["mrope_section"] + mrope_section += [0] * max(0, 4 - len(mrope_section)) + self.gguf_writer.add_rope_dimension_sections(mrope_section) + + def set_vocab(self): + try: + self._set_vocab_sentencepiece() + except FileNotFoundError: + self._set_vocab_gpt2() + + def get_tensors(self) -> Iterator[tuple[str, Tensor]]: + for name, data in super().get_tensors(): + if name.startswith("visual."): + continue + yield name, data + + +@Model.register("WavTokenizerDec") +class WavTokenizerDecModel(Model): + model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + if \ + name.endswith("codebook.cluster_size") or \ + name.endswith("codebook.embed_avg") or \ + name.endswith("codebook.inited"): + logger.debug(f"Skipping {name!r}") + return [] + + logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}") + + return [(self.map_tensor_name(name), data_torch)] + + def set_vocab(self): + self._set_vocab_none() + + def set_gguf_parameters(self): + super().set_gguf_parameters() + self.gguf_writer.add_vocab_size (self.hparams["vocab_size"]) + self.gguf_writer.add_features_length (self.hparams["n_embd_features"]) + self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"]) + self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"]) + self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"]) + + self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"]) + self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"]) + + self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"]) + self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"]) + + self.gguf_writer.add_causal_attention(False) + + @Model.register("Qwen2MoeForCausalLM") class Qwen2MoeModel(Model): model_arch = gguf.MODEL_ARCH.QWEN2MOE @@ -3448,6 +3519,97 @@ def prepare_tensors(self): raise ValueError(f"Unprocessed experts: {experts}") +@Model.register("DeepseekForCausalLM") +class DeepseekModel(Model): + model_arch = gguf.MODEL_ARCH.DEEPSEEK + + def set_vocab(self): + try: + self._set_vocab_sentencepiece() + except FileNotFoundError: + self._set_vocab_gpt2() + + def set_gguf_parameters(self): + super().set_gguf_parameters() + hparams = self.hparams + if "head_dim" in hparams: + rope_dim = hparams["head_dim"] + else: + rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] + + self.gguf_writer.add_rope_dimension_count(rope_dim) + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) + self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"]) + self.gguf_writer.add_vocab_size(hparams["vocab_size"]) + self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"]) + self.gguf_writer.add_expert_weights_scale(1.0) + self.gguf_writer.add_expert_count(hparams["n_routed_experts"]) + self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"]) + + _experts: list[dict[str, Tensor]] | None = None + + @staticmethod + def permute(weights: Tensor, n_head: int, n_head_kv: int | None): + if n_head_kv is not None and n_head != n_head_kv: + n_head = n_head_kv + return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) + .swapaxes(1, 2) + .reshape(weights.shape)) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + n_head = self.hparams["num_attention_heads"] + n_kv_head = self.hparams.get("num_key_value_heads") + + if name.endswith(("q_proj.weight", "q_proj.bias")): + data_torch = DeepseekModel.permute(data_torch, n_head, n_head) + if name.endswith(("k_proj.weight", "k_proj.bias")): + data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head) + + # process the experts separately + if name.find("mlp.experts") != -1: + n_experts = self.hparams["n_routed_experts"] + assert bid is not None + + if self._experts is None: + self._experts = [{} for _ in range(self.block_count)] + + self._experts[bid][name] = data_torch + + if len(self._experts[bid]) >= n_experts * 3: + tensors: list[tuple[str, Tensor]] = [] + + # merge the experts into a single 3d tensor + for w_name in ["down_proj", "gate_proj", "up_proj"]: + datas: list[Tensor] = [] + + for xid in range(n_experts): + ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" + datas.append(self._experts[bid][ename]) + del self._experts[bid][ename] + + data_torch = torch.stack(datas, dim=0) + + merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" + + new_name = self.map_tensor_name(merged_name) + + tensors.append((new_name, data_torch)) + return tensors + else: + return [] + + return [(self.map_tensor_name(name), data_torch)] + + def prepare_tensors(self): + super().prepare_tensors() + + if self._experts is not None: + # flatten `list[dict[str, Tensor]]` into `list[str]` + experts = [k for d in self._experts for k in d.keys()] + if len(experts) > 0: + raise ValueError(f"Unprocessed experts: {experts}") + + @Model.register("DeepseekV2ForCausalLM") class DeepseekV2Model(Model): model_arch = gguf.MODEL_ARCH.DEEPSEEK2 diff --git a/convert_hf_to_gguf_update.py b/convert_hf_to_gguf_update.py index aa10e5db796a0..88058442f6dc4 100755 --- a/convert_hf_to_gguf_update.py +++ b/convert_hf_to_gguf_update.py @@ -104,6 +104,7 @@ class TOKENIZER_TYPE(IntEnum): {"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", }, {"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", }, {"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"}, + {"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"}, ] diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index 21b31392e81d0..66cfab2c3b796 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -51,6 +51,7 @@ else() add_subdirectory(speculative) add_subdirectory(speculative-simple) add_subdirectory(tokenize) + add_subdirectory(tts) add_subdirectory(gen-docs) if (NOT GGML_BACKEND_DL) # these examples use the backends directly and cannot be built with dynamic loading diff --git a/examples/batched/batched.cpp b/examples/batched/batched.cpp index ba219cd4b32ae..e2e01f2d598cd 100644 --- a/examples/batched/batched.cpp +++ b/examples/batched/batched.cpp @@ -65,6 +65,7 @@ int main(int argc, char ** argv) { llama_context * ctx = llama_new_context_with_model(model, ctx_params); auto sparams = llama_sampler_chain_default_params(); + sparams.no_perf = false; llama_sampler * smpl = llama_sampler_chain_init(sparams); diff --git a/examples/gritlm/gritlm.cpp b/examples/gritlm/gritlm.cpp index 6e42fa0734ecb..18a945b33905f 100644 --- a/examples/gritlm/gritlm.cpp +++ b/examples/gritlm/gritlm.cpp @@ -75,7 +75,7 @@ static std::vector> encode(llama_context * ctx, const std::ve } std::vector emb_norm(emb_unorm.size()); - common_embd_normalize(emb_unorm.data(), emb_norm.data(), n_embd); + common_embd_normalize(emb_unorm.data(), emb_norm.data(), n_embd, 2); result.push_back(emb_norm); #ifdef GRIT_DEBUG diff --git a/examples/llama.android/llama/build.gradle.kts b/examples/llama.android/llama/build.gradle.kts index 2d1dfba2040da..28dbc1904888b 100644 --- a/examples/llama.android/llama/build.gradle.kts +++ b/examples/llama.android/llama/build.gradle.kts @@ -19,6 +19,7 @@ android { externalNativeBuild { cmake { arguments += "-DLLAMA_BUILD_COMMON=ON" + arguments += "-DGGML_LLAMAFILE=OFF" arguments += "-DCMAKE_BUILD_TYPE=Release" cppFlags += listOf() arguments += listOf() diff --git a/examples/llava/CMakeLists.txt b/examples/llava/CMakeLists.txt index 5d32f377f2637..3ce0d60c80d04 100644 --- a/examples/llava/CMakeLists.txt +++ b/examples/llava/CMakeLists.txt @@ -43,3 +43,10 @@ set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-minicpmv-cli) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_17) + +set(TARGET llama-qwen2vl-cli) +add_executable(${TARGET} qwen2vl-cli.cpp) +set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-qwen2vl-cli) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_17) diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp index d7c94352b568b..463b7c865b90c 100644 --- a/examples/llava/clip.cpp +++ b/examples/llava/clip.cpp @@ -102,7 +102,9 @@ static std::string format(const char * fmt, ...) { #define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector" #define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector" #define KEY_MINICPMV_VERSION "clip.minicpmv_version" +#define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger" #define KEY_USE_GELU "clip.use_gelu" +#define KEY_USE_SILU "clip.use_silu" #define KEY_N_EMBD "clip.%s.embedding_length" #define KEY_N_FF "clip.%s.feed_forward_length" #define KEY_N_BLOCK "clip.%s.block_count" @@ -129,7 +131,8 @@ static std::string format(const char * fmt, ...) { #define TN_TOKEN_EMBD "%s.token_embd.weight" #define TN_POS_EMBD "%s.position_embd.weight" #define TN_CLASS_EMBD "v.class_embd" -#define TN_PATCH_EMBD "v.patch_embd.weight" +#define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat +#define TN_PATCH_EMBD_1 "v.patch_embd.weight.1" #define TN_PATCH_BIAS "v.patch_embd.bias" #define TN_ATTN_K "%s.blk.%d.attn_k.%s" #define TN_ATTN_Q "%s.blk.%d.attn_q.%s" @@ -163,6 +166,7 @@ enum projector_type { PROJECTOR_TYPE_LDP, PROJECTOR_TYPE_LDPV2, PROJECTOR_TYPE_RESAMPLER, + PROJECTOR_TYPE_MERGER, PROJECTOR_TYPE_UNKNOWN, }; @@ -171,6 +175,7 @@ static std::map PROJECTOR_TYPE_NAMES = { { PROJECTOR_TYPE_LDP, "ldp" }, { PROJECTOR_TYPE_LDPV2, "ldpv2"}, { PROJECTOR_TYPE_RESAMPLER, "resampler"}, + { PROJECTOR_TYPE_MERGER, "qwen2vl_merger"}, }; @@ -463,7 +468,8 @@ struct clip_vision_model { // embeddings struct ggml_tensor * class_embedding; - struct ggml_tensor * patch_embeddings; + struct ggml_tensor * patch_embeddings_0; + struct ggml_tensor * patch_embeddings_1; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL) struct ggml_tensor * patch_bias; struct ggml_tensor * position_embeddings; @@ -553,6 +559,7 @@ struct clip_ctx { bool has_vision_encoder = false; bool has_llava_projector = false; bool has_minicpmv_projector = false; + bool has_qwen2vl_merger = false; int minicpmv_version = 2; struct clip_vision_model vision_model; @@ -561,6 +568,7 @@ struct clip_ctx { float image_mean[3]; float image_std[3]; bool use_gelu = false; + bool use_silu = false; int32_t ftype = 1; bool has_class_embedding = true; @@ -606,14 +614,26 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 image_size_height = imgs->data->ny; } } + else if (ctx->has_qwen2vl_merger) { + // use the image's native resolution when image is avaible + if (is_inf) { + // if (imgs->data->nx && imgs->data->ny) { + image_size_width = imgs->data->nx; + image_size_height = imgs->data->ny; + } + } const int patch_size = hparams.patch_size; const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); + const int patches_w = image_size_width / patch_size; + const int patches_h = image_size_height / patch_size; const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0); + const int num_position_ids = ctx->has_qwen2vl_merger ? num_positions * 4 : num_positions; const int hidden_size = hparams.hidden_size; const int n_head = hparams.n_head; const int d_head = hidden_size / n_head; int n_layer = hparams.n_layer; const float eps = hparams.eps; + int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4}; const int batch_size = imgs->size; @@ -634,10 +654,30 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 ggml_set_name(inp_raw, "inp_raw"); ggml_set_input(inp_raw); - struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1); + struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1); - inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size); - inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3)); + if (ctx->has_qwen2vl_merger) { + GGML_ASSERT(image_size_width % (patch_size * 2) == 0); + GGML_ASSERT(image_size_height % (patch_size * 2) == 0); + + auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1); + inp = ggml_add(ctx0, inp, inp_1); + inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b] + inp = ggml_reshape_4d( + ctx0, inp, + hidden_size * 2, patches_w / 2, patches_h, batch_size); + inp = ggml_reshape_4d( + ctx0, inp, + hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2)); + inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3)); + inp = ggml_reshape_3d( + ctx0, inp, + hidden_size, patches_w * patches_h, batch_size); + } + else { + inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size); + inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3)); + } if (ctx->has_patch_bias) { // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp)); @@ -659,12 +699,14 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 } } - struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions); + struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids); ggml_set_name(positions, "positions"); ggml_set_input(positions); - embeddings = - ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions)); + if (!ctx->has_qwen2vl_merger) { // qwen2vl use rope position embedding + embeddings = + ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions)); + } if (ctx->has_minicpmv_projector) { int pos_w = image_size_width/patch_size; @@ -688,7 +730,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 } // loop over layers - if (ctx->has_minicpmv_projector) { + if (ctx->has_minicpmv_projector || ctx->has_qwen2vl_merger) { + // TODO: figure out why we doing thing in this way ??? n_layer += 1; } for (int il = 0; il < n_layer - 1; il++) { @@ -710,8 +753,13 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b); - Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head)); Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size); + if (ctx->has_qwen2vl_merger) { + Q = ggml_rope_multi( + ctx0, Q, positions, nullptr, + d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1); + } + Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head)); Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size); @@ -719,6 +767,11 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b); K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); + if (ctx->has_qwen2vl_merger) { + K = ggml_rope_multi( + ctx0, K, positions, nullptr, + d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1); + } K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); @@ -758,6 +811,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 if (ctx->use_gelu) { cur = ggml_gelu_inplace(ctx0, cur); + } else if (ctx->use_silu) { + cur = ggml_silu_inplace(ctx0, cur); } else { cur = ggml_gelu_quick_inplace(ctx0, cur); } @@ -769,6 +824,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 cur = ggml_add(ctx0, embeddings, cur); embeddings = cur; + } // post-layernorm @@ -840,7 +896,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3)); mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]); // stride = 1, padding = 1, bias is nullptr - block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1); + block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1); // layer norm // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] @@ -888,7 +944,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 // block_2 { // stride = 2 - block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1); + block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1); // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1] // layer norm @@ -949,7 +1005,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 // mlp_2 ne [24, 24, 2048, 1] mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0); // weight ne = [3, 3, 2048, 1] - struct ggml_tensor * peg_0 = ggml_conv_depthwise_2d(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1); + struct ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1); peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3)); peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b); mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3)); @@ -1030,6 +1086,19 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 GGML_ASSERT(false); } } + else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) { + embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size); + + embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); + embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); + + // GELU activation + embeddings = ggml_gelu(ctx0, embeddings); + + // Second linear layer + embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings); + embeddings = ggml_add(ctx0, embeddings, model.mm_1_b); + } // build the graph ggml_build_forward_expand(gf, embeddings); @@ -1206,6 +1275,10 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx); } + idx = gguf_find_key(ctx, KEY_HAS_QWEN2VL_MERGER); + if (idx != -1) { + new_clip->has_qwen2vl_merger = gguf_get_val_bool(ctx, idx); + } // GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search GGML_ASSERT(new_clip->has_vision_encoder); @@ -1214,6 +1287,13 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { idx = get_key_idx(ctx, KEY_USE_GELU); new_clip->use_gelu = gguf_get_val_bool(ctx, idx); + try { + idx = get_key_idx(ctx, KEY_USE_SILU); + new_clip->use_silu = gguf_get_val_bool(ctx, idx); + } catch (std::runtime_error & /*e*/) { + new_clip->use_silu = false; + } + if (verbosity >= 1) { LOG_INF("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder); LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder); @@ -1389,11 +1469,16 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { } try { - vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD); + vision_model.patch_embeddings_0 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD); vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v")); } catch(const std::exception& /*e*/) { LOG_ERR("%s: failed to load vision model tensors\n", __func__); } + try { + vision_model.patch_embeddings_1 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD_1); + } catch(const std::exception& /*e*/) { + new_clip->has_qwen2vl_merger = false; + } // LLaVA projection if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) { @@ -1481,6 +1566,12 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight")); vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias")); } + else if (new_clip->proj_type == PROJECTOR_TYPE_MERGER) { + vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight")); + vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias")); + vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight")); + vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias")); + } else { std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type]; throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); @@ -1519,6 +1610,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend)); clip_image_f32_batch batch; batch.size = 1; + batch.data = nullptr; ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false); ggml_gallocr_reserve(new_clip->compute_alloc, gf); size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0); @@ -1532,6 +1624,10 @@ void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size ctx_clip->load_image_size = load_image_size; } +struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) { + return ctx_clip->load_image_size; +} + struct clip_image_size * clip_image_size_init() { struct clip_image_size * load_image_size = new struct clip_image_size(); load_image_size->width = 448; @@ -1984,6 +2080,23 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli } return true; } + else if (ctx->has_qwen2vl_merger) { + clip_image_u8 * resized = clip_image_u8_init(); + auto patch_size = clip_patch_size(ctx) * 2; + int nx = ceil((float)img->nx / patch_size) * patch_size; + int ny = ceil((float)img->ny / patch_size) * patch_size; + bicubic_resize(*img, *resized, nx, ny); + + res_imgs->data = new clip_image_f32[1]; + // clip_image_f32 * res = clip_image_f32_init(); + normalize_image_u8_to_f32(resized, res_imgs->data, ctx->image_mean, ctx->image_std); + // res_imgs->data[0] = *res; + res_imgs->size = 1; + + // clip_image_f32_free(res); + clip_image_u8_free(resized); + return true; + } bool pad_to_square = true; if (!ctx->has_vision_encoder) { @@ -2173,6 +2286,13 @@ size_t clip_embd_nbytes(const struct clip_ctx * ctx) { return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float); } +size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w) { + clip_image_f32 img; + img.nx = img_w; + img.ny = img_h; + return clip_n_patches_by_img(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float); +} + int32_t clip_image_size(const struct clip_ctx * ctx) { return ctx->vision_model.hparams.image_size; } @@ -2194,6 +2314,13 @@ const int32_t * clip_image_grid(const struct clip_ctx * ctx) { } int clip_n_patches(const struct clip_ctx * ctx) { + clip_image_f32 img; + img.nx = ctx->vision_model.hparams.image_size; + img.ny = ctx->vision_model.hparams.image_size; + return clip_n_patches_by_img(ctx, &img); +} + +int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) { const auto & params = ctx->vision_model.hparams; int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size); @@ -2207,6 +2334,11 @@ int clip_n_patches(const struct clip_ctx * ctx) { else if (ctx->minicpmv_version == 3) { n_patches = 64; } + } else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) { + int patch_size = params.patch_size * 2; + int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0); + int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0); + n_patches = x_patch * y_patch; } return n_patches; @@ -2335,7 +2467,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima const int image_size = hparams.image_size; int image_size_width = image_size; int image_size_height = image_size; - if (ctx->has_minicpmv_projector) { + if (ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger) { image_size_width = imgs->data[0].nx; image_size_height = imgs->data[0].ny; } @@ -2355,7 +2487,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima for (size_t i = 0; i < imgs->size; i++) { const int nx = imgs->data[i].nx; const int ny = imgs->data[i].ny; - if (!ctx->has_minicpmv_projector) { + if (!(ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger)) { GGML_ASSERT(nx == image_size && ny == image_size); } @@ -2413,9 +2545,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h)); float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed)); - for(int i=0;ihas_qwen2vl_merger) { + struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); + + const int pw = image_size_width / patch_size; + const int ph = image_size_height / patch_size; + int* positions_data = (int*)malloc(ggml_nbytes(positions)); + + int ptr = 0; + for (int y = 0; y < ph; y+=2) + { + for (int x = 0; x < pw; x+=2) + { + for (int dy = 0; dy < 2; dy++) { + for (int dx = 0; dx < 2; dx++) { + positions_data[ptr] = y + dy; + positions_data[num_patches + ptr] = x + dx; + positions_data[num_patches * 2 + ptr] = y + dy; + positions_data[num_patches * 3 + ptr] = x + dx; + ptr++; + } + } + } + } + + ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); + free(positions_data); + } + else { struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); int* positions_data = (int*)malloc(ggml_nbytes(positions)); @@ -2444,16 +2603,16 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima } ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); free(positions_data); - } - { - struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches"); - int* patches_data = (int*)malloc(ggml_nbytes(patches)); - for (int i = 0; i < num_patches; i++) { - patches_data[i] = i + 1; + { + struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches"); + int* patches_data = (int*)malloc(ggml_nbytes(patches)); + for (int i = 0; i < num_patches; i++) { + patches_data[i] = i + 1; + } + ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches)); + free(patches_data); } - ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches)); - free(patches_data); } } @@ -2626,6 +2785,9 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) { return 3584; } } + if (ctx->proj_type == PROJECTOR_TYPE_MERGER) { + return ctx->vision_model.mm_1_b->ne[0]; + } std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type]; throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); @@ -2637,3 +2799,21 @@ int clip_is_minicpmv(const struct clip_ctx * ctx) { } return 0; } + +bool clip_is_qwen2vl(const struct clip_ctx * ctx) { + return ctx->has_qwen2vl_merger; +} + + +bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) { + clip_image_f32 clip_img; + clip_img.buf.resize(h * w * 3); + for (int i = 0; i < h*w*3; i++) + { + clip_img.buf[i] = img[i]; + } + clip_img.nx = w; + clip_img.ny = h; + clip_image_encode(ctx, n_threads, &clip_img, vec); + return true; +} diff --git a/examples/llava/clip.h b/examples/llava/clip.h index 78588bdf1745c..1603edd265e6c 100644 --- a/examples/llava/clip.h +++ b/examples/llava/clip.h @@ -45,6 +45,7 @@ CLIP_API struct clip_ctx * clip_model_load_cpu(const char * fname, int verbosity CLIP_API void clip_free(struct clip_ctx * ctx); CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx); +CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w); CLIP_API int32_t clip_image_size (const struct clip_ctx * ctx); CLIP_API int32_t clip_patch_size (const struct clip_ctx * ctx); @@ -55,11 +56,13 @@ CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx); CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx); -CLIP_API int clip_n_patches (const struct clip_ctx * ctx); -CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx); +CLIP_API int clip_n_patches (const struct clip_ctx * ctx); +CLIP_API int clip_n_patches_by_img (const struct clip_ctx * ctx, struct clip_image_f32 * img); +CLIP_API int clip_n_mmproj_embd (const struct clip_ctx * ctx); CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip); CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size); +CLIP_API struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip); CLIP_API struct clip_image_size * clip_image_size_init(); CLIP_API struct clip_image_u8 * clip_image_u8_init (); @@ -86,6 +89,9 @@ CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, cons CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype); CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx); +CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx); + +CLIP_API bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec); #ifdef __cplusplus } diff --git a/examples/llava/llava.cpp b/examples/llava/llava.cpp index 4ca53a0b883b9..16f30c56ceac9 100644 --- a/examples/llava/llava.cpp +++ b/examples/llava/llava.cpp @@ -259,25 +259,33 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip); - if (clip_is_minicpmv(ctx_clip)) { + if (clip_is_minicpmv(ctx_clip) || clip_is_qwen2vl(ctx_clip)) { std::vector image_embd_v; image_embd_v.resize(img_res_v.size); struct clip_image_size * load_image_size = clip_image_size_init(); + for (size_t i = 0; i < img_res_v.size; i++) { const int64_t t_img_enc_step_start_us = ggml_time_us(); - image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); + image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny)); int patch_size=14; load_image_size->width = img_res_v.data[i].nx; load_image_size->height = img_res_v.data[i].ny; clip_add_load_image_size(ctx_clip, load_image_size); + bool encoded = false; - int has_minicpmv_projector = clip_is_minicpmv(ctx_clip); - if (has_minicpmv_projector == 2) { - encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]); - } - else if (has_minicpmv_projector == 3) { + if (clip_is_qwen2vl(ctx_clip)) { encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); } + else { + int has_minicpmv_projector = clip_is_minicpmv(ctx_clip); + if (has_minicpmv_projector == 2) { + encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]); + } + else if (has_minicpmv_projector == 3) { + encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); + } + } + if (!encoded) { LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size); return false; @@ -290,8 +298,11 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli int n_img_pos_out = 0; for (size_t i = 0; i < image_embd_v.size(); i++) { - std::memcpy(image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), image_embd_v[i], clip_embd_nbytes(ctx_clip)); - n_img_pos_out += clip_n_patches(ctx_clip); + std::memcpy( + image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), + image_embd_v[i], + clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny)); + n_img_pos_out += clip_n_patches_by_img(ctx_clip, &img_res_v.data[i]); } *n_img_pos = n_img_pos_out; for (size_t i = 0; i < image_embd_v.size(); i++) { @@ -387,7 +398,13 @@ bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, co if (clip_is_minicpmv(ctx_clip)) { num_max_patches = 10; } - float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model + float * image_embd; + if (clip_is_qwen2vl(ctx_clip)) { + // qwen2vl don't split image into chunks, so `num_max_patches` is not needed. + image_embd = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img->nx, img->ny)); + } else { + image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model + } if (!image_embd) { LOG_ERR("Unable to allocate memory for image embeddings\n"); return false; diff --git a/examples/llava/qwen2_vl_surgery.py b/examples/llava/qwen2_vl_surgery.py new file mode 100644 index 0000000000000..c87606b4fdf4f --- /dev/null +++ b/examples/llava/qwen2_vl_surgery.py @@ -0,0 +1,165 @@ +import argparse +from typing import Dict + +import torch +import numpy as np +from gguf import * +from transformers import ( + Qwen2VLForConditionalGeneration, + Qwen2VLProcessor, + AutoProcessor, + Qwen2VLConfig +) + + +VISION = "clip.vision" + + +def k(raw_key: str, arch: str) -> str: + return raw_key.format(arch=arch) + + +def to_gguf_name(name: str) -> str: + og = name + name = name.replace("text_model", "t").replace("vision_model", "v") + name = name.replace("blocks", "blk").replace("embeddings.", "") + name = name.replace("attn.", "attn_") + name = name.replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("proj.", "out.") + # name = name.replace("layrnorm", "ln").replace("layer_norm", "ln").replace("layernorm", "ln") + name = name.replace("norm1", "ln1").replace("norm2", "ln2") + name = name.replace("merger.mlp", 'mm') + print(f"[to_gguf_name] {og} --> {name}") + return name + + +def find_vision_tensors(qwen2vl, dtype) -> Dict[str, np.ndarray]: + vision_model = qwen2vl.visual + tensor_map = {} + for name, ten in vision_model.state_dict().items(): + ten = ten.numpy() + if 'qkv' in name: + if ten.ndim == 2: # weight + c3, _ = ten.shape + else: # bias + c3 = ten.shape[0] + assert c3 % 3 == 0 + c = c3 // 3 + wq = ten[:c] + wk = ten[c: c * 2] + wv = ten[c * 2:] + tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "q")] = wq + tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "k")] = wk + tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "v")] = wv + elif 'merger' in name: + if name.endswith("ln_q.weight"): + tensor_map['v.post_ln.weight'] = ten + elif name.endswith("ln_q.bias"): + tensor_map['v.post_ln.bias'] = ten + else: + # "merger.mlp.%d.weight/bias" --> "mm.%d.weight/bias" + tensor_map[to_gguf_name(name)] = ten + elif 'patch_embed.proj.weight' in name: + # NOTE: split Conv3D into Conv2Ds + c1, c2, kt, kh, kw = ten.shape + assert kt == 2, "Current implmentation only support temporal_patch_size of 2" + tensor_map["v.patch_embd.weight"] = ten[:, :, 0, ...] + tensor_map["v.patch_embd.weight.1"] = ten[:, :, 1, ...] + else: + tensor_map[to_gguf_name(f"vision_model.{name}")] = ten + + for new_name, ten in tensor_map.items(): + if ten.ndim <= 1 or new_name.endswith("_norm.weight"): + tensor_map[new_name] = ten.astype(np.float32) + else: + tensor_map[new_name] = ten.astype(dtype) + tensor_map["v.position_embd.weight"] = np.zeros([10, 10], dtype=np.float32) # dummy tensor, just here as a placeholder + return tensor_map + + +def main(args): + if args.data_type == 'fp32': + dtype = torch.float32 + np_dtype = np.float32 + ftype = 0 + elif args.data_type == 'fp16': + dtype = torch.float32 + np_dtype = np.float16 + ftype = 1 + else: + raise ValueError() + + local_model = False + model_path = "" + model_name = args.model_name + print("model_name: ", model_name) + qwen2vl = Qwen2VLForConditionalGeneration.from_pretrained( + model_name, torch_dtype=dtype, device_map="cpu" + ) + cfg: Qwen2VLConfig = qwen2vl.config # type: ignore[reportAssignmentType] + vcfg = cfg.vision_config + + if os.path.isdir(model_name): + local_model = True + if model_name.endswith(os.sep): + model_name = model_name[:-1] + model_path = model_name + model_name = os.path.basename(model_name) + fname_out = f"{model_name.replace('/', '-').lower()}-vision.gguf" + + fout = GGUFWriter(path=fname_out, arch="clip") + fout.add_description("image encoder for Qwen2VL") + + fout.add_file_type(ftype) + fout.add_bool("clip.has_text_encoder", False) + fout.add_bool("clip.has_vision_encoder", True) + fout.add_bool("clip.has_qwen2vl_merger", True) + fout.add_string("clip.projector_type", "qwen2vl_merger") + + print(cfg.vision_config) + if 'silu' in cfg.vision_config.hidden_act.lower(): + fout.add_bool("clip.use_silu", True) + fout.add_bool("clip.use_gelu", False) + elif 'gelu' in cfg.vision_config.hidden_act.lower(): + fout.add_bool("clip.use_silu", False) + fout.add_bool("clip.use_gelu", 'quick' not in cfg.vision_config.hidden_act.lower()) + else: + raise ValueError() + + tensor_map = find_vision_tensors(qwen2vl, np_dtype) + for name, data in tensor_map.items(): + fout.add_tensor(name, data) + + fout.add_uint32("clip.vision.patch_size", vcfg.patch_size) + fout.add_uint32("clip.vision.image_size", 14 * 40) # some reasonable size that is divable by (14*2) + fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.embed_dim) + fout.add_uint32("clip.vision.projection_dim", vcfg.hidden_size) + fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), vcfg.num_heads) + fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6) + fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), vcfg.depth) + fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), 0) # not sure what this does, put 0 here as a placeholder + fout.add_name(model_name) + """ + HACK: Since vision rope related parameter aren't stored in the `Qwen2VLConfig, + it will be hardcoded in the `clip_image_build_graph` from `clip.cpp`. + """ + + if local_model: + processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path) + else: + processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_name) + fout.add_array("clip.vision.image_mean", processor.image_processor.image_mean) # type: ignore[reportAttributeAccessIssue] + fout.add_array("clip.vision.image_std", processor.image_processor.image_std) # type: ignore[reportAttributeAccessIssue] + + fout.write_header_to_file() + fout.write_kv_data_to_file() + fout.write_tensors_to_file() + fout.close() + print("save model as: ", fname_out) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("model_name", nargs='?', default="Qwen/Qwen2-VL-2B-Instruct") + parser.add_argument("--data_type", nargs='?', choices=['fp32', 'fp16'], default="fp32") + args = parser.parse_args() + main(args) diff --git a/examples/llava/qwen2vl-cli.cpp b/examples/llava/qwen2vl-cli.cpp new file mode 100644 index 0000000000000..e86a60280aed6 --- /dev/null +++ b/examples/llava/qwen2vl-cli.cpp @@ -0,0 +1,581 @@ +#include "arg.h" +#include "base64.hpp" +#include "log.h" +#include "common.h" +#include "sampling.h" +#include "clip.h" +#include "llava.h" +#include "llama.h" +#include "ggml.h" + +#ifdef GGML_USE_CUDA +#include "ggml-cuda.h" +#endif +#ifdef NDEBUG +#include "ggml-alloc.h" +#include "ggml-backend.h" +#endif + +#include +#include +#include +#include +#include +#include +#include + + +static bool qwen2vl_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, + int n_batch, int * n_past, int * st_pos_id, struct clip_image_size * image_size) { + int n_embd = llama_n_embd(llama_get_model(ctx_llama)); + const int patch_size = 14 * 2; + const int ph = image_size->height / patch_size + (image_size->height % patch_size > 0); + const int pw = image_size->width / patch_size + (image_size->width % patch_size > 0); + auto img_tokens = image_embed->n_image_pos; + // llama_pos mrope_pos[img_tokens * 4]; + std::vector mrope_pos; + mrope_pos.resize(img_tokens * 4); + + for (int y = 0; y < ph; y++) + { + for (int x = 0; x < pw; x++) + { + int i = y * pw + x; + mrope_pos[i] = *st_pos_id; + mrope_pos[i + img_tokens] = *st_pos_id + y; + mrope_pos[i + img_tokens * 2] = *st_pos_id + x; + mrope_pos[i + img_tokens * 3] = 0; + } + } + *st_pos_id += std::max(pw, ph); + + int processed = 0; + std::vector batch_mrope_pos; + batch_mrope_pos.resize(img_tokens * 4); + + for (int i = 0; i < img_tokens; i += n_batch) { + int n_eval = img_tokens - i; + if (n_eval > n_batch) { + n_eval = n_batch; + } + + // llama_pos batch_mrope_pos[n_eval * 4]; + std::fill(batch_mrope_pos.begin(), batch_mrope_pos.end(), 0); + memcpy(batch_mrope_pos.data(), &mrope_pos[processed], n_eval * sizeof(llama_pos)); + memcpy(&batch_mrope_pos[n_eval * 1], &mrope_pos[img_tokens * 1 + processed], n_eval * sizeof(llama_pos)); + memcpy(&batch_mrope_pos[n_eval * 2], &mrope_pos[img_tokens * 2 + processed], n_eval * sizeof(llama_pos)); + memcpy(&batch_mrope_pos[n_eval * 3], &mrope_pos[img_tokens * 3 + processed], n_eval * sizeof(llama_pos)); + + llama_batch batch = { + int32_t(n_eval), // n_tokens + nullptr, // token + (image_embed->embed+i*n_embd), // embed + batch_mrope_pos.data(), // pos + nullptr, // n_seq_id + nullptr, // seq_id + nullptr, // logits + }; + + if (llama_decode(ctx_llama, batch)) { + LOG_ERR("%s : failed to eval\n", __func__); + return false; + } + *n_past += n_eval; + processed += n_eval; + } + return true; +} + + +static bool eval_tokens(struct llama_context * ctx_llama, std::vector tokens, int n_batch, int * n_past, int * st_pos_id) { + int N = (int) tokens.size(); + std::vector pos; + for (int i = 0; i < N; i += n_batch) { + int n_eval = (int) tokens.size() - i; + if (n_eval > n_batch) { + n_eval = n_batch; + } + auto batch = llama_batch_get_one(&tokens[i], n_eval); + // TODO: add mrope pos ids somewhere else + pos.resize(batch.n_tokens * 4); + std::fill(pos.begin(), pos.end(), 0); + for (int j = 0; j < batch.n_tokens * 3; j ++) { + pos[j] = *st_pos_id + (j % batch.n_tokens); + } + batch.pos = pos.data(); + + if (llama_decode(ctx_llama, batch)) { + LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past); + return false; + } + *n_past += n_eval; + *st_pos_id += n_eval; + } + return true; +} + +static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past, int * st_pos_id) { + std::vector tokens; + tokens.push_back(id); + return eval_tokens(ctx_llama, tokens, 1, n_past, st_pos_id); +} + +static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, int * st_pos_id, bool add_bos){ + std::string str2 = str; + std::vector embd_inp = common_tokenize(ctx_llama, str2, add_bos, true); + eval_tokens(ctx_llama, embd_inp, n_batch, n_past, st_pos_id); + return true; +} + +static const char * sample(struct common_sampler * smpl, + struct llama_context * ctx_llama, + int * n_past, int * st_pos_id) { + const llama_token id = common_sampler_sample(smpl, ctx_llama, -1); + common_sampler_accept(smpl, id, true); + static std::string ret; + if (llama_token_is_eog(llama_get_model(ctx_llama), id)) { + ret = ""; + } else { + ret = common_token_to_piece(ctx_llama, id); + } + eval_id(ctx_llama, id, n_past, st_pos_id); + return ret.c_str(); +} + +static const char* IMG_BASE64_TAG_BEGIN = ""; + +static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) { + begin_out = prompt.find(IMG_BASE64_TAG_BEGIN); + end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out); +} + +static bool prompt_contains_image(const std::string& prompt) { + size_t begin, end; + find_image_tag_in_prompt(prompt, begin, end); + return (begin != std::string::npos); +} + +// replaces the base64 image tag in the prompt with `replacement` +static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) { + size_t img_base64_str_start, img_base64_str_end; + find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end); + if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) { + LOG_ERR("%s: invalid base64 image tag. must be %s%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END); + return NULL; + } + + auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN); + auto base64_bytes_count = img_base64_str_end - base64_bytes_start; + auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count ); + + auto required_bytes = base64::required_encode_size(base64_str.size()); + auto img_bytes = std::vector(required_bytes); + base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin()); + + auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size()); + if (!embed) { + LOG_ERR("%s: could not load image from base64 string.\n", __func__); + return NULL; + } + + return embed; +} + +static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") { + size_t begin, end; + find_image_tag_in_prompt(prompt, begin, end); + if (begin == std::string::npos || end == std::string::npos) { + return prompt; + } + auto pre = prompt.substr(0, begin); + auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END)); + return pre + replacement + post; +} + +struct llava_context { + struct clip_ctx * ctx_clip = NULL; + struct llama_context * ctx_llama = NULL; + struct llama_model * model = NULL; +}; + +static void print_usage(int, char ** argv) { + LOG("\n example usage:\n"); + LOG("\n %s -m --mmproj --image --image [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]); + LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n"); +} + +static struct llava_image_embed * load_image(llava_context * ctx_llava, common_params * params, const std::string & fname) { + + // load and preprocess the image + llava_image_embed * embed = NULL; + auto prompt = params->prompt; + if (prompt_contains_image(prompt)) { + if (!params->image.empty()) { + LOG_INF("using base64 encoded image instead of command line image path\n"); + } + embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt); + if (!embed) { + LOG_ERR("%s: can't load image from prompt\n", __func__); + return NULL; + } + params->prompt = remove_image_from_prompt(prompt); + } else { + embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str()); + if (!embed) { + fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str()); + return NULL; + } + } + + return embed; +} + +static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, common_params * params, const std::string & prompt) { + int n_past = 0; + int cur_pos_id = 0; + + const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict; + + std::string system_prompt, user_prompt; + size_t image_pos = prompt.find("<|vision_start|>"); + if (image_pos != std::string::npos) { + // new templating mode: Provide the full prompt including system message and use as a placeholder for the image + system_prompt = prompt.substr(0, image_pos); + user_prompt = prompt.substr(image_pos + std::string("<|vision_pad|>").length()); + LOG_INF("system_prompt: %s\n", system_prompt.c_str()); + if (params->verbose_prompt) { + auto tmp = common_tokenize(ctx_llava->ctx_llama, system_prompt, true, true); + for (int i = 0; i < (int) tmp.size(); i++) { + LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); + } + } + LOG_INF("user_prompt: %s\n", user_prompt.c_str()); + if (params->verbose_prompt) { + auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true); + for (int i = 0; i < (int) tmp.size(); i++) { + LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); + } + } + } else { + // llava-1.5 native mode + system_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|>"; + user_prompt = "<|vision_end|>" + prompt + "<|im_end|>\n<|im_start|>assistant\n"; + if (params->verbose_prompt) { + auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true); + for (int i = 0; i < (int) tmp.size(); i++) { + LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); + } + } + } + + eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, true); + if (image_embed != nullptr) { + auto image_size = clip_get_load_image_size(ctx_llava->ctx_clip); + qwen2vl_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past, &cur_pos_id, image_size); + } + eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, false); + + // generate the response + + LOG("\n"); + + struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling); + if (!smpl) { + LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__); + exit(1); + } + + std::string response = ""; + for (int i = 0; i < max_tgt_len; i++) { + const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past, &cur_pos_id); + response += tmp; + if (strcmp(tmp, "") == 0) break; + if (strstr(tmp, "###")) break; // Yi-VL behavior + LOG("%s", tmp); + if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works) + if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6 + if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6 + + fflush(stdout); + } + + common_sampler_free(smpl); + LOG("\n"); +} + +static struct llama_model * llava_init(common_params * params) { + llama_backend_init(); + llama_numa_init(params->numa); + + llama_model_params model_params = common_model_params_to_llama(*params); + + llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params); + if (model == NULL) { + LOG_ERR("%s: unable to load model\n" , __func__); + return NULL; + } + return model; +} + +static struct llava_context * llava_init_context(common_params * params, llama_model * model) { + const char * clip_path = params->mmproj.c_str(); + + auto prompt = params->prompt; + if (prompt.empty()) { + prompt = "describe the image in detail."; + } + + auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1); + + + llama_context_params ctx_params = common_context_params_to_llama(*params); + ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings + + llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params); + + if (ctx_llama == NULL) { + LOG_ERR("%s: failed to create the llama_context\n" , __func__); + return NULL; + } + + auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context)); + + ctx_llava->ctx_llama = ctx_llama; + ctx_llava->ctx_clip = ctx_clip; + ctx_llava->model = model; + return ctx_llava; +} + +static void llava_free(struct llava_context * ctx_llava) { + if (ctx_llava->ctx_clip) { + clip_free(ctx_llava->ctx_clip); + ctx_llava->ctx_clip = NULL; + } + + llama_free(ctx_llava->ctx_llama); + llama_free_model(ctx_llava->model); + llama_backend_free(); +} + +#ifndef NDEBUG + +static void debug_test_mrope_2d() { + // 1. Initialize backend + ggml_backend_t backend = NULL; + std::string backend_name = ""; +#ifdef GGML_USE_CUDA + fprintf(stderr, "%s: using CUDA backend\n", __func__); + backend = ggml_backend_cuda_init(0); // init device 0 + backend_name = "cuda"; + if (!backend) { + fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__); + } +#endif + // if there aren't GPU Backends fallback to CPU backend + if (!backend) { + backend = ggml_backend_cpu_init(); + backend_name = "cpu"; + } + + // Calculate the size needed to allocate + size_t ctx_size = 0; + ctx_size += 2 * ggml_tensor_overhead(); // tensors + // no need to allocate anything else! + + // 2. Allocate `ggml_context` to store tensor data + struct ggml_init_params params = { + /*.mem_size =*/ ctx_size, + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors() + }; + struct ggml_context * ctx = ggml_init(params); + + struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 128, 12, 30); + ggml_set_name(inp_raw, "inp_raw"); + ggml_set_input(inp_raw); + + struct ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 30 * 4); + ggml_set_name(pos, "pos"); + ggml_set_input(pos); + + std::vector dummy_q; + dummy_q.resize(128 * 12 * 30); + std::fill(dummy_q.begin(), dummy_q.end(), 0.1); + // memcpy(inp_raw->data, dummy_q.data(), 128 * 12 * 30 * ggml_element_size(inp_raw)); + + std::vector pos_id; + pos_id.resize(30 * 4); + for (int i = 0; i < 30; i ++) { + pos_id[i] = i; + pos_id[i + 30] = i + 10; + pos_id[i + 60] = i + 20; + pos_id[i + 90] = i + 30; + } + int sections[4] = {32, 32, 0, 0}; + + // 4. Allocate a `ggml_backend_buffer` to store all tensors + ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend); + + // 5. Copy tensor data from main memory (RAM) to backend buffer + ggml_backend_tensor_set(inp_raw, dummy_q.data(), 0, ggml_nbytes(inp_raw)); + ggml_backend_tensor_set(pos, pos_id.data(), 0, ggml_nbytes(pos)); + + // 6. Create a `ggml_cgraph` for mul_mat operation + struct ggml_cgraph * gf = NULL; + struct ggml_context * ctx_cgraph = NULL; + + // create a temporally context to build the graph + struct ggml_init_params params0 = { + /*.mem_size =*/ ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(), + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph() + }; + ctx_cgraph = ggml_init(params0); + gf = ggml_new_graph(ctx_cgraph); + + struct ggml_tensor * result0 = ggml_rope_multi( + ctx_cgraph, inp_raw, pos, nullptr, + 128/2, sections, LLAMA_ROPE_TYPE_VISION, 32768, 1000000, 1, + 0, 1, 32, 1); + + // Add "result" tensor and all of its dependencies to the cgraph + ggml_build_forward_expand(gf, result0); + + // 7. Create a `ggml_gallocr` for cgraph computation + ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend)); + ggml_gallocr_alloc_graph(allocr, gf); + + // 9. Run the computation + int n_threads = 1; // Optional: number of threads to perform some operations with multi-threading + if (ggml_backend_is_cpu(backend)) { + ggml_backend_cpu_set_n_threads(backend, n_threads); + } + ggml_backend_graph_compute(backend, gf); + + // 10. Retrieve results (output tensors) + // in this example, output tensor is always the last tensor in the graph + struct ggml_tensor * result = result0; + // struct ggml_tensor * result = gf->nodes[gf->n_nodes - 1]; + float * result_data = (float *)malloc(ggml_nbytes(result)); + // because the tensor data is stored in device buffer, we need to copy it back to RAM + ggml_backend_tensor_get(result, result_data, 0, ggml_nbytes(result)); + const std::string bin_file = "mrope_2d_" + backend_name +".bin"; + std::ofstream outFile(bin_file, std::ios::binary); + + if (outFile.is_open()) { + outFile.write(reinterpret_cast(result_data), ggml_nbytes(result)); + outFile.close(); + std::cout << "Data successfully written to " + bin_file << std::endl; + } else { + std::cerr << "Error opening file!" << std::endl; + } + + free(result_data); + // 11. Free memory and exit + ggml_free(ctx_cgraph); + ggml_gallocr_free(allocr); + ggml_free(ctx); + ggml_backend_buffer_free(buffer); + ggml_backend_free(backend); +} + +static void debug_dump_img_embed(struct llava_context * ctx_llava) { + int n_embd = llama_n_embd(llama_get_model(ctx_llava->ctx_llama)); + int ne = n_embd * 4; + float vals[56 * 56 * 3]; + // float embd[ne]; + std::vector embd; + embd.resize(ne); + + for (int i = 0; i < 56*56; i++) + { + for (int c = 0; c < 3; c++) + vals[i * 3 + c] = (float)(i % (56 * 56)) / (56*56); + } + + clip_encode_float_image(ctx_llava->ctx_clip, 16, vals, 56, 56, embd.data()); + + std::ofstream outFile("img_embed.bin", std::ios::binary); + if (outFile.is_open()) { + outFile.write(reinterpret_cast(embd.data()), ne * sizeof(float)); + + outFile.close(); + std::cout << "Data successfully written to mrope.bin" << std::endl; + } else { + std::cerr << "Error opening file!" << std::endl; + } +} + +#endif + + +int main(int argc, char ** argv) { + ggml_time_init(); + + common_params params; + + if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) { + return 1; + } + + common_init(); + + if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) { + print_usage(argc, argv); + return 1; + } + + auto * model = llava_init(¶ms); + if (model == NULL) { + fprintf(stderr, "%s: error: failed to init llava model\n", __func__); + return 1; + } + + if (prompt_contains_image(params.prompt)) { + auto * ctx_llava = llava_init_context(¶ms, model); + + auto * image_embed = load_image(ctx_llava, ¶ms, ""); + + // process the prompt + process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); + + llama_perf_context_print(ctx_llava->ctx_llama); + llava_image_embed_free(image_embed); + ctx_llava->model = NULL; + llava_free(ctx_llava); +#ifndef NDEBUG + } else if (params.image[0].empty()) { + auto ctx_llava = llava_init_context(¶ms, model); + + debug_test_mrope_2d(); + debug_dump_img_embed(ctx_llava); + + llama_perf_context_print(ctx_llava->ctx_llama); + ctx_llava->model = NULL; + llava_free(ctx_llava); +#endif + } else { + for (auto & image : params.image) { + auto * ctx_llava = llava_init_context(¶ms, model); + + auto * image_embed = load_image(ctx_llava, ¶ms, image); + if (!image_embed) { + LOG_ERR("%s: failed to load image %s. Terminating\n\n", __func__, image.c_str()); + return 1; + } + + // process the prompt + process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); + + llama_perf_context_print(ctx_llava->ctx_llama); + llava_image_embed_free(image_embed); + ctx_llava->model = NULL; + llava_free(ctx_llava); + } + } + + llama_free_model(model); + + return 0; +} diff --git a/examples/main/README.md b/examples/main/README.md index 7787f7b11b81f..17d80a622a8bb 100644 --- a/examples/main/README.md +++ b/examples/main/README.md @@ -177,16 +177,11 @@ Example usage: `--temp 0` - `--repeat-penalty N`: Control the repetition of token sequences in the generated text default: 1.0, 1.0 = disabled). - `--repeat-last-n N`: Last n tokens to consider for penalizing repetition (default: 64, 0 = disabled, -1 = ctx-size). -- `--no-penalize-nl`: Disable penalization for newline tokens when applying the repeat penalty. The `repeat-penalty` option helps prevent the model from generating repetitive or monotonous text. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. The default value is 1. The `repeat-last-n` option controls the number of tokens in the history to consider for penalizing repetition. A larger value will look further back in the generated text to prevent repetitions, while a smaller value will only consider recent tokens. A value of 0 disables the penalty, and a value of -1 sets the number of tokens considered equal to the context size (`ctx-size`). -Use the `--no-penalize-nl` option to disable newline penalization when applying the repeat penalty. This option is particularly useful for generating chat conversations, dialogues, code, poetry, or any text where newline tokens play a significant role in structure and formatting. Disabling newline penalization helps maintain the natural flow and intended formatting in these specific use cases. - -Example usage: `--repeat-penalty 1.15 --repeat-last-n 128 --no-penalize-nl` - ### DRY Repetition Penalty DRY (Don't Repeat Yourself) sampling is an effective technique for reducing repetition in generated text even across long contexts by penalizing tokens based on their recent usage patterns (original [PR link](https://github.com/oobabooga/text-generation-webui/pull/5677)). diff --git a/examples/retrieval/retrieval.cpp b/examples/retrieval/retrieval.cpp index 23ff4db27a420..a5c6fe7e58523 100644 --- a/examples/retrieval/retrieval.cpp +++ b/examples/retrieval/retrieval.cpp @@ -107,7 +107,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu } float * out = output + batch.seq_id[i][0] * n_embd; - common_embd_normalize(embd, out, n_embd); + common_embd_normalize(embd, out, n_embd, 2); } } diff --git a/examples/server/CMakeLists.txt b/examples/server/CMakeLists.txt index 63fca1d590f52..a27597cbc294a 100644 --- a/examples/server/CMakeLists.txt +++ b/examples/server/CMakeLists.txt @@ -15,7 +15,7 @@ set(TARGET_SRCS httplib.h ) set(PUBLIC_ASSETS - index.html + index.html.gz loading.html ) diff --git a/examples/server/README.md b/examples/server/README.md index a9443e56b82cc..d006a8d37cf6f 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -104,7 +104,6 @@ The project is under active development, and we are [looking for feedback and co | `-s, --seed SEED` | RNG seed (default: -1, use random seed for -1) | | `--sampling-seq SEQUENCE` | simplified sequence for samplers that will be used (default: dkypmxt) | | `--ignore-eos` | ignore end of stream token and continue generating (implies --logit-bias EOS-inf) | -| `--penalize-nl` | penalize newline tokens (default: false) | | `--temp N` | temperature (default: 0.8) | | `--top-k N` | top-k sampling (default: 40, 0 = disabled) | | `--top-p N` | top-p sampling (default: 0.9, 1.0 = disabled) | @@ -393,8 +392,6 @@ These words will not be included in the completion, so make sure to add them to `repeat_last_n`: Last n tokens to consider for penalizing repetition. Default: `64`, where `0` is disabled and `-1` is ctx-size. -`penalize_nl`: Penalize newline tokens when applying the repeat penalty. Default: `true` - `presence_penalty`: Repeat alpha presence penalty. Default: `0.0`, which is disabled. `frequency_penalty`: Repeat alpha frequency penalty. Default: `0.0`, which is disabled. @@ -441,19 +438,22 @@ These words will not be included in the completion, so make sure to add them to `cache_prompt`: Re-use KV cache from a previous request if possible. This way the common prefix does not have to be re-processed, only the suffix that differs between the requests. Because (depending on the backend) the logits are **not** guaranteed to be bit-for-bit identical for different batch sizes (prompt processing vs. token generation) enabling this option can cause nondeterministic results. Default: `true` +`return_tokens`: Return the raw generated token ids in the `tokens` field. Otherwise `tokens` remains empty. Default: `false` + `samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. Default: `["dry", "top_k", "typ_p", "top_p", "min_p", "xtc", "temperature"]` - these are all the available values. `timings_per_token`: Include prompt processing and text generation speed information in each response. Default: `false` **Response format** -- Note: In streaming mode (`stream`), only `content` and `stop` will be returned until end of completion. Responses are sent using the [Server-sent events](https://html.spec.whatwg.org/multipage/server-sent-events.html) standard. Note: the browser's `EventSource` interface cannot be used due to its lack of `POST` request support. +- Note: In streaming mode (`stream`), only `content`, `tokens` and `stop` will be returned until end of completion. Responses are sent using the [Server-sent events](https://html.spec.whatwg.org/multipage/server-sent-events.html) standard. Note: the browser's `EventSource` interface cannot be used due to its lack of `POST` request support. - `completion_probabilities`: An array of token probabilities for each completion. The array's length is `n_predict`. Each item in the array has the following structure: ```json { - "content": "", + "content": "", + "tokens": [ generated token ids if requested ], "probs": [ { "prob": float, @@ -471,6 +471,7 @@ These words will not be included in the completion, so make sure to add them to Notice that each `probs` is an array of length `n_probs`. - `content`: Completion result as a string (excluding `stopping_word` if any). In case of streaming mode, will contain the next token as a string. +- `tokens`: Same as `content` but represented as raw token ids. Only populated if `"return_tokens": true` or `"stream": true` in the request. - `stop`: Boolean for use with `stream` to check whether the generation has stopped (Note: This is not related to stopping words array `stop` from input options) - `generation_settings`: The provided options above excluding `prompt` but including `n_ctx`, `model`. These options may differ from the original ones in some way (e.g. bad values filtered out, strings converted to tokens, etc.). - `model`: The path to the model loaded with `-m` @@ -655,7 +656,6 @@ This endpoint is public (no API key check). By default, it is read-only. To make "mirostat": 0, "mirostat_tau": 5.0, "mirostat_eta": 0.10000000149011612, - "penalize_nl": false, "stop": [], "max_tokens": -1, "n_keep": 0, @@ -763,6 +763,8 @@ curl http://localhost:8080/v1/chat/completions \ ### POST `/v1/embeddings`: OpenAI-compatible embeddings API +This endpoint requires that the model uses a pooling different than type `none`. The embeddings are normalized using the Eucledian norm. + *Options:* See [OpenAI Embeddings API documentation](https://platform.openai.com/docs/api-reference/embeddings). @@ -795,6 +797,46 @@ See [OpenAI Embeddings API documentation](https://platform.openai.com/docs/api-r }' ``` +### POST `/embeddings`: non-OpenAI-compatible embeddings API + +This endpoint supports all poolings, including `--pooling none`. When the pooling is `none`, the responses will contain the *unnormalized* embeddings for *all* input tokens. For all other pooling types, only the pooled embeddings are returned, normalized using Euclidian norm. + +Note that the response format of this endpoint is different from `/v1/embeddings`. + +*Options:* + +Same as the `/v1/embeddings` endpoint. + +*Examples:* + +Same as the `/v1/embeddings` endpoint. + +**Response format** + +```json +[ + { + "index": 0, + "embedding": [ + [ ... embeddings for token 0 ... ], + [ ... embeddings for token 1 ... ], + [ ... ] + [ ... embeddings for token N-1 ... ], + ] + }, + ... + { + "index": P, + "embedding": [ + [ ... embeddings for token 0 ... ], + [ ... embeddings for token 1 ... ], + [ ... ] + [ ... embeddings for token N-1 ... ], + ] + } +] +``` + ### GET `/slots`: Returns the current slots processing state > [!WARNING] @@ -845,7 +887,6 @@ Example: "mirostat": 0, "mirostat_tau": 5.0, "mirostat_eta": 0.10000000149011612, - "penalize_nl": false, "stop": [], "max_tokens": -1, "n_keep": 0, diff --git a/examples/server/public/index.html b/examples/server/public/index.html deleted file mode 100644 index 9a19c5e83e35b..0000000000000 --- a/examples/server/public/index.html +++ /dev/null @@ -1,389 +0,0 @@ - - - - - - - - 🦙 llama.cpp - chat - - - - - -
-
- - - -
- -
-
-

Conversations

- - - -
- - -
- + New conversation -
-
- {{ conv.messages[0].content }} -
-
- Conversations are saved to browser's localStorage -
-
-
- - -
- -
- - - -
llama.cpp
- - -
- - - - - -
-
- - -
-
- - {{ messages.length === 0 ? 'Send a message to start' : '' }} -
-
- -
- - -
- -
-
- - -
- - - -
-
- -
- - - - - - - -
- - - - - - - - - - - - diff --git a/examples/server/public/index.html.gz b/examples/server/public/index.html.gz new file mode 100644 index 0000000000000..6a64915579c39 Binary files /dev/null and b/examples/server/public/index.html.gz differ diff --git a/examples/server/public_legacy/index-new.html b/examples/server/public_legacy/index-new.html index 8bfa380e57388..cbfbbdf2806fa 100644 --- a/examples/server/public_legacy/index-new.html +++ b/examples/server/public_legacy/index-new.html @@ -39,7 +39,6 @@ temperature: 0.8, // adapt all following parameters to optimized min-p requierements. If for non-english, set to 0.6 or lower repeat_last_n: 0, // 0 = disable penalty, -1 = context size repeat_penalty: 1.0, // 1.0 = disabled - penalize_nl: false, // true only useful for infinite completion dry_multiplier: 0.0, // 0.0 = disabled, 0.8 works well dry_base: 1.75, // 0.0 = disabled dry_allowed_length: 2, // tokens extending repetitions beyond this receive penalty, 2 works well diff --git a/examples/server/public_legacy/index.html b/examples/server/public_legacy/index.html index a95f5c6df8775..75f39330a789d 100644 --- a/examples/server/public_legacy/index.html +++ b/examples/server/public_legacy/index.html @@ -303,7 +303,6 @@ temperature: 0.7, repeat_last_n: 256, // 0 = disable penalty, -1 = context size repeat_penalty: 1.18, // 1.0 = disabled - penalize_nl: false, dry_multiplier: 0.0, // 0.0 = disabled, 0.8 works well dry_base: 1.75, // 0.0 = disabled dry_allowed_length: 2, // tokens extending repetitions beyond this receive penalty, 2 works well @@ -1006,7 +1005,6 @@ ${FloatField({ label: "Temperature", max: 2.0, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature })} ${FloatField({ label: "Penalize repeat sequence", max: 2.0, min: 0.0, name: "repeat_penalty", step: 0.01, value: params.value.repeat_penalty })} ${IntField({ label: "Consider N tokens for penalize", max: 2048, min: 0, name: "repeat_last_n", value: params.value.repeat_last_n })} - ${BoolField({ label: "Penalize repetition of newlines", name: "penalize_nl", value: params.value.penalize_nl })} ${IntField({ label: "Top-K sampling", max: 100, min: -1, name: "top_k", value: params.value.top_k })} ${FloatField({ label: "Top-P sampling", max: 1.0, min: 0.0, name: "top_p", step: 0.01, value: params.value.top_p })} ${FloatField({ label: "Min-P sampling", max: 1.0, min: 0.0, name: "min_p", step: 0.01, value: params.value.min_p })} diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 8cb992470a302..5ed4e8d274428 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -15,7 +15,7 @@ #define MIMETYPE_JSON "application/json; charset=utf-8" // auto generated files (update with ./deps.sh) -#include "index.html.hpp" +#include "index.html.gz.hpp" #include "loading.html.hpp" #include @@ -79,8 +79,9 @@ enum error_type { }; struct slot_params { - bool stream = true; - bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt + bool stream = true; + bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt + bool return_tokens = false; int32_t n_keep = 0; // number of tokens to keep from initial prompt int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half @@ -135,7 +136,6 @@ struct slot_params { {"mirostat", sampling.mirostat}, {"mirostat_tau", sampling.mirostat_tau}, {"mirostat_eta", sampling.mirostat_eta}, - {"penalize_nl", sampling.penalize_nl}, {"stop", antiprompt}, {"max_tokens", n_predict}, // User configured n_predict {"n_keep", n_keep}, @@ -184,6 +184,7 @@ struct server_task { static slot_params params_from_json_cmpl( const llama_model * model, + const llama_context * ctx, const common_params & params_base, const json & data) { slot_params params; @@ -199,6 +200,7 @@ struct server_task { params.stream = json_value(data, "stream", false); params.cache_prompt = json_value(data, "cache_prompt", true); + params.return_tokens = json_value(data, "return_tokens", false); params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict)); params.n_indent = json_value(data, "n_indent", defaults.n_indent); params.n_keep = json_value(data, "n_keep", defaults.n_keep); @@ -226,7 +228,6 @@ struct server_task { params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat); params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau); params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta); - params.sampling.penalize_nl = json_value(data, "penalize_nl", defaults.sampling.penalize_nl); params.sampling.seed = json_value(data, "seed", defaults.sampling.seed); params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs); params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep); @@ -239,8 +240,27 @@ struct server_task { params.speculative.n_min = std::max(params.speculative.n_min, 2); params.speculative.n_max = std::max(params.speculative.n_max, 0); + // TODO: add more sanity checks for the input parameters + + if (params.sampling.penalty_last_n < -1) { + throw std::runtime_error("Error: repeat_last_n must be >= -1"); + } + + if (params.sampling.dry_penalty_last_n < -1) { + throw std::runtime_error("Error: dry_penalty_last_n must be >= -1"); + } + + if (params.sampling.penalty_last_n == -1) { + // note: should be the slot's context and not the full context, but it's ok + params.sampling.penalty_last_n = llama_n_ctx(ctx); + } + + if (params.sampling.dry_penalty_last_n == -1) { + params.sampling.dry_penalty_last_n = llama_n_ctx(ctx); + } + if (params.sampling.dry_base < 1.0f) { - params.sampling.dry_base = defaults.sampling.dry_base; + params.sampling.dry_base = defaults.sampling.dry_base; } // sequence breakers for DRY @@ -450,7 +470,10 @@ struct completion_token_output { struct server_task_result_cmpl_final : server_task_result { int index = 0; - std::string content; + + std::string content; + llama_tokens tokens; + bool stream; result_timings timings; std::string prompt; @@ -459,7 +482,7 @@ struct server_task_result_cmpl_final : server_task_result { int32_t n_decoded; int32_t n_prompt_tokens; int32_t n_tokens_cached; - int32_t has_new_line; + bool has_new_line; std::string stopping_word; stop_type stop = STOP_TYPE_NONE; @@ -492,6 +515,7 @@ struct server_task_result_cmpl_final : server_task_result { json res = json { {"index", index}, {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk + {"tokens", stream ? llama_tokens {} : tokens}, {"id_slot", id_slot}, {"stop", true}, {"model", oaicompat_model}, @@ -521,9 +545,9 @@ struct server_task_result_cmpl_final : server_task_result { json choices = json::array({json{ {"finish_reason", finish_reason}, {"index", 0}, - {"message", json{ + {"message", json { {"content", content}, - {"role", "assistant"} + {"role", "assistant"} } }}}); @@ -587,7 +611,9 @@ struct server_task_result_cmpl_final : server_task_result { struct server_task_result_cmpl_partial : server_task_result { int index = 0; - std::string content; + + std::string content; + llama_tokens tokens; int32_t n_decoded; int32_t n_prompt_tokens; @@ -619,6 +645,7 @@ struct server_task_result_cmpl_partial : server_task_result { json res = json { {"index", index}, {"content", content}, + {"tokens", tokens}, {"stop", false}, {"id_slot", id_slot}, {"tokens_predicted", n_decoded}, @@ -660,7 +687,7 @@ struct server_task_result_cmpl_partial : server_task_result { json second_ret = json{ {"choices", json::array({json{{"finish_reason", nullptr}, {"index", 0}, - {"delta", json{ + {"delta", json { {"content", content}}} }})}, {"created", t}, @@ -675,7 +702,7 @@ struct server_task_result_cmpl_partial : server_task_result { {"finish_reason", nullptr}, {"index", 0}, {"delta", - json{ + json { {"content", content}, }}, }}); @@ -699,32 +726,52 @@ struct server_task_result_cmpl_partial : server_task_result { struct server_task_result_embd : server_task_result { int index = 0; - std::vector embedding; + std::vector> embedding; + + int32_t n_tokens; + + // OAI-compat fields + bool oaicompat = false; virtual int get_index() override { return index; } virtual json to_json() override { + return oaicompat ? to_json_oaicompat() : to_json_non_oaicompat(); + } + + json to_json_non_oaicompat() { return json { {"index", index}, {"embedding", embedding}, }; } + + json to_json_oaicompat() { + return json { + {"index", index}, + {"embedding", embedding[0]}, + {"tokens_evaluated", n_tokens}, + }; + } }; struct server_task_result_rerank : server_task_result { int index = 0; float score = -1e6; + int32_t n_tokens; + virtual int get_index() override { return index; } virtual json to_json() override { return json { - {"index", index}, - {"score", score}, + {"index", index}, + {"score", score}, + {"tokens_evaluated", n_tokens}, }; } }; @@ -931,8 +978,11 @@ struct server_slot { size_t last_nl_pos = 0; - std::string generated_text; + std::string generated_text; + llama_tokens generated_tokens; + llama_tokens cache_tokens; + std::vector generated_token_probs; bool has_next_token = true; @@ -976,6 +1026,7 @@ struct server_slot { n_sent_token_probs = 0; task_type = SERVER_TASK_TYPE_COMPLETION; + generated_tokens.clear(); generated_token_probs.clear(); } @@ -1079,9 +1130,9 @@ struct server_slot { SLT_INF(*this, "\n" - "\rprompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n" - "\r eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n" - "\r total time = %10.2f ms / %5d tokens\n", + "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n" + " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n" + " total time = %10.2f ms / %5d tokens\n", t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second, t_token_generation, n_decoded, t_gen, n_gen_second, t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded); @@ -1469,7 +1520,7 @@ struct server_context { n_ctx = llama_n_ctx(ctx); add_bos_token = llama_add_bos_token(model); - has_eos_token = !llama_add_eos_token(model); + has_eos_token = llama_token_eos(model) != LLAMA_TOKEN_NULL; if (!params_base.speculative.model.empty()) { SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str()); @@ -1716,8 +1767,10 @@ struct server_context { const std::string token_str = common_token_to_piece(ctx, result.tok, params_base.special); slot.sampled = result.tok; - // search stop word and delete it slot.generated_text += token_str; + if (slot.params.return_tokens) { + slot.generated_tokens.push_back(result.tok); + } slot.has_next_token = true; // check if there is incomplete UTF-8 character at the end @@ -1742,6 +1795,7 @@ struct server_context { break; } + // search stop word and delete it if (!incomplete) { size_t pos = std::min(slot.n_sent_text, slot.generated_text.size()); @@ -1894,6 +1948,7 @@ struct server_context { res->id = slot.id_task; res->index = slot.index; res->content = tkn.text_to_send; + res->tokens = { tkn.tok }; res->n_decoded = slot.n_decoded; res->n_prompt_tokens = slot.n_prompt_tokens; @@ -1934,6 +1989,7 @@ struct server_context { res->index = slot.index; res->content = slot.generated_text; + res->tokens = slot.generated_tokens; res->timings = slot.get_timings(); res->prompt = common_detokenize(ctx, slot.prompt_tokens, true); @@ -1975,8 +2031,10 @@ struct server_context { void send_embedding(const server_slot & slot, const llama_batch & batch) { auto res = std::make_unique(); - res->id = slot.id_task; - res->index = slot.index; + res->id = slot.id_task; + res->index = slot.index; + res->n_tokens = slot.n_prompt_tokens; + res->oaicompat = slot.params.oaicompat; const int n_embd = llama_n_embd(model); @@ -1995,12 +2053,18 @@ struct server_context { if (embd == NULL) { SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]); - res->embedding = std::vector(n_embd, 0.0f); + res->embedding.push_back(std::vector(n_embd, 0.0f)); continue; } - common_embd_normalize(embd, embd_res.data(), n_embd); - res->embedding = embd_res; + // normalize only when there is pooling + // TODO: configurable + if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) { + common_embd_normalize(embd, embd_res.data(), n_embd, 2); + res->embedding.push_back(embd_res); + } else { + res->embedding.push_back({ embd, embd + n_embd }); + } } SLT_DBG(slot, "%s", "sending embeddings\n"); @@ -2012,6 +2076,7 @@ struct server_context { auto res = std::make_unique(); res->id = slot.id_task; res->index = slot.index; + res->n_tokens = slot.n_prompt_tokens; for (int i = 0; i < batch.n_tokens; ++i) { if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) { @@ -2613,7 +2678,10 @@ struct server_context { // add prompt tokens for processing in the current batch while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) { - common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, false); + // without pooling, we want to output the embeddings for all the tokens in the batch + const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE; + + common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd); if (slot.params.cache_prompt) { slot.cache_tokens.push_back(prompt_tokens[slot.n_past]); @@ -3381,7 +3449,7 @@ int main(int argc, char ** argv) { task.index = i; task.prompt_tokens = std::move(tokenized_prompts[i]); - task.params = server_task::params_from_json_cmpl(ctx_server.model, ctx_server.params_base, data); + task.params = server_task::params_from_json_cmpl(ctx_server.model, ctx_server.ctx, ctx_server.params_base, data); task.id_selected_slot = json_value(data, "id_slot", -1); // OAI-compat @@ -3621,34 +3689,50 @@ int main(int argc, char ** argv) { res_ok(res, data); }; - const auto handle_embeddings = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) { + const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, bool oaicompat) { const json body = json::parse(req.body); - bool oaicompat = false; - // an input prompt can be a string or a list of tokens (integer) + if (oaicompat && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) { + res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST)); + return; + } + + // for the shape of input/content, see tokenize_input_prompts() json prompt; if (body.count("input") != 0) { - oaicompat = true; prompt = body.at("input"); - } else if (body.count("content") != 0) { - // with "content", we only support single prompt - prompt = std::vector{body.at("content")}; + } else if (body.contains("content")) { + oaicompat = false; + prompt = body.at("content"); } else { res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST)); return; } + std::vector tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true); + for (const auto & tokens : tokenized_prompts) { + // this check is necessary for models that do not add BOS token to the input + if (tokens.empty()) { + res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST)); + return; + } + } + // create and queue the task json responses = json::array(); bool error = false; { std::vector tasks; - std::vector tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, /* add_special */ false, true); for (size_t i = 0; i < tokenized_prompts.size(); i++) { - server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING); + server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING); + task.id = ctx_server.queue_tasks.get_new_id(); task.index = i; task.prompt_tokens = std::move(tokenized_prompts[i]); + + // OAI-compat + task.params.oaicompat = oaicompat; + tasks.push_back(task); } @@ -3676,12 +3760,18 @@ int main(int argc, char ** argv) { } // write JSON response - json root = oaicompat - ? format_embeddings_response_oaicompat(body, responses) - : responses.size() == 1 ? responses[0] : json(responses); + json root = oaicompat ? format_embeddings_response_oaicompat(body, responses) : json(responses); res_ok(res, root); }; + const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) { + handle_embeddings_impl(req, res, false); + }; + + const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) { + handle_embeddings_impl(req, res, true); + }; + const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) { if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) { res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED)); @@ -3828,8 +3918,13 @@ int main(int argc, char ** argv) { } } else { // using embedded static index.html - svr->Get("/", [](const httplib::Request &, httplib::Response & res) { - res.set_content(reinterpret_cast(index_html), index_html_len, "text/html; charset=utf-8"); + svr->Get("/", [](const httplib::Request & req, httplib::Response & res) { + if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) { + res.set_content("Error: gzip is not supported by this browser", "text/plain"); + } else { + res.set_header("Content-Encoding", "gzip"); + res.set_content(reinterpret_cast(index_html_gz), index_html_gz_len, "text/html; charset=utf-8"); + } return false; }); } @@ -3850,7 +3945,7 @@ int main(int argc, char ** argv) { svr->Post("/infill", handle_infill); svr->Post("/embedding", handle_embeddings); // legacy svr->Post("/embeddings", handle_embeddings); - svr->Post("/v1/embeddings", handle_embeddings); + svr->Post("/v1/embeddings", handle_embeddings_oai); svr->Post("/rerank", handle_rerank); svr->Post("/reranking", handle_rerank); svr->Post("/v1/rerank", handle_rerank); diff --git a/examples/server/tests/unit/test_completion.py b/examples/server/tests/unit/test_completion.py index 7f4f9cd038be4..36aee57dd3638 100644 --- a/examples/server/tests/unit/test_completion.py +++ b/examples/server/tests/unit/test_completion.py @@ -10,22 +10,29 @@ def create_server(): global server server = ServerPreset.tinyllama2() -@pytest.mark.parametrize("prompt,n_predict,re_content,n_prompt,n_predicted,truncated", [ - ("I believe the meaning of life is", 8, "(going|bed)+", 18, 8, False), - ("Write a joke about AI from a very long prompt which will not be truncated", 256, "(princesses|everyone|kids|Anna|forest)+", 46, 64, False), +@pytest.mark.parametrize("prompt,n_predict,re_content,n_prompt,n_predicted,truncated,return_tokens", [ + ("I believe the meaning of life is", 8, "(going|bed)+", 18, 8, False, False), + ("Write a joke about AI from a very long prompt which will not be truncated", 256, "(princesses|everyone|kids|Anna|forest)+", 46, 64, False, True), ]) -def test_completion(prompt: str, n_predict: int, re_content: str, n_prompt: int, n_predicted: int, truncated: bool): +def test_completion(prompt: str, n_predict: int, re_content: str, n_prompt: int, n_predicted: int, truncated: bool, return_tokens: bool): global server server.start() res = server.make_request("POST", "/completion", data={ "n_predict": n_predict, "prompt": prompt, + "return_tokens": return_tokens, }) assert res.status_code == 200 assert res.body["timings"]["prompt_n"] == n_prompt assert res.body["timings"]["predicted_n"] == n_predicted assert res.body["truncated"] == truncated + assert type(res.body["has_new_line"]) == bool assert match_regex(re_content, res.body["content"]) + if return_tokens: + assert len(res.body["tokens"]) > 0 + assert all(type(tok) == int for tok in res.body["tokens"]) + else: + assert res.body["tokens"] == [] @pytest.mark.parametrize("prompt,n_predict,re_content,n_prompt,n_predicted,truncated", [ @@ -48,12 +55,15 @@ def test_completion_stream(prompt: str, n_predict: int, re_content: str, n_promp assert data["timings"]["predicted_n"] == n_predicted assert data["truncated"] == truncated assert data["stop_type"] == "limit" + assert type(data["has_new_line"]) == bool assert "generation_settings" in data assert server.n_predict is not None assert data["generation_settings"]["n_predict"] == min(n_predict, server.n_predict) assert data["generation_settings"]["seed"] == server.seed assert match_regex(re_content, content) else: + assert len(data["tokens"]) > 0 + assert all(type(tok) == int for tok in data["tokens"]) content += data["content"] diff --git a/examples/server/tests/unit/test_embedding.py b/examples/server/tests/unit/test_embedding.py index fc7c20064ddfc..e32d745829605 100644 --- a/examples/server/tests/unit/test_embedding.py +++ b/examples/server/tests/unit/test_embedding.py @@ -14,8 +14,9 @@ def create_server(): def test_embedding_single(): global server + server.pooling = 'last' server.start() - res = server.make_request("POST", "/embeddings", data={ + res = server.make_request("POST", "/v1/embeddings", data={ "input": "I believe the meaning of life is", }) assert res.status_code == 200 @@ -29,8 +30,9 @@ def test_embedding_single(): def test_embedding_multiple(): global server + server.pooling = 'last' server.start() - res = server.make_request("POST", "/embeddings", data={ + res = server.make_request("POST", "/v1/embeddings", data={ "input": [ "I believe the meaning of life is", "Write a joke about AI from a very long prompt which will not be truncated", @@ -45,10 +47,69 @@ def test_embedding_multiple(): assert len(d['embedding']) > 1 +@pytest.mark.parametrize( + "input,is_multi_prompt", + [ + # single prompt + ("string", False), + ([12, 34, 56], False), + ([12, 34, "string", 56, 78], False), + # multiple prompts + (["string1", "string2"], True), + (["string1", [12, 34, 56]], True), + ([[12, 34, 56], [12, 34, 56]], True), + ([[12, 34, 56], [12, "string", 34, 56]], True), + ] +) +def test_embedding_mixed_input(input, is_multi_prompt: bool): + global server + server.start() + res = server.make_request("POST", "/v1/embeddings", data={"input": input}) + assert res.status_code == 200 + data = res.body['data'] + if is_multi_prompt: + assert len(data) == len(input) + for d in data: + assert 'embedding' in d + assert len(d['embedding']) > 1 + else: + assert 'embedding' in data[0] + assert len(data[0]['embedding']) > 1 + + +def test_embedding_pooling_none(): + global server + server.pooling = 'none' + server.start() + res = server.make_request("POST", "/embeddings", data={ + "input": "hello hello hello", + }) + assert res.status_code == 200 + assert 'embedding' in res.body[0] + assert len(res.body[0]['embedding']) == 5 # 3 text tokens + 2 special + + # make sure embedding vector is not normalized + for x in res.body[0]['embedding']: + assert abs(sum([x ** 2 for x in x]) - 1) > EPSILON + + +def test_embedding_pooling_none_oai(): + global server + server.pooling = 'none' + server.start() + res = server.make_request("POST", "/v1/embeddings", data={ + "input": "hello hello hello", + }) + + # /v1/embeddings does not support pooling type 'none' + assert res.status_code == 400 + + def test_embedding_openai_library_single(): global server + server.pooling = 'last' server.start() - client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}") + client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1") res = client.embeddings.create(model="text-embedding-3-small", input="I believe the meaning of life is") assert len(res.data) == 1 assert len(res.data[0].embedding) > 1 @@ -56,8 +117,9 @@ def test_embedding_openai_library_single(): def test_embedding_openai_library_multiple(): global server + server.pooling = 'last' server.start() - client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}") + client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1") res = client.embeddings.create(model="text-embedding-3-small", input=[ "I believe the meaning of life is", "Write a joke about AI from a very long prompt which will not be truncated", @@ -71,8 +133,9 @@ def test_embedding_openai_library_multiple(): def test_embedding_error_prompt_too_long(): global server + server.pooling = 'last' server.start() - res = server.make_request("POST", "/embeddings", data={ + res = server.make_request("POST", "/v1/embeddings", data={ "input": "This is a test " * 512, }) assert res.status_code != 200 @@ -80,8 +143,9 @@ def test_embedding_error_prompt_too_long(): def test_same_prompt_give_same_result(): + server.pooling = 'last' server.start() - res = server.make_request("POST", "/embeddings", data={ + res = server.make_request("POST", "/v1/embeddings", data={ "input": [ "I believe the meaning of life is", "I believe the meaning of life is", @@ -97,3 +161,33 @@ def test_same_prompt_give_same_result(): vi = res.body['data'][i]['embedding'] for x, y in zip(v0, vi): assert abs(x - y) < EPSILON + + +@pytest.mark.parametrize( + "content,n_tokens", + [ + ("I believe the meaning of life is", 9), + ("This is a test", 6), + ] +) +def test_embedding_usage_single(content, n_tokens): + global server + server.start() + res = server.make_request("POST", "/v1/embeddings", data={"input": content}) + assert res.status_code == 200 + assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens'] + assert res.body['usage']['prompt_tokens'] == n_tokens + + +def test_embedding_usage_multiple(): + global server + server.start() + res = server.make_request("POST", "/v1/embeddings", data={ + "input": [ + "I believe the meaning of life is", + "I believe the meaning of life is", + ], + }) + assert res.status_code == 200 + assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens'] + assert res.body['usage']['prompt_tokens'] == 2 * 9 diff --git a/examples/server/tests/unit/test_rerank.py b/examples/server/tests/unit/test_rerank.py index 189bc4c962329..7203d79435702 100644 --- a/examples/server/tests/unit/test_rerank.py +++ b/examples/server/tests/unit/test_rerank.py @@ -53,3 +53,26 @@ def test_invalid_rerank_req(documents): }) assert res.status_code == 400 assert "error" in res.body + + +@pytest.mark.parametrize( + "query,doc1,doc2,n_tokens", + [ + ("Machine learning is", "A machine", "Learning is", 19), + ("Which city?", "Machine learning is ", "Paris, capitale de la", 26), + ] +) +def test_rerank_usage(query, doc1, doc2, n_tokens): + global server + server.start() + + res = server.make_request("POST", "/rerank", data={ + "query": query, + "documents": [ + doc1, + doc2, + ] + }) + assert res.status_code == 200 + assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens'] + assert res.body['usage']['prompt_tokens'] == n_tokens diff --git a/examples/server/tests/utils.py b/examples/server/tests/utils.py index d988ccf5e3061..277125e88b534 100644 --- a/examples/server/tests/utils.py +++ b/examples/server/tests/utils.py @@ -65,6 +65,7 @@ class ServerProcess: server_reranking: bool | None = False server_metrics: bool | None = False server_slots: bool | None = False + pooling: str | None = None draft: int | None = None api_key: str | None = None response_format: str | None = None @@ -132,6 +133,8 @@ def start(self, timeout_seconds: int = 10) -> None: server_args.append("--metrics") if self.server_slots: server_args.append("--slots") + if self.pooling: + server_args.extend(["--pooling", self.pooling]) if self.model_alias: server_args.extend(["--alias", self.model_alias]) if self.n_ctx: diff --git a/examples/server/themes/buttons-top/index.html b/examples/server/themes/buttons-top/index.html index 2797c37c96456..3fb88fcc88d31 100644 --- a/examples/server/themes/buttons-top/index.html +++ b/examples/server/themes/buttons-top/index.html @@ -222,7 +222,6 @@ temperature: 0.7, repeat_last_n: 256, // 0 = disable penalty, -1 = context size repeat_penalty: 1.18, // 1.0 = disabled - penalize_nl: false, top_k: 40, // <= 0 to use vocab size top_p: 0.95, // 1.0 = disabled min_p: 0.05, // 0 = disabled @@ -779,7 +778,6 @@ ${FloatField({ label: "Temperature", max: 2.0, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature })} ${FloatField({ label: "Penalize repeat sequence", max: 2.0, min: 0.0, name: "repeat_penalty", step: 0.01, value: params.value.repeat_penalty })} ${IntField({ label: "Consider N tokens for penalize", max: 2048, min: 0, name: "repeat_last_n", value: params.value.repeat_last_n })} - ${BoolField({ label: "Penalize repetition of newlines", name: "penalize_nl", value: params.value.penalize_nl })} ${IntField({ label: "Top-K sampling", max: 100, min: -1, name: "top_k", value: params.value.top_k })} ${FloatField({ label: "Top-P sampling", max: 1.0, min: 0.0, name: "top_p", step: 0.01, value: params.value.top_p })} ${FloatField({ label: "Min-P sampling", max: 1.0, min: 0.0, name: "min_p", step: 0.01, value: params.value.min_p })} diff --git a/examples/server/themes/wild/index.html b/examples/server/themes/wild/index.html index dbe23c4024155..73f36d4b29fdd 100644 --- a/examples/server/themes/wild/index.html +++ b/examples/server/themes/wild/index.html @@ -225,7 +225,6 @@ temperature: 0.7, repeat_last_n: 256, // 0 = disable penalty, -1 = context size repeat_penalty: 1.18, // 1.0 = disabled - penalize_nl: false, top_k: 40, // <= 0 to use vocab size top_p: 0.95, // 1.0 = disabled min_p: 0.05, // 0 = disabled @@ -782,7 +781,6 @@ ${FloatField({ label: "Temperature", max: 2.0, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature })} ${FloatField({ label: "Penalize repeat sequence", max: 2.0, min: 0.0, name: "repeat_penalty", step: 0.01, value: params.value.repeat_penalty })} ${IntField({ label: "Consider N tokens for penalize", max: 2048, min: 0, name: "repeat_last_n", value: params.value.repeat_last_n })} - ${BoolField({ label: "Penalize repetition of newlines", name: "penalize_nl", value: params.value.penalize_nl })} ${IntField({ label: "Top-K sampling", max: 100, min: -1, name: "top_k", value: params.value.top_k })} ${FloatField({ label: "Top-P sampling", max: 1.0, min: 0.0, name: "top_p", step: 0.01, value: params.value.top_p })} ${FloatField({ label: "Min-P sampling", max: 1.0, min: 0.0, name: "min_p", step: 0.01, value: params.value.min_p })} diff --git a/examples/server/utils.hpp b/examples/server/utils.hpp index 2fcb895abe7e4..ffdffe904308f 100644 --- a/examples/server/utils.hpp +++ b/examples/server/utils.hpp @@ -22,7 +22,7 @@ #include #include -#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613" +#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo" using json = nlohmann::ordered_json; @@ -138,6 +138,7 @@ static llama_tokens tokenize_mixed(const llama_context * ctx, const json & json_ * and multiple prompts (multi-tasks): * - "prompt": ["string1", "string2"] * - "prompt": ["string1", [12, 34, 56]] + * - "prompt": [[12, 34, 56], [78, 90, 12]] * - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]] */ static std::vector tokenize_input_prompts(llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) { @@ -560,6 +561,7 @@ static json oaicompat_completion_params_parse( static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) { json data = json::array(); + int32_t n_tokens = 0; int i = 0; for (const auto & elem : embeddings) { data.push_back(json{ @@ -567,14 +569,16 @@ static json format_embeddings_response_oaicompat(const json & request, const jso {"index", i++}, {"object", "embedding"} }); + + n_tokens += json_value(elem, "tokens_evaluated", 0); } json res = json { {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, {"object", "list"}, - {"usage", json { // TODO: fill - {"prompt_tokens", 0}, - {"total_tokens", 0} + {"usage", json { + {"prompt_tokens", n_tokens}, + {"total_tokens", n_tokens} }}, {"data", data} }; @@ -584,20 +588,23 @@ static json format_embeddings_response_oaicompat(const json & request, const jso static json format_response_rerank(const json & request, const json & ranks) { json data = json::array(); + int32_t n_tokens = 0; int i = 0; for (const auto & rank : ranks) { data.push_back(json{ {"index", i++}, {"relevance_score", json_value(rank, "score", 0.0)}, }); + + n_tokens += json_value(rank, "tokens_evaluated", 0); } json res = json { {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, {"object", "list"}, - {"usage", json { // TODO: fill - {"prompt_tokens", 0}, - {"total_tokens", 0} + {"usage", json { + {"prompt_tokens", n_tokens}, + {"total_tokens", n_tokens} }}, {"results", data} }; diff --git a/examples/server/webui/index.html b/examples/server/webui/index.html index 9d29fe0055a2d..dcdd410797d06 100644 --- a/examples/server/webui/index.html +++ b/examples/server/webui/index.html @@ -201,6 +201,10 @@

Settings

Advanced config
+
+ + +
Show tokens per second diff --git a/examples/server/webui/package-lock.json b/examples/server/webui/package-lock.json index f9104f65f86d0..bbebccbf20c64 100644 --- a/examples/server/webui/package-lock.json +++ b/examples/server/webui/package-lock.json @@ -8,8 +8,12 @@ "name": "webui", "version": "0.0.0", "dependencies": { + "@sec-ant/readable-stream": "^0.6.0", + "@vscode/markdown-it-katex": "^1.1.1", "autoprefixer": "^10.4.20", "daisyui": "^4.12.14", + "highlight.js": "^11.10.0", + "katex": "^0.16.15", "markdown-it": "^14.1.0", "postcss": "^8.4.49", "tailwindcss": "^3.4.15", @@ -18,6 +22,7 @@ "vue": "^3.5.13" }, "devDependencies": { + "sass-embedded": "^1.83.0", "vite": "^5.4.10" } }, @@ -33,6 +38,13 @@ "url": "https://github.com/sponsors/sindresorhus" } }, + "node_modules/@bufbuild/protobuf": { + "version": "2.2.3", + "resolved": "https://registry.npmjs.org/@bufbuild/protobuf/-/protobuf-2.2.3.tgz", + "integrity": "sha512-tFQoXHJdkEOSwj5tRIZSPNUuXK3RaR7T1nUrPgbYX1pUbvqqaaZAsfo+NXBPsz5rZMSKVFrgK1WL8Q/MSLvprg==", + "devOptional": true, + "license": "(Apache-2.0 AND BSD-3-Clause)" + }, "node_modules/@esbuild/aix-ppc64": { "version": "0.21.5", "resolved": "https://registry.npmjs.org/@esbuild/aix-ppc64/-/aix-ppc64-0.21.5.tgz", @@ -606,6 +618,21 @@ "win32" ] }, + "node_modules/@sec-ant/readable-stream": { + "version": "0.6.0", + "resolved": "https://registry.npmjs.org/@sec-ant/readable-stream/-/readable-stream-0.6.0.tgz", + "integrity": "sha512-uiBh8DrB5FN35gP6/o8JEhEQ7/ci1jUsOZO/VMUjyvTpjtV54VstOXVj1TvTj/wsT23pfX6butxxh3qufsW3+g==", + "license": "MIT" + }, + "node_modules/@vscode/markdown-it-katex": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/@vscode/markdown-it-katex/-/markdown-it-katex-1.1.1.tgz", + "integrity": "sha512-3KTlbsRBPJQLE2YmLL7K6nunTlU+W9T5+FjfNdWuIUKgxSS6HWLQHaO3L4MkJi7z7MpIPpY+g4N+cWNBPE/MSA==", + "license": "MIT", + "dependencies": { + "katex": "^0.16.4" + } + }, "node_modules/@vue/compiler-dom": { "version": "3.5.13", "resolved": "https://registry.npmjs.org/@vue/compiler-dom/-/compiler-dom-3.5.13.tgz", @@ -1004,6 +1031,13 @@ "browserslist": ">= 4.21.0" } }, + "node_modules/buffer-builder": { + "version": "0.2.0", + "resolved": "https://registry.npmjs.org/buffer-builder/-/buffer-builder-0.2.0.tgz", + "integrity": "sha512-7VPMEPuYznPSoR21NE1zvd2Xna6c/CloiZCfcMXR1Jny6PjX0N4Nsa38zcBFo/FMK+BlA+FLKbJCQ0i2yxp+Xg==", + "devOptional": true, + "license": "MIT/X11" + }, "node_modules/caniuse-lite": { "version": "1.0.30001684", "resolved": "https://registry.npmjs.org/caniuse-lite/-/caniuse-lite-1.0.30001684.tgz", @@ -1166,6 +1200,22 @@ "node": ">=8.0" } }, + "node_modules/colorjs.io": { + "version": "0.5.2", + "resolved": "https://registry.npmjs.org/colorjs.io/-/colorjs.io-0.5.2.tgz", + "integrity": "sha512-twmVoizEW7ylZSN32OgKdXRmo1qg+wT5/6C3xu5b9QsWzSFAhHLn2xd8ro0diCsKfCj1RdaTP/nrcW+vAoQPIw==", + "devOptional": true, + "license": "MIT" + }, + "node_modules/commander": { + "version": "8.3.0", + "resolved": "https://registry.npmjs.org/commander/-/commander-8.3.0.tgz", + "integrity": "sha512-OkTL9umf+He2DZkUq8f8J9of7yL6RJKI24dVITBmNfZBmri9zYZQrKkuXiKhyfPSu8tUhnVBB1iKXevvnlR4Ww==", + "license": "MIT", + "engines": { + "node": ">= 12" + } + }, "node_modules/css-selector-tokenizer": { "version": "0.8.0", "resolved": "https://registry.npmjs.org/css-selector-tokenizer/-/css-selector-tokenizer-0.8.0.tgz", @@ -1473,6 +1523,31 @@ "node": ">=10.13.0" } }, + "node_modules/has-flag": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz", + "integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==", + "devOptional": true, + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/highlight.js": { + "version": "11.10.0", + "resolved": "https://registry.npmjs.org/highlight.js/-/highlight.js-11.10.0.tgz", + "integrity": "sha512-SYVnVFswQER+zu1laSya563s+F8VDGt7o35d4utbamowvUNLLMovFqwCLSocpZTz3MgaSRA1IbqRWZv97dtErQ==", + "engines": { + "node": ">=12.0.0" + } + }, + "node_modules/immutable": { + "version": "5.0.3", + "resolved": "https://registry.npmjs.org/immutable/-/immutable-5.0.3.tgz", + "integrity": "sha512-P8IdPQHq3lA1xVeBRi5VPqUm5HDgKnx0Ru51wZz5mjxHr5n3RWhjIpOFU7ybkUxfB+5IToy+OLaHYDBIWsv+uw==", + "devOptional": true, + "license": "MIT" + }, "node_modules/is-glob": { "version": "4.0.3", "resolved": "https://registry.npmjs.org/is-glob/-/is-glob-4.0.3.tgz", @@ -1503,6 +1578,22 @@ "jiti": "bin/jiti.js" } }, + "node_modules/katex": { + "version": "0.16.15", + "resolved": "https://registry.npmjs.org/katex/-/katex-0.16.15.tgz", + "integrity": "sha512-yE9YJIEAk2aZ+FL/G8r+UGw0CTUzEA8ZFy6E+8tc3spHUKq3qBnzCkI1CQwGoI9atJhVyFPEypQsTY7mJ1Pi9w==", + "funding": [ + "https://opencollective.com/katex", + "https://github.com/sponsors/katex" + ], + "license": "MIT", + "dependencies": { + "commander": "^8.3.0" + }, + "bin": { + "katex": "cli.js" + } + }, "node_modules/lilconfig": { "version": "2.1.0", "resolved": "https://registry.npmjs.org/lilconfig/-/lilconfig-2.1.0.tgz", @@ -2022,6 +2113,381 @@ "integrity": "sha512-AYnb1nQyY49te+VRAVgmzfcgjYS91mY5P0TKUDCLEM+gNnA+3T6rWITXRLYCpahpqSQbN5cE+gHpnPyXjHWxcw==", "license": "MIT" }, + "node_modules/rxjs": { + "version": "7.8.1", + "resolved": "https://registry.npmjs.org/rxjs/-/rxjs-7.8.1.tgz", + "integrity": "sha512-AA3TVj+0A2iuIoQkWEK/tqFjBq2j+6PO6Y0zJcvzLAFhEFIO3HL0vls9hWLncZbAAbK0mar7oZ4V079I/qPMxg==", + "devOptional": true, + "license": "Apache-2.0", + "dependencies": { + "tslib": "^2.1.0" + } + }, + "node_modules/sass-embedded": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded/-/sass-embedded-1.83.0.tgz", + "integrity": "sha512-/8cYZeL39evUqe0o//193na51Q1VWZ61qhxioQvLJwOtWIrX+PgNhCyD8RSuTtmzc4+6+waFZf899bfp/MCUwA==", + "devOptional": true, + "license": "MIT", + "dependencies": { + "@bufbuild/protobuf": "^2.0.0", + "buffer-builder": "^0.2.0", + "colorjs.io": "^0.5.0", + "immutable": "^5.0.2", + "rxjs": "^7.4.0", + "supports-color": "^8.1.1", + "sync-child-process": "^1.0.2", + "varint": "^6.0.0" + }, + "bin": { + "sass": "dist/bin/sass.js" + }, + "engines": { + "node": ">=16.0.0" + }, + "optionalDependencies": { + "sass-embedded-android-arm": "1.83.0", + "sass-embedded-android-arm64": "1.83.0", + "sass-embedded-android-ia32": "1.83.0", + "sass-embedded-android-riscv64": "1.83.0", + "sass-embedded-android-x64": "1.83.0", + "sass-embedded-darwin-arm64": "1.83.0", + "sass-embedded-darwin-x64": "1.83.0", + "sass-embedded-linux-arm": "1.83.0", + "sass-embedded-linux-arm64": "1.83.0", + "sass-embedded-linux-ia32": "1.83.0", + "sass-embedded-linux-musl-arm": "1.83.0", + "sass-embedded-linux-musl-arm64": "1.83.0", + "sass-embedded-linux-musl-ia32": "1.83.0", + "sass-embedded-linux-musl-riscv64": "1.83.0", + "sass-embedded-linux-musl-x64": "1.83.0", + "sass-embedded-linux-riscv64": "1.83.0", + "sass-embedded-linux-x64": "1.83.0", + "sass-embedded-win32-arm64": "1.83.0", + "sass-embedded-win32-ia32": "1.83.0", + "sass-embedded-win32-x64": "1.83.0" + } + }, + "node_modules/sass-embedded-android-arm": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-android-arm/-/sass-embedded-android-arm-1.83.0.tgz", + "integrity": "sha512-uwFSXzJlfbd4Px189xE5l+cxN8+TQpXdQgJec7TIrb4HEY7imabtpYufpVdqUVwT1/uiis5V4+qIEC4Vl5XObQ==", + "cpu": [ + "arm" + ], + "license": "MIT", + "optional": true, + "os": [ + "android" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-android-arm64": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-android-arm64/-/sass-embedded-android-arm64-1.83.0.tgz", + "integrity": "sha512-GBiCvM4a2rkWBLdYDxI6XYnprfk5U5c81g69RC2X6kqPuzxzx8qTArQ9M6keFK4+iDQ5N9QTwFCr0KbZTn+ZNQ==", + "cpu": [ + "arm64" + ], + "license": "MIT", + "optional": true, + "os": [ + "android" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-android-ia32": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-android-ia32/-/sass-embedded-android-ia32-1.83.0.tgz", + "integrity": "sha512-5ATPdGo2SICqAhiJl/Z8KQ23zH4sGgobGgux0TnrNtt83uHZ+r+To/ubVJ7xTkZxed+KJZnIpolGD8dQyQqoTg==", + "cpu": [ + "ia32" + ], + "license": "MIT", + "optional": true, + "os": [ + "android" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-android-riscv64": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-android-riscv64/-/sass-embedded-android-riscv64-1.83.0.tgz", + "integrity": "sha512-aveknUOB8GZewOzVn2Uwk+DKcncTR50Q6vtzslNMGbYnxtgQNHzy8A1qVEviNUruex+pHofppeMK4iMPFAbiEQ==", + "cpu": [ + "riscv64" + ], + "license": "MIT", + "optional": true, + "os": [ + "android" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-android-x64": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-android-x64/-/sass-embedded-android-x64-1.83.0.tgz", + "integrity": "sha512-WqIay/72ncyf9Ph4vS742J3a73wZihWmzFUwpn1OD6lme1Aj4eWzWIve5IVnlTEJgcZcDHu6ECID9IZgehJKoA==", + "cpu": [ + "x64" + ], + "license": "MIT", + "optional": true, + "os": [ + "android" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-darwin-arm64": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-darwin-arm64/-/sass-embedded-darwin-arm64-1.83.0.tgz", + "integrity": "sha512-XQl9QqgxFFIPm/CzHhmppse5o9ocxrbaAdC2/DAnlAqvYWBBtgFqPjGoYlej13h9SzfvNoogx+y9r+Ap+e+hYg==", + "cpu": [ + "arm64" + ], + "license": "MIT", + "optional": true, + "os": [ + "darwin" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-darwin-x64": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-darwin-x64/-/sass-embedded-darwin-x64-1.83.0.tgz", + "integrity": "sha512-ERQ7Tvp1kFOW3ux4VDFIxb7tkYXHYc+zJpcrbs0hzcIO5ilIRU2tIOK1OrNwrFO6Qxyf7AUuBwYKLAtIU/Nz7g==", + "cpu": [ + "x64" + ], + "license": "MIT", + "optional": true, + "os": [ + "darwin" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-linux-arm": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-linux-arm/-/sass-embedded-linux-arm-1.83.0.tgz", + "integrity": "sha512-baG9RYBJxUFmqwDNC9h9ZFElgJoyO3jgHGjzEZ1wHhIS9anpG+zZQvO8bHx3dBpKEImX+DBeLX+CxsFR9n81gQ==", + "cpu": [ + "arm" + ], + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-linux-arm64": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-linux-arm64/-/sass-embedded-linux-arm64-1.83.0.tgz", + "integrity": "sha512-syEAVTJt4qhaMLxrSwOWa46zdqHJdnqJkLUK+t9aCr8xqBZLPxSUeIGji76uOehQZ1C+KGFj6n9xstHN6wzOJw==", + "cpu": [ + "arm64" + ], + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-linux-ia32": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-linux-ia32/-/sass-embedded-linux-ia32-1.83.0.tgz", + "integrity": "sha512-RRBxQxMpoxu5+XcSSc6QR/o9asEwUzR8AbCS83RaXcdTIHTa/CccQsiAoDDoPlRsMTLqnzs0LKL4CfOsf7zBbA==", + "cpu": [ + "ia32" + ], + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-linux-musl-arm": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-linux-musl-arm/-/sass-embedded-linux-musl-arm-1.83.0.tgz", + "integrity": "sha512-Yc7u2TelCfBab+PRob9/MNJFh3EooMiz4urvhejXkihTiKSHGCv5YqDdtWzvyb9tY2Jb7YtYREVuHwfdVn3dTQ==", + "cpu": [ + "arm" + ], + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-linux-musl-arm64": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-linux-musl-arm64/-/sass-embedded-linux-musl-arm64-1.83.0.tgz", + "integrity": "sha512-Y7juhPHClUO2H5O+u+StRy6SEAcwZ+hTEk5WJdEmo1Bb1gDtfHvJaWB/iFZJ2tW0W1e865AZeUrC4OcOFjyAQA==", + "cpu": [ + "arm64" + ], + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-linux-musl-ia32": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-linux-musl-ia32/-/sass-embedded-linux-musl-ia32-1.83.0.tgz", + "integrity": "sha512-arQeYwGmwXV8byx5G1PtSzZWW1jbkfR5qrIHMEbTFSAvAxpqjgSvCvrHMOFd73FcMxVaYh4BX9LQNbKinkbEdg==", + "cpu": [ + "ia32" + ], + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-linux-musl-riscv64": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-linux-musl-riscv64/-/sass-embedded-linux-musl-riscv64-1.83.0.tgz", + "integrity": "sha512-E6uzlIWz59rut+Z3XR6mLG915zNzv07ISvj3GUNZENdHM7dF8GQ//ANoIpl5PljMQKp89GnYdvo6kj2gnaBf/g==", + "cpu": [ + "riscv64" + ], + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-linux-musl-x64": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-linux-musl-x64/-/sass-embedded-linux-musl-x64-1.83.0.tgz", + "integrity": "sha512-eAMK6tyGqvqr21r9g8BnR3fQc1rYFj85RGduSQ3xkITZ6jOAnOhuU94N5fwRS852Hpws0lXhET+7JHXgg3U18w==", + "cpu": [ + "x64" + ], + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-linux-riscv64": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-linux-riscv64/-/sass-embedded-linux-riscv64-1.83.0.tgz", + "integrity": "sha512-Ojpi78pTv02sy2fUYirRGXHLY3fPnV/bvwuC2i5LwPQw2LpCcFyFTtN0c5h4LJDk9P6wr+/ZB/JXU8tHIOlK+Q==", + "cpu": [ + "riscv64" + ], + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-linux-x64": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-linux-x64/-/sass-embedded-linux-x64-1.83.0.tgz", + "integrity": "sha512-3iLjlXdoPfgZRtX4odhRvka1BQs5mAXqfCtDIQBgh/o0JnGPzJIWWl9bYLpHxK8qb+uyVBxXYgXpI0sCzArBOw==", + "cpu": [ + "x64" + ], + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-win32-arm64": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-win32-arm64/-/sass-embedded-win32-arm64-1.83.0.tgz", + "integrity": "sha512-iOHw/8/t2dlTW3lOFwG5eUbiwhEyGWawivlKWJ8lkXH7fjMpVx2VO9zCFAm8RvY9xOHJ9sf1L7g5bx3EnNP9BQ==", + "cpu": [ + "arm64" + ], + "license": "MIT", + "optional": true, + "os": [ + "win32" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-win32-ia32": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-win32-ia32/-/sass-embedded-win32-ia32-1.83.0.tgz", + "integrity": "sha512-2PxNXJ8Pad4geVcTXY4rkyTr5AwbF8nfrCTDv0ulbTvPhzX2mMKEGcBZUXWn5BeHZTBc6whNMfS7d5fQXR9dDQ==", + "cpu": [ + "ia32" + ], + "license": "MIT", + "optional": true, + "os": [ + "win32" + ], + "engines": { + "node": ">=14.0.0" + } + }, + "node_modules/sass-embedded-win32-x64": { + "version": "1.83.0", + "resolved": "https://registry.npmjs.org/sass-embedded-win32-x64/-/sass-embedded-win32-x64-1.83.0.tgz", + "integrity": "sha512-muBXkFngM6eLTNqOV0FQi7Dv9s+YRQ42Yem26mosdan/GmJQc81deto6uDTgrYn+bzFNmiXcOdfm+0MkTWK3OQ==", + "cpu": [ + "x64" + ], + "license": "MIT", + "optional": true, + "os": [ + "win32" + ], + "engines": { + "node": ">=14.0.0" + } + }, "node_modules/sucrase": { "version": "3.35.0", "resolved": "https://registry.npmjs.org/sucrase/-/sucrase-3.35.0.tgz", @@ -2641,6 +3107,45 @@ "node": ">=8" } }, + "node_modules/supports-color": { + "version": "8.1.1", + "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-8.1.1.tgz", + "integrity": "sha512-MpUEN2OodtUzxvKQl72cUF7RQ5EiHsGvSsVG0ia9c5RbWGL2CI4C7EpPS8UTBIplnlzZiNuV56w+FuNxy3ty2Q==", + "devOptional": true, + "license": "MIT", + "dependencies": { + "has-flag": "^4.0.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/supports-color?sponsor=1" + } + }, + "node_modules/sync-child-process": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/sync-child-process/-/sync-child-process-1.0.2.tgz", + "integrity": "sha512-8lD+t2KrrScJ/7KXCSyfhT3/hRq78rC0wBFqNJXv3mZyn6hW2ypM05JmlSvtqRbeq6jqA94oHbxAr2vYsJ8vDA==", + "devOptional": true, + "license": "MIT", + "dependencies": { + "sync-message-port": "^1.0.0" + }, + "engines": { + "node": ">=16.0.0" + } + }, + "node_modules/sync-message-port": { + "version": "1.1.3", + "resolved": "https://registry.npmjs.org/sync-message-port/-/sync-message-port-1.1.3.tgz", + "integrity": "sha512-GTt8rSKje5FilG+wEdfCkOcLL7LWqpMlr2c3LRuKt/YXxcJ52aGSbGBAdI4L3aaqfrBt6y711El53ItyH1NWzg==", + "devOptional": true, + "license": "MIT", + "engines": { + "node": ">=16.0.0" + } + }, "node_modules/tailwindcss": { "version": "3.4.15", "resolved": "https://registry.npmjs.org/tailwindcss/-/tailwindcss-3.4.15.tgz", @@ -2684,12 +3189,26 @@ "integrity": "sha512-iBHbi7BQxrFmwZUQJsT0SjNzlLLsXhvW/kg7EyOMVMBIrlnj/qYofwo1LVLZi+3GbUEo96Iu2eqToI2+lZoAEQ==", "license": "MIT" }, + "node_modules/tslib": { + "version": "2.8.1", + "resolved": "https://registry.npmjs.org/tslib/-/tslib-2.8.1.tgz", + "integrity": "sha512-oJFu94HQb+KVduSUQL7wnpmqnfmLsOA/nAh6b6EH0wCEoK0/mPeXU6c3wKDV83MkOuHPRHtSXKKU99IBazS/2w==", + "devOptional": true, + "license": "0BSD" + }, "node_modules/uc.micro": { "version": "2.1.0", "resolved": "https://registry.npmjs.org/uc.micro/-/uc.micro-2.1.0.tgz", "integrity": "sha512-ARDJmphmdvUk6Glw7y9DQ2bFkKBHwQHLi2lsaH6PPmz/Ka9sFOBsBluozhDltWmnv9u/cF6Rt87znRTPV+yp/A==", "license": "MIT" }, + "node_modules/varint": { + "version": "6.0.0", + "resolved": "https://registry.npmjs.org/varint/-/varint-6.0.0.tgz", + "integrity": "sha512-cXEIW6cfr15lFv563k4GuVuW/fiwjknytD37jIOLSdSWuOI6WnO/oKwmP2FQTU2l01LP8/M5TSAJpzUaGe3uWg==", + "devOptional": true, + "license": "MIT" + }, "node_modules/vite": { "version": "5.4.11", "resolved": "https://registry.npmjs.org/vite/-/vite-5.4.11.tgz", diff --git a/examples/server/webui/package.json b/examples/server/webui/package.json index d656a841d926d..2836cce00d41d 100644 --- a/examples/server/webui/package.json +++ b/examples/server/webui/package.json @@ -6,14 +6,20 @@ "scripts": { "dev": "vite", "build": "vite build", - "preview": "vite preview" + "preview": "vite preview", + "analyze": "ANALYZE=1 npx vite-bundle-visualizer" }, "devDependencies": { + "sass-embedded": "^1.83.0", "vite": "^5.4.10" }, "dependencies": { + "@sec-ant/readable-stream": "^0.6.0", + "@vscode/markdown-it-katex": "^1.1.1", "autoprefixer": "^10.4.20", "daisyui": "^4.12.14", + "highlight.js": "^11.10.0", + "katex": "^0.16.15", "markdown-it": "^14.1.0", "postcss": "^8.4.49", "tailwindcss": "^3.4.15", diff --git a/examples/server/webui/public/demo-conversation.json b/examples/server/webui/public/demo-conversation.json new file mode 100644 index 0000000000000..75ab599dd6ee5 --- /dev/null +++ b/examples/server/webui/public/demo-conversation.json @@ -0,0 +1,33 @@ +{ + "demo": true, + "id": "conv-1734086746930", + "lastModified": 1734087548943, + "messages": [ + { + "id": 1734086764521, + "role": "user", + "content": "this is a demo conversation, used in dev mode" + }, + { + "id": 1734087548327, + "role": "assistant", + "content": "This is the formula:\n\n$\\frac{e^{x_i}}{\\sum_{j=1}^{n}e^{x_j}}$\n\nGiven an input vector \\(\\mathbf{x} = [x_1, x_2, \\ldots, x_n]\\)\n\n\\[\ny_i = \\frac{e^{x_i}}{\\sum_{j=1}^n e^{x_j}}\n\\]\n\nCode block latex:\n```latex\n\\frac{e^{x_i}}{\\sum_{j=1}^{n}e^{x_j}}\n```\n\nTest dollar sign: $1234 $4567\n\nInvalid latex syntax: $E = mc^$ and $$E = mc^$$", + "timings": { + "prompt_n": 1, + "prompt_ms": 28.923, + "predicted_n": 25, + "predicted_ms": 573.016 + } + }, + { + "id": 1734087548328, + "role": "user", + "content": "this is a demo conversation, used in dev mode" + }, + { + "id": 1734087548329, + "role": "assistant", + "content": "Code block:\n```js\nconsole.log('hello world')\n```\n```sh\nls -la /dev\n```" + } + ] +} diff --git a/examples/server/webui/src/highlight-config.js b/examples/server/webui/src/highlight-config.js new file mode 100644 index 0000000000000..96c7028f98b25 --- /dev/null +++ b/examples/server/webui/src/highlight-config.js @@ -0,0 +1,60 @@ +import hljs from 'highlight.js/lib/core'; + +// only import commonly used languages to reduce bundle size + +import python from 'highlight.js/lib/languages/python'; +import javascript from 'highlight.js/lib/languages/javascript'; +import json from 'highlight.js/lib/languages/json'; +import bash from 'highlight.js/lib/languages/bash'; +import yaml from 'highlight.js/lib/languages/yaml'; +import markdown from 'highlight.js/lib/languages/markdown'; +import scss from 'highlight.js/lib/languages/scss'; +import xml from 'highlight.js/lib/languages/xml'; +import ruby from 'highlight.js/lib/languages/ruby'; +import go from 'highlight.js/lib/languages/go'; +import java from 'highlight.js/lib/languages/java'; +import rust from 'highlight.js/lib/languages/rust'; +import scala from 'highlight.js/lib/languages/scala'; +import cpp from 'highlight.js/lib/languages/cpp'; +import csharp from 'highlight.js/lib/languages/csharp'; +import swift from 'highlight.js/lib/languages/swift'; +import dart from 'highlight.js/lib/languages/dart'; +import elixir from 'highlight.js/lib/languages/elixir'; +import kotlin from 'highlight.js/lib/languages/kotlin'; +import lua from 'highlight.js/lib/languages/lua'; +import php from 'highlight.js/lib/languages/php'; +import latex from 'highlight.js/lib/languages/latex'; + +hljs.registerLanguage('python', python); +hljs.registerLanguage('javascript', javascript); +hljs.registerLanguage('json', json); +hljs.registerLanguage('yaml', yaml); +hljs.registerLanguage('markdown', markdown); +hljs.registerLanguage('xml', xml); +hljs.registerLanguage('ruby', ruby); +hljs.registerLanguage('go', go); +hljs.registerLanguage('java', java); +hljs.registerLanguage('rust', rust); +hljs.registerLanguage('scala', scala); +hljs.registerLanguage('csharp', csharp); +hljs.registerLanguage('swift', swift); +hljs.registerLanguage('dart', dart); +hljs.registerLanguage('elixir', elixir); +hljs.registerLanguage('kotlin', kotlin); +hljs.registerLanguage('lua', lua); +hljs.registerLanguage('php', php); +hljs.registerLanguage('latex', latex); + +// reuse some languages to further reduce bundle size + +hljs.registerLanguage('shell', bash); +hljs.registerLanguage('bash', bash); +hljs.registerLanguage('sh', bash); + +hljs.registerLanguage('css', scss); +hljs.registerLanguage('scss', scss); + +hljs.registerLanguage('c', cpp); +hljs.registerLanguage('cpp', cpp); + +export default hljs; diff --git a/examples/server/webui/src/katex-gpt.js b/examples/server/webui/src/katex-gpt.js new file mode 100644 index 0000000000000..7c7c5e22c1cf0 --- /dev/null +++ b/examples/server/webui/src/katex-gpt.js @@ -0,0 +1,66 @@ +import katex from 'katex'; + +// Adapted from https://github.com/SchneeHertz/markdown-it-katex-gpt +// MIT license + +const defaultOptions = { + delimiters: [ + { left: '\\[', right: '\\]', display: true }, + { left: '\\(', right: '\\)', display: false }, + ], +}; + +export function renderLatexHTML(content, display = false) { + return katex.renderToString(content, { + throwOnError: false, + output: 'mathml', + displayMode: display, + }); +} + +function escapedBracketRule(options) { + return (state, silent) => { + const max = state.posMax; + const start = state.pos; + + for (const { left, right, display } of options.delimiters) { + + // Check if it starts with the left delimiter + if (!state.src.slice(start).startsWith(left)) continue; + + // Skip the length of the left delimiter + let pos = start + left.length; + + // Find the matching right delimiter + while (pos < max) { + if (state.src.slice(pos).startsWith(right)) { + break; + } + pos++; + } + + // No matching right delimiter found, skip to the next match + if (pos >= max) continue; + + // If not in silent mode, convert LaTeX formula to MathML + if (!silent) { + const content = state.src.slice(start + left.length, pos); + try { + const renderedContent = renderLatexHTML(content, display); + const token = state.push('html_inline', '', 0); + token.content = renderedContent; + } catch (e) { + console.error(e); + } + } + + // Update position, skip the length of the right delimiter + state.pos = pos + right.length; + return true; + } + } +} + +export default function (md, options = defaultOptions) { + md.inline.ruler.after('text', 'escaped_bracket', escapedBracketRule(options)); +} diff --git a/examples/server/webui/src/main.js b/examples/server/webui/src/main.js index f1f35481d8d13..997ab0ff5d769 100644 --- a/examples/server/webui/src/main.js +++ b/examples/server/webui/src/main.js @@ -1,8 +1,20 @@ -import './styles.css'; +import './styles.scss'; import { createApp, defineComponent, shallowRef, computed, h } from 'vue/dist/vue.esm-bundler.js'; import MarkdownIt from 'markdown-it'; import TextLineStream from 'textlinestream'; +// math formula rendering +import 'katex/dist/katex.min.css'; +import markdownItKatexGpt from './katex-gpt'; +import markdownItKatexNormal from '@vscode/markdown-it-katex'; + +// code highlighting +import hljs from './highlight-config'; +import daisyuiThemes from 'daisyui/src/theming/themes'; + +// ponyfill for missing ReadableStream asyncIterator on Safari +import { asyncIterator } from "@sec-ant/readable-stream/ponyfill/asyncIterator"; + const isDev = import.meta.env.MODE === 'development'; // utility functions @@ -13,15 +25,18 @@ const escapeAttr = (str) => str.replace(/>/g, '>').replace(/"/g, '"'); const copyStr = (str) => navigator.clipboard.writeText(str); // constants -const BASE_URL = localStorage.getItem('base') // for debugging - || (new URL('.', document.baseURI).href).toString().replace(/\/$/, ''); // for production +const BASE_URL = isDev + ? (localStorage.getItem('base') || 'https://localhost:8080') // for debugging + : (new URL('.', document.baseURI).href).toString().replace(/\/$/, ''); // for production +console.log({ BASE_URL }); + const CONFIG_DEFAULT = { // Note: in order not to introduce breaking changes, please keep the same data type (number, string, etc) if you want to change the default value. Do not use null or undefined for default value. apiKey: '', systemMessage: 'You are a helpful assistant.', showTokensPerSecond: false, // make sure these default values are in sync with `common.h` - samplers: 'dkypmxt', + samplers: 'edkypmxt', temperature: 0.8, dynatemp_range: 0.0, dynatemp_exponent: 1.0, @@ -69,12 +84,39 @@ const CONFIG_INFO = { // config keys having numeric value (i.e. temperature, top_k, top_p, etc) const CONFIG_NUMERIC_KEYS = Object.entries(CONFIG_DEFAULT).filter(e => isNumeric(e[1])).map(e => e[0]); // list of themes supported by daisyui -const THEMES = ['light', 'dark', 'cupcake', 'bumblebee', 'emerald', 'corporate', 'synthwave', 'retro', 'cyberpunk', 'valentine', 'halloween', 'garden', 'forest', 'aqua', 'lofi', 'pastel', 'fantasy', 'wireframe', 'black', 'luxury', 'dracula', 'cmyk', 'autumn', 'business', 'acid', 'lemonade', 'night', 'coffee', 'winter', 'dim', 'nord', 'sunset']; +const THEMES = ['light', 'dark'] + // make sure light & dark are always at the beginning + .concat(Object.keys(daisyuiThemes).filter(t => t !== 'light' && t !== 'dark')); // markdown support const VueMarkdown = defineComponent( (props) => { - const md = shallowRef(new MarkdownIt({ breaks: true })); + const md = shallowRef(new MarkdownIt({ + breaks: true, + highlight: function (str, lang) { // Add highlight.js + if (lang && hljs.getLanguage(lang)) { + try { + return '
' +
+                   hljs.highlight(str, { language: lang, ignoreIllegals: true }).value +
+                   '
'; + } catch (__) {} + } + return '
' + md.value.utils.escapeHtml(str) + '
'; + } + })); + // support latex with double dollar sign and square brackets + md.value.use(markdownItKatexGpt, { + delimiters: [ + { left: '\\[', right: '\\]', display: true }, + { left: '\\(', right: '\\)', display: false }, + { left: '$$', right: '$$', display: false }, + // do not add single dollar sign here, other wise it will confused with dollar used for money symbol + ], + throwOnError: false, + }); + // support latex with single dollar sign + md.value.use(markdownItKatexNormal, { throwOnError: false }); + // add copy button to code blocks const origFenchRenderer = md.value.renderer.rules.fence; md.value.renderer.rules.fence = (tokens, idx, ...args) => { const content = tokens[idx].content; @@ -244,7 +286,7 @@ async function* sendSSEPostRequest(url, fetchOptions) { const lines = res.body .pipeThrough(new TextDecoderStream()) .pipeThrough(new TextLineStream()); - for await (const line of lines) { + for await (const line of asyncIterator(lines)) { if (isDev) console.log({line}); if (line.startsWith('data:') && !line.endsWith('[DONE]')) { const data = JSON.parse(line.slice(5)); @@ -278,6 +320,7 @@ const mainApp = createApp({ themes: THEMES, configDefault: {...CONFIG_DEFAULT}, configInfo: {...CONFIG_INFO}, + isDev, } }, computed: {}, @@ -289,6 +332,7 @@ const mainApp = createApp({ if (this.isGenerating) chatScrollToBottom(true); }); resizeObserver.observe(pendingMsgElem); + this.setSelectedTheme(this.selectedTheme); }, watch: { viewingConvId: function(val, oldVal) { @@ -305,6 +349,8 @@ const mainApp = createApp({ }, setSelectedTheme(theme) { this.selectedTheme = theme; + document.body.setAttribute('data-theme', theme); + document.body.setAttribute('data-color-scheme', daisyuiThemes[theme]?.['color-scheme'] ?? 'auto'); StorageUtils.setTheme(theme); }, newConversation() { @@ -399,7 +445,7 @@ const mainApp = createApp({ method: 'POST', headers: { 'Content-Type': 'application/json', - 'Authorization': this.config.apiKey ? `Bearer ${this.config.apiKey}` : undefined, + ...(this.config.apiKey ? {'Authorization': `Bearer ${this.config.apiKey}`} : {}) }, body: JSON.stringify(params), signal: abortController.signal, @@ -513,6 +559,17 @@ const mainApp = createApp({ fetchMessages() { this.messages = StorageUtils.getOneConversation(this.viewingConvId)?.messages ?? []; }, + + // debug functions + async debugImportDemoConv() { + const res = await fetch('/demo-conversation.json'); + const demoConv = await res.json(); + StorageUtils.remove(demoConv.id); + for (const msg of demoConv.messages) { + StorageUtils.appendMsg(demoConv.id, msg); + } + this.fetchConversation(); + } }, }); mainApp.config.errorHandler = alert; diff --git a/examples/server/webui/src/styles.css b/examples/server/webui/src/styles.css deleted file mode 100644 index 67d35b99e49fc..0000000000000 --- a/examples/server/webui/src/styles.css +++ /dev/null @@ -1,26 +0,0 @@ -@tailwind base; -@tailwind components; -@tailwind utilities; - -.markdown { - h1, h2, h3, h4, h5, h6, ul, ol, li { all: revert; } - pre { - @apply whitespace-pre-wrap rounded-lg p-2; - border: 1px solid currentColor; - } - /* TODO: fix markdown table */ -} - -.show-on-hover { - @apply md:opacity-0 md:group-hover:opacity-100; -} -.btn-mini { - @apply cursor-pointer hover:shadow-md; -} -.chat-screen { max-width: 900px; } - -.chat-bubble-base-300 { - --tw-bg-opacity: 1; - --tw-text-opacity: 1; - @apply bg-base-300 text-base-content; -} diff --git a/examples/server/webui/src/styles.scss b/examples/server/webui/src/styles.scss new file mode 100644 index 0000000000000..34fe2aaf01ceb --- /dev/null +++ b/examples/server/webui/src/styles.scss @@ -0,0 +1,48 @@ +@use "sass:meta"; + +@tailwind base; +@tailwind components; +@tailwind utilities; + +.markdown { + h1, h2, h3, h4, h5, h6, ul, ol, li { all: revert; } + pre { + @apply whitespace-pre-wrap rounded-lg p-2; + border: 1px solid currentColor; + } + /* TODO: fix markdown table */ +} + +.show-on-hover { + @apply md:opacity-0 md:group-hover:opacity-100; +} +.btn-mini { + @apply cursor-pointer hover:shadow-md; +} +.chat-screen { max-width: 900px; } + +.chat-bubble-base-300 { + --tw-bg-opacity: 1; + --tw-text-opacity: 1; + @apply bg-base-300 text-base-content; +} + +/* Highlight.js */ +[data-color-scheme='light'] { + @include meta.load-css('highlight.js/styles/stackoverflow-light'); +} +[data-color-scheme='dark'] { + @include meta.load-css('highlight.js/styles/stackoverflow-dark'); +} +[data-color-scheme='auto'] { + @media (prefers-color-scheme: light) { + @include meta.load-css('highlight.js/styles/stackoverflow-light'); + } + @media (prefers-color-scheme: dark) { + @include meta.load-css('highlight.js/styles/stackoverflow-dark'); + } +} +.hljs { + background: transparent !important; + padding: 0.5em !important; +} diff --git a/examples/server/webui/vite.config.js b/examples/server/webui/vite.config.js index 789bf9cbbf197..6619a630d47f6 100644 --- a/examples/server/webui/vite.config.js +++ b/examples/server/webui/vite.config.js @@ -2,6 +2,9 @@ import { viteSingleFile } from 'vite-plugin-singlefile'; import path from 'path'; import fs from 'fs'; +import zlib from 'zlib'; + +const MAX_BUNDLE_SIZE = 1.5 * 1024 * 1024; // only increase when absolutely necessary const GUIDE_FOR_FRONTEND = ` `.trim(); -export default { - plugins: [ - viteSingleFile(), - (function llamaCppPlugin() { - let config; - return { - name: 'llamacpp:build', - apply: 'build', - async configResolved(_config) { - config = _config; - }, - writeBundle() { - const outputIndexHtml = path.join(config.build.outDir, 'index.html'); - const content = fs.readFileSync(outputIndexHtml, 'utf-8'); - - const targetOutputFile = path.join(config.build.outDir, '../../public/index.html'); - fs.writeFileSync(targetOutputFile, GUIDE_FOR_FRONTEND + '\n' + content); +const BUILD_PLUGINS = [ + viteSingleFile(), + (function llamaCppPlugin() { + let config; + return { + name: 'llamacpp:build', + apply: 'build', + async configResolved(_config) { + config = _config; + }, + writeBundle() { + const outputIndexHtml = path.join(config.build.outDir, 'index.html'); + const content = GUIDE_FOR_FRONTEND + '\n' + fs.readFileSync(outputIndexHtml, 'utf-8'); + const compressed = zlib.gzipSync(Buffer.from(content, 'utf-8'), { level: 9 }); + + // because gzip header contains machine-specific info, we must remove these data from the header + // timestamp + compressed[0x4] = 0; + compressed[0x5] = 0; + compressed[0x6] = 0; + compressed[0x7] = 0; + // OS + compressed[0x9] = 0; + + if (compressed.byteLength > MAX_BUNDLE_SIZE) { + throw new Error( + `Bundle size is too large (${Math.ceil(compressed.byteLength / 1024)} KB).\n` + + `Please reduce the size of the frontend or increase MAX_BUNDLE_SIZE in vite.config.js.\n`, + ); } + + const targetOutputFile = path.join(config.build.outDir, '../../public/index.html.gz'); + fs.writeFileSync(targetOutputFile, compressed); } - })(), - ], + } + })(), +]; + +/** @type {import('vite').UserConfig} */ +export default { + plugins: process.env.ANALYZE ? [] : BUILD_PLUGINS, }; diff --git a/examples/tts/CMakeLists.txt b/examples/tts/CMakeLists.txt new file mode 100644 index 0000000000000..c72bd814c3b31 --- /dev/null +++ b/examples/tts/CMakeLists.txt @@ -0,0 +1,5 @@ +set(TARGET llama-tts) +add_executable(${TARGET} tts.cpp) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_17) diff --git a/examples/tts/convert_pt_to_hf.py b/examples/tts/convert_pt_to_hf.py new file mode 100644 index 0000000000000..8909a65fd1e13 --- /dev/null +++ b/examples/tts/convert_pt_to_hf.py @@ -0,0 +1,180 @@ +# convert the https://huggingface.co/novateur/WavTokenizer-large-speech-75token to HF format +# the goal is to be able to reuse the convert_hf_to_gguf.py after that to create a GGUF file with the WavTokenizer decoder +# +# TODO: this script is LLM-generated and probably very inefficient and should be rewritten + +import torch +import json +import os +import sys +import re + +from safetensors.torch import save_file + +# default +model_path = './model.pt'; + +# read from CLI +if len(sys.argv) > 1: + model_path = sys.argv[1] + +# get the directory of the input model +path_dst = os.path.dirname(model_path) + +print(f"Loading model from {model_path}") + +model = torch.load(model_path, map_location='cpu') + +#print(model) + +# print all keys +for key in model.keys(): + print(key) + if key == 'hyper_parameters': + #print(model[key]) + # dump as json pretty + print(json.dumps(model[key], indent=4)) + #if key != 'state_dict' and key != 'optimizer_states': + # print(model[key]) + +# Check if the loaded model is a state_dict or a model instance +if isinstance(model, torch.nn.Module): + state_dict = model.state_dict() +else: + state_dict = model + +# Print the structure of the state_dict to understand its format +print("State dictionary keys:") +for key in state_dict.keys(): + print(key) + +# Ensure the state_dict is flat and contains only torch.Tensor objects +def flatten_state_dict(state_dict, parent_key='', sep='.'): + items = [] + items_new = [] + + for k, v in state_dict.items(): + new_key = f"{parent_key}{sep}{k}" if parent_key else k + if isinstance(v, torch.Tensor): + items.append((new_key, v)) + elif isinstance(v, dict): + items.extend(flatten_state_dict(v, new_key, sep=sep).items()) + return dict(items) + + size_total_mb = 0 + + for key, value in list(items): + # keep only what we need for inference + if not key.startswith('state_dict.feature_extractor.encodec.quantizer.') and \ + not key.startswith('state_dict.backbone.') and \ + not key.startswith('state_dict.head.out'): + print('Skipping key: ', key) + continue + + new_key = key + + new_key = new_key.replace('state_dict.', '') + new_key = new_key.replace('pos_net', 'posnet') + + # check if matches "backbone.posnet.%d.bias" or "backbone.posnet.%d.weight" + if new_key.startswith("backbone.posnet."): + match = re.match(r"backbone\.posnet\.(\d+)\.(bias|weight)", new_key) + if match: + new_key = f"backbone.posnet.{match.group(1)}.norm.{match.group(2)}" + + # "feature_extractor.encodec.quantizer.vq.layers.0._codebook.embed" -> "backbone.embedding.weight" + if new_key == "feature_extractor.encodec.quantizer.vq.layers.0._codebook.embed": + new_key = "backbone.embedding.weight" + + # these are the only rows used + # ref: https://github.com/edwko/OuteTTS/blob/a613e79c489d8256dd657ea9168d78de75895d82/outetts/wav_tokenizer/audio_codec.py#L100 + if new_key.endswith("norm.scale.weight"): + new_key = new_key.replace("norm.scale.weight", "norm.weight") + value = value[0] + + if new_key.endswith("norm.shift.weight"): + new_key = new_key.replace("norm.shift.weight", "norm.bias") + value = value[0] + + if new_key.endswith("gamma"): + new_key = new_key.replace("gamma", "gamma.weight") + + # convert from 1D [768] to 2D [768, 1] so that ggml_add can broadcast the bias + if (new_key.endswith("norm.weight") or new_key.endswith("norm1.weight") or new_key.endswith("norm2.weight") or new_key.endswith(".bias")) and (new_key.startswith("backbone.posnet") or new_key.startswith("backbone.embed.bias")): + value = value.unsqueeze(1) + + if new_key.endswith("dwconv.bias"): + value = value.unsqueeze(1) + + size_mb = value.element_size() * value.nelement() / (1024 * 1024) + print(f"{size_mb:8.2f} MB - {new_key}: {value.shape}") + + size_total_mb += size_mb + + #print(key, '->', new_key, ': ', value) + #print(key, '->', new_key) + + items_new.append((new_key, value)) + + print(f"Total size: {size_total_mb:8.2f} MB") + + return dict(items_new) + +flattened_state_dict = flatten_state_dict(state_dict) + + +# Convert the model to the safetensors format +output_path = path_dst + '/model.safetensors' +save_file(flattened_state_dict, output_path) + +print(f"Model has been successfully converted and saved to {output_path}") + +# Calculate the total size of the .safetensors file +total_size = os.path.getsize(output_path) + +# Create the weight map +weight_map = { + "model.safetensors": ["*"] # Assuming all weights are in one file +} + +# Create metadata for the index.json file +metadata = { + "total_size": total_size, + "weight_map": weight_map +} + +# Save the metadata to index.json +index_path = path_dst + '/index.json' +with open(index_path, 'w') as f: + json.dump(metadata, f, indent=4) + +print(f"Metadata has been saved to {index_path}") + +config = { + "architectures": [ + "WavTokenizerDec" + ], + "hidden_size": 1282, + "n_embd_features": 512, + "n_ff": 2304, + "vocab_size": 4096, + "n_head": 1, + "layer_norm_epsilon": 1e-6, + "group_norm_epsilon": 1e-6, + "group_norm_groups": 32, + "max_position_embeddings": 8192, # ? + "n_layer": 12, + "posnet": { + "n_embd": 768, + "n_layer": 6 + }, + "convnext": { + "n_embd": 768, + "n_layer": 12 + }, +} + +with open(path_dst + '/config.json', 'w') as f: + json.dump(config, f, indent=4) + +print(f"Config has been saved to {path_dst + 'config.json'}") diff --git a/examples/tts/tts-outetts.py b/examples/tts/tts-outetts.py new file mode 100644 index 0000000000000..0f81192fca52d --- /dev/null +++ b/examples/tts/tts-outetts.py @@ -0,0 +1,175 @@ +import sys +#import json +#import struct +import requests +import re + +def process_text(text: str): + text = re.sub(r'\d+(\.\d+)?', lambda x: x.group(), text.lower()) # TODO this needs to be fixed + text = re.sub(r'[-_/,\.\\]', ' ', text) + text = re.sub(r'[^a-z\s]', '', text) + text = re.sub(r'\s+', ' ', text).strip() + return text.split() + +# usage: +# python tts-outetts.py http://server-llm:port http://server-dec:port "text" + +if len(sys.argv) <= 3: + print("usage: python tts-outetts.py http://server-llm:port http://server-dec:port \"text\"") + exit(1) + +host_llm = sys.argv[1] +host_dec = sys.argv[2] +text = sys.argv[3] + +prefix = """<|im_start|> +<|text_start|>the<|text_sep|>overall<|text_sep|>package<|text_sep|>from<|text_sep|>just<|text_sep|>two<|text_sep|>people<|text_sep|>is<|text_sep|>pretty<|text_sep|>remarkable<|text_sep|>sure<|text_sep|>i<|text_sep|>have<|text_sep|>some<|text_sep|>critiques<|text_sep|>about<|text_sep|>some<|text_sep|>of<|text_sep|>the<|text_sep|>gameplay<|text_sep|>aspects<|text_sep|>but<|text_sep|>its<|text_sep|>still<|text_sep|>really<|text_sep|>enjoyable<|text_sep|>and<|text_sep|>it<|text_sep|>looks<|text_sep|>lovely<|text_sep|>""" + +words = process_text(text) +words = "<|text_sep|>".join([i.strip() for i in words]) +words += "<|text_end|>\n" + +# voice data +# TODO: load from json +#suffix = """<|audio_start|> +#the<|t_0.08|><|code_start|><|257|><|740|><|636|><|913|><|788|><|1703|><|code_end|> +#overall<|t_0.36|><|code_start|><|127|><|201|><|191|><|774|><|700|><|532|><|1056|><|557|><|798|><|298|><|1741|><|747|><|1662|><|1617|><|1702|><|1527|><|368|><|1588|><|1049|><|1008|><|1625|><|747|><|1576|><|728|><|1019|><|1696|><|1765|><|code_end|> +#package<|t_0.56|><|code_start|><|935|><|584|><|1319|><|627|><|1016|><|1491|><|1344|><|1117|><|1526|><|1040|><|239|><|1435|><|951|><|498|><|723|><|1180|><|535|><|789|><|1649|><|1637|><|78|><|465|><|1668|><|901|><|595|><|1675|><|117|><|1009|><|1667|><|320|><|840|><|79|><|507|><|1762|><|1508|><|1228|><|1768|><|802|><|1450|><|1457|><|232|><|639|><|code_end|> +#from<|t_0.19|><|code_start|><|604|><|782|><|1682|><|872|><|1532|><|1600|><|1036|><|1761|><|647|><|1554|><|1371|><|653|><|1595|><|950|><|code_end|> +#just<|t_0.25|><|code_start|><|1782|><|1670|><|317|><|786|><|1748|><|631|><|599|><|1155|><|1364|><|1524|><|36|><|1591|><|889|><|1535|><|541|><|440|><|1532|><|50|><|870|><|code_end|> +#two<|t_0.24|><|code_start|><|1681|><|1510|><|673|><|799|><|805|><|1342|><|330|><|519|><|62|><|640|><|1138|><|565|><|1552|><|1497|><|1552|><|572|><|1715|><|1732|><|code_end|> +#people<|t_0.39|><|code_start|><|593|><|274|><|136|><|740|><|691|><|633|><|1484|><|1061|><|1138|><|1485|><|344|><|428|><|397|><|1562|><|645|><|917|><|1035|><|1449|><|1669|><|487|><|442|><|1484|><|1329|><|1832|><|1704|><|600|><|761|><|653|><|269|><|code_end|> +#is<|t_0.16|><|code_start|><|566|><|583|><|1755|><|646|><|1337|><|709|><|802|><|1008|><|485|><|1583|><|652|><|10|><|code_end|> +#pretty<|t_0.32|><|code_start|><|1818|><|1747|><|692|><|733|><|1010|><|534|><|406|><|1697|><|1053|><|1521|><|1355|><|1274|><|816|><|1398|><|211|><|1218|><|817|><|1472|><|1703|><|686|><|13|><|822|><|445|><|1068|><|code_end|> +#remarkable<|t_0.68|><|code_start|><|230|><|1048|><|1705|><|355|><|706|><|1149|><|1535|><|1787|><|1356|><|1396|><|835|><|1583|><|486|><|1249|><|286|><|937|><|1076|><|1150|><|614|><|42|><|1058|><|705|><|681|><|798|><|934|><|490|><|514|><|1399|><|572|><|1446|><|1703|><|1346|><|1040|><|1426|><|1304|><|664|><|171|><|1530|><|625|><|64|><|1708|><|1830|><|1030|><|443|><|1509|><|1063|><|1605|><|1785|><|721|><|1440|><|923|><|code_end|> +#sure<|t_0.36|><|code_start|><|792|><|1780|><|923|><|1640|><|265|><|261|><|1525|><|567|><|1491|><|1250|><|1730|><|362|><|919|><|1766|><|543|><|1|><|333|><|113|><|970|><|252|><|1606|><|133|><|302|><|1810|><|1046|><|1190|><|1675|><|code_end|> +#i<|t_0.08|><|code_start|><|123|><|439|><|1074|><|705|><|1799|><|637|><|code_end|> +#have<|t_0.16|><|code_start|><|1509|><|599|><|518|><|1170|><|552|><|1029|><|1267|><|864|><|419|><|143|><|1061|><|0|><|code_end|> +#some<|t_0.16|><|code_start|><|619|><|400|><|1270|><|62|><|1370|><|1832|><|917|><|1661|><|167|><|269|><|1366|><|1508|><|code_end|> +#critiques<|t_0.60|><|code_start|><|559|><|584|><|1163|><|1129|><|1313|><|1728|><|721|><|1146|><|1093|><|577|><|928|><|27|><|630|><|1080|><|1346|><|1337|><|320|><|1382|><|1175|><|1682|><|1556|><|990|><|1683|><|860|><|1721|><|110|><|786|><|376|><|1085|><|756|><|1523|><|234|><|1334|><|1506|><|1578|><|659|><|612|><|1108|><|1466|><|1647|><|308|><|1470|><|746|><|556|><|1061|><|code_end|> +#about<|t_0.29|><|code_start|><|26|><|1649|><|545|><|1367|><|1263|><|1728|><|450|><|859|><|1434|><|497|><|1220|><|1285|><|179|><|755|><|1154|><|779|><|179|><|1229|><|1213|><|922|><|1774|><|1408|><|code_end|> +#some<|t_0.23|><|code_start|><|986|><|28|><|1649|><|778|><|858|><|1519|><|1|><|18|><|26|><|1042|><|1174|><|1309|><|1499|><|1712|><|1692|><|1516|><|1574|><|code_end|> +#of<|t_0.07|><|code_start|><|197|><|716|><|1039|><|1662|><|64|><|code_end|> +#the<|t_0.08|><|code_start|><|1811|><|1568|><|569|><|886|><|1025|><|1374|><|code_end|> +#gameplay<|t_0.48|><|code_start|><|1269|><|1092|><|933|><|1362|><|1762|><|1700|><|1675|><|215|><|781|><|1086|><|461|><|838|><|1022|><|759|><|649|><|1416|><|1004|><|551|><|909|><|787|><|343|><|830|><|1391|><|1040|><|1622|><|1779|><|1360|><|1231|><|1187|><|1317|><|76|><|997|><|989|><|978|><|737|><|189|><|code_end|> +#aspects<|t_0.56|><|code_start|><|1423|><|797|><|1316|><|1222|><|147|><|719|><|1347|><|386|><|1390|><|1558|><|154|><|440|><|634|><|592|><|1097|><|1718|><|712|><|763|><|1118|><|1721|><|1311|><|868|><|580|><|362|><|1435|><|868|><|247|><|221|><|886|><|1145|><|1274|><|1284|><|457|><|1043|><|1459|><|1818|><|62|><|599|><|1035|><|62|><|1649|><|778|><|code_end|> +#but<|t_0.20|><|code_start|><|780|><|1825|><|1681|><|1007|><|861|><|710|><|702|><|939|><|1669|><|1491|><|613|><|1739|><|823|><|1469|><|648|><|code_end|> +#its<|t_0.09|><|code_start|><|92|><|688|><|1623|><|962|><|1670|><|527|><|599|><|code_end|> +#still<|t_0.27|><|code_start|><|636|><|10|><|1217|><|344|><|713|><|957|><|823|><|154|><|1649|><|1286|><|508|><|214|><|1760|><|1250|><|456|><|1352|><|1368|><|921|><|615|><|5|><|code_end|> +#really<|t_0.36|><|code_start|><|55|><|420|><|1008|><|1659|><|27|><|644|><|1266|><|617|><|761|><|1712|><|109|><|1465|><|1587|><|503|><|1541|><|619|><|197|><|1019|><|817|><|269|><|377|><|362|><|1381|><|507|><|1488|><|4|><|1695|><|code_end|> +#enjoyable<|t_0.49|><|code_start|><|678|><|501|><|864|><|319|><|288|><|1472|><|1341|><|686|><|562|><|1463|><|619|><|1563|><|471|><|911|><|730|><|1811|><|1006|><|520|><|861|><|1274|><|125|><|1431|><|638|><|621|><|153|><|876|><|1770|><|437|><|987|><|1653|><|1109|><|898|><|1285|><|80|><|593|><|1709|><|843|><|code_end|> +#and<|t_0.15|><|code_start|><|1285|><|987|><|303|><|1037|><|730|><|1164|><|502|><|120|><|1737|><|1655|><|1318|><|code_end|> +#it<|t_0.09|><|code_start|><|848|><|1366|><|395|><|1601|><|1513|><|593|><|1302|><|code_end|> +#looks<|t_0.27|><|code_start|><|1281|><|1266|><|1755|><|572|><|248|><|1751|><|1257|><|695|><|1380|><|457|><|659|><|585|><|1315|><|1105|><|1776|><|736|><|24|><|736|><|654|><|1027|><|code_end|> +#lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|1481|><|1721|><|1123|><|438|><|1246|><|1251|><|795|><|659|><|1381|><|1658|><|217|><|1772|><|562|><|952|><|107|><|1129|><|1112|><|467|><|550|><|1079|><|840|><|1615|><|1469|><|1380|><|168|><|917|><|836|><|1827|><|437|><|583|><|67|><|595|><|1087|><|1646|><|1493|><|1677|><|code_end|>""" + +# TODO: tokenization is slow for some reason - here is pre-tokenized input +suffix = [ 151667, 198, 1782, 155780, 151669, 151929, 152412, 152308, 152585, 152460, 153375, 151670, 198, 74455, + 155808, 151669, 151799, 151873, 151863, 152446, 152372, 152204, 152728, 152229, 152470, 151970, 153413, + 152419, 153334, 153289, 153374, 153199, 152040, 153260, 152721, 152680, 153297, 152419, 153248, 152400, + 152691, 153368, 153437, 151670, 198, 1722, 155828, 151669, 152607, 152256, 152991, 152299, 152688, 153163, + 153016, 152789, 153198, 152712, 151911, 153107, 152623, 152170, 152395, 152852, 152207, 152461, 153321, + 153309, 151750, 152137, 153340, 152573, 152267, 153347, 151789, 152681, 153339, 151992, 152512, 151751, + 152179, 153434, 153180, 152900, 153440, 152474, 153122, 153129, 151904, 152311, 151670, 198, 1499, 155791, + 151669, 152276, 152454, 153354, 152544, 153204, 153272, 152708, 153433, 152319, 153226, 153043, 152325, + 153267, 152622, 151670, 198, 4250, 155797, 151669, 153454, 153342, 151989, 152458, 153420, 152303, 152271, + 152827, 153036, 153196, 151708, 153263, 152561, 153207, 152213, 152112, 153204, 151722, 152542, 151670, 198, + 19789, 155796, 151669, 153353, 153182, 152345, 152471, 152477, 153014, 152002, 152191, 151734, 152312, 152810, + 152237, 153224, 153169, 153224, 152244, 153387, 153404, 151670, 198, 16069, 155811, 151669, 152265, 151946, + 151808, 152412, 152363, 152305, 153156, 152733, 152810, 153157, 152016, 152100, 152069, 153234, 152317, + 152589, 152707, 153121, 153341, 152159, 152114, 153156, 153001, 153504, 153376, 152272, 152433, 152325, + 151941, 151670, 198, 285, 155788, 151669, 152238, 152255, 153427, 152318, 153009, 152381, 152474, 152680, + 152157, 153255, 152324, 151682, 151670, 198, 32955, 155804, 151669, 153490, 153419, 152364, 152405, 152682, + 152206, 152078, 153369, 152725, 153193, 153027, 152946, 152488, 153070, 151883, 152890, 152489, 153144, + 153375, 152358, 151685, 152494, 152117, 152740, 151670, 198, 37448, 480, 155840, 151669, 151902, 152720, + 153377, 152027, 152378, 152821, 153207, 153459, 153028, 153068, 152507, 153255, 152158, 152921, 151958, + 152609, 152748, 152822, 152286, 151714, 152730, 152377, 152353, 152470, 152606, 152162, 152186, 153071, + 152244, 153118, 153375, 153018, 152712, 153098, 152976, 152336, 151843, 153202, 152297, 151736, 153380, + 153502, 152702, 152115, 153181, 152735, 153277, 153457, 152393, 153112, 152595, 151670, 198, 19098, 155808, + 151669, 152464, 153452, 152595, 153312, 151937, 151933, 153197, 152239, 153163, 152922, 153402, 152034, + 152591, 153438, 152215, 151673, 152005, 151785, 152642, 151924, 153278, 151805, 151974, 153482, 152718, + 152862, 153347, 151670, 198, 72, 155780, 151669, 151795, 152111, 152746, 152377, 153471, 152309, 151670, 198, + 19016, 155788, 151669, 153181, 152271, 152190, 152842, 152224, 152701, 152939, 152536, 152091, 151815, 152733, + 151672, 151670, 198, 14689, 155788, 151669, 152291, 152072, 152942, 151734, 153042, 153504, 152589, 153333, + 151839, 151941, 153038, 153180, 151670, 198, 36996, 8303, 155832, 151669, 152231, 152256, 152835, 152801, + 152985, 153400, 152393, 152818, 152765, 152249, 152600, 151699, 152302, 152752, 153018, 153009, 151992, + 153054, 152847, 153354, 153228, 152662, 153355, 152532, 153393, 151782, 152458, 152048, 152757, 152428, + 153195, 151906, 153006, 153178, 153250, 152331, 152284, 152780, 153138, 153319, 151980, 153142, 152418, + 152228, 152733, 151670, 198, 9096, 155801, 151669, 151698, 153321, 152217, 153039, 152935, 153400, 152122, + 152531, 153106, 152169, 152892, 152957, 151851, 152427, 152826, 152451, 151851, 152901, 152885, 152594, + 153446, 153080, 151670, 198, 14689, 155795, 151669, 152658, 151700, 153321, 152450, 152530, 153191, 151673, + 151690, 151698, 152714, 152846, 152981, 153171, 153384, 153364, 153188, 153246, 151670, 198, 1055, 155779, + 151669, 151869, 152388, 152711, 153334, 151736, 151670, 198, 1782, 155780, 151669, 153483, 153240, 152241, + 152558, 152697, 153046, 151670, 198, 5804, 1363, 155820, 151669, 152941, 152764, 152605, 153034, 153434, + 153372, 153347, 151887, 152453, 152758, 152133, 152510, 152694, 152431, 152321, 153088, 152676, 152223, + 152581, 152459, 152015, 152502, 153063, 152712, 153294, 153451, 153032, 152903, 152859, 152989, 151748, + 152669, 152661, 152650, 152409, 151861, 151670, 198, 300, 7973, 155828, 151669, 153095, 152469, 152988, + 152894, 151819, 152391, 153019, 152058, 153062, 153230, 151826, 152112, 152306, 152264, 152769, 153390, + 152384, 152435, 152790, 153393, 152983, 152540, 152252, 152034, 153107, 152540, 151919, 151893, 152558, + 152817, 152946, 152956, 152129, 152715, 153131, 153490, 151734, 152271, 152707, 151734, 153321, 152450, + 151670, 198, 8088, 155792, 151669, 152452, 153497, 153353, 152679, 152533, 152382, 152374, 152611, 153341, + 153163, 152285, 153411, 152495, 153141, 152320, 151670, 198, 1199, 155781, 151669, 151764, 152360, 153295, + 152634, 153342, 152199, 152271, 151670, 198, 43366, 155799, 151669, 152308, 151682, 152889, 152016, 152385, + 152629, 152495, 151826, 153321, 152958, 152180, 151886, 153432, 152922, 152128, 153024, 153040, 152593, + 152287, 151677, 151670, 198, 53660, 155808, 151669, 151727, 152092, 152680, 153331, 151699, 152316, 152938, + 152289, 152433, 153384, 151781, 153137, 153259, 152175, 153213, 152291, 151869, 152691, 152489, 151941, + 152049, 152034, 153053, 152179, 153160, 151676, 153367, 151670, 198, 268, 4123, 480, 155821, 151669, 152350, + 152173, 152536, 151991, 151960, 153144, 153013, 152358, 152234, 153135, 152291, 153235, 152143, 152583, + 152402, 153483, 152678, 152192, 152533, 152946, 151797, 153103, 152310, 152293, 151825, 152548, 153442, + 152109, 152659, 153325, 152781, 152570, 152957, 151752, 152265, 153381, 152515, 151670, 198, 437, 155787, + 151669, 152957, 152659, 151975, 152709, 152402, 152836, 152174, 151792, 153409, 153327, 152990, 151670, 198, + 275, 155781, 151669, 152520, 153038, 152067, 153273, 153185, 152265, 152974, 151670, 198, 94273, 155799, + 151669, 152953, 152938, 153427, 152244, 151920, 153423, 152929, 152367, 153052, 152129, 152331, 152257, + 152987, 152777, 153448, 152408, 151696, 152408, 152326, 152699, 151670, 198, 385, 16239, 155828, 151669, + 152306, 152268, 153438, 153228, 152978, 152957, 153153, 153393, 152795, 152110, 152918, 152923, 152467, + 152331, 153053, 153330, 151889, 153444, 152234, 152624, 151779, 152801, 152784, 152139, 152222, 152751, + 152512, 153287, 153141, 153052, 151840, 152589, 152508, 153499, 152109, 152255, 151739, 152267, 152759, + 153318, 153165, 153349, 151670, ] + +response = requests.post( + host_llm + "/completion", + json={ + "prompt": [prefix + words, *suffix], + "n_predict": 1024, + "cache_prompt": True, + "return_tokens": True, + "samplers": ["top_k"], + "top_k": 16, + "seed": 1003, + } +) + +response_json = response.json() + +#print(json.dumps(response_json, indent=4)) +#print(json.dumps(response_json["prompt"], indent=4).replace("\\n", "\n")) +#print(json.dumps(response_json["timings"], indent=4)) +#print(json.dumps(response_json["tokens"], indent=4)) + +codes = response_json["tokens"] + +codes = [t - 151672 for t in codes if t >= 151672 and t <= 155772] + +response = requests.post( + host_dec + "/embeddings", + json={ + "input": [*codes], + } +) + +response_json = response.json() + +#print(json.dumps(response_json, indent=4)) + +# spectrogram +embd = response_json[0]["embedding"] + +n_codes = len(embd) +n_embd = len(embd[0]) + +print('spectrogram generated: n_codes: %d, n_embd: %d' % (n_codes, n_embd)) + +# post-process the spectrogram to convert to audio +# TODO: see the tts.cpp:embd_to_audio() and implement it in Python +print('converting to audio ...') +print('TODO: see the tts.cpp:embd_to_audio() and implement it in Python') diff --git a/examples/tts/tts.cpp b/examples/tts/tts.cpp new file mode 100644 index 0000000000000..7f36b80f0dee1 --- /dev/null +++ b/examples/tts/tts.cpp @@ -0,0 +1,932 @@ +#include "arg.h" +#include "common.h" +#include "sampling.h" +#include "log.h" +#include "llama.h" + +#define _USE_MATH_DEFINES // For M_PI on MSVC + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +// +// Terminal utils +// + +#define SQR(X) ((X) * (X)) +#define UNCUBE(x) x < 48 ? 0 : x < 115 ? 1 : (x - 35) / 40 + +/** + * Quantizes 24-bit RGB to xterm256 code range [16,256). + */ +static int rgb2xterm256(int r, int g, int b) { + unsigned char cube[] = {0, 0137, 0207, 0257, 0327, 0377}; + int av, ir, ig, ib, il, qr, qg, qb, ql; + av = r * .299 + g * .587 + b * .114 + .5; + ql = (il = av > 238 ? 23 : (av - 3) / 10) * 10 + 8; + qr = cube[(ir = UNCUBE(r))]; + qg = cube[(ig = UNCUBE(g))]; + qb = cube[(ib = UNCUBE(b))]; + if (SQR(qr - r) + SQR(qg - g) + SQR(qb - b) <= + SQR(ql - r) + SQR(ql - g) + SQR(ql - b)) + return ir * 36 + ig * 6 + ib + 020; + return il + 0350; +} + +static std::string set_xterm256_foreground(int r, int g, int b) { + int x = rgb2xterm256(r, g, b); + std::ostringstream oss; + oss << "\033[38;5;" << x << "m"; + return oss.str(); +} + +const std::vector k_colors = { + set_xterm256_foreground(220, 5, 12), + set_xterm256_foreground(232, 96, 28), + set_xterm256_foreground(241, 147, 45), + set_xterm256_foreground(246, 193, 65), + set_xterm256_foreground(247, 240, 86), + set_xterm256_foreground(144, 201, 135), + set_xterm256_foreground( 78, 178, 101), +}; + +static void print_usage(int, char ** argv) { + LOG("\nexample usage:\n"); + LOG("\n %s -m model.gguf -p \"Hello!\"\n", argv[0]); + LOG("\n"); +} + +struct wav_header { + char riff[4] = {'R', 'I', 'F', 'F'}; + uint32_t chunk_size; + char wave[4] = {'W', 'A', 'V', 'E'}; + char fmt[4] = {'f', 'm', 't', ' '}; + uint32_t fmt_chunk_size = 16; + uint16_t audio_format = 1; // PCM + uint16_t num_channels = 1; // Mono + uint32_t sample_rate; + uint32_t byte_rate; + uint16_t block_align; + uint16_t bits_per_sample = 16; + char data[4] = {'d', 'a', 't', 'a'}; + uint32_t data_size; +}; + +static void save_wav16(const std::string & fname, const std::vector & data, int sample_rate) { + std::ofstream file(fname, std::ios::binary); + if (!file) { + LOG_ERR("%s: Failed to open file '%s' for writing", __func__, fname.c_str()); + return; + } + + wav_header header; + header.sample_rate = sample_rate; + header.byte_rate = header.sample_rate * header.num_channels * (header.bits_per_sample / 8); + header.block_align = header.num_channels * (header.bits_per_sample / 8); + header.data_size = data.size() * (header.bits_per_sample / 8); + header.chunk_size = 36 + header.data_size; + + file.write(reinterpret_cast(&header), sizeof(header)); + + for (const auto & sample : data) { + int16_t pcm_sample = static_cast(std::clamp(sample * 32767.0, -32768.0, 32767.0)); + file.write(reinterpret_cast(&pcm_sample), sizeof(pcm_sample)); + } + + file.close(); +} + +static void fill_hann_window(int length, bool periodic, float * output) { + int offset = -1; + if (periodic) { + offset = 0; + } + for (int i = 0; i < length; i++) { + output[i] = 0.5 * (1.0 - cosf((2.0 * M_PI * i) / (length + offset))); + } +} + +// very poor-man fft +static void twiddle(float * real, float * imag, int k, int N) { + float angle = 2 * M_PI * k / N; + *real = cos(angle); + *imag = sin(angle); +} + +static void irfft(int n, const float * inp_cplx, float * out_real) { + int N = n / 2 + 1; + + std::vector real_input(N); + std::vector imag_input(N); + for (int i = 0; i < N; ++i) { + real_input[i] = inp_cplx[2 * i]; + imag_input[i] = inp_cplx[2 * i + 1]; + } + + std::vector real_output(n); + std::vector imag_output(n); + + for (int k = 0; k < n; ++k) { + real_output[k] = 0.0f; + imag_output[k] = 0.0f; + for (int m = 0; m < N; ++m) { + float twiddle_real; + float twiddle_imag; + + twiddle(&twiddle_real, &twiddle_imag, k * m, n); + + real_output[k] += real_input[m] * twiddle_real - imag_input[m] * twiddle_imag; + imag_output[k] += real_input[m] * twiddle_imag + imag_input[m] * twiddle_real; + } + } + + for (int i = 0; i < n; ++i) { + out_real[i] = real_output[i] / N; + } +} + +// +// y = torch.nn.functional.fold( +// data, output_size=(1, output_size), kernel_size=(1, self.win_length), stride=(1, self.hop_length), +// )[:, 0, 0, pad:-pad] +// +// data.shape = torch.Size([1, 1280, 261]) +// output_size = 84480 +// win_length = 1280 +// hop_length = 320 +// pad = 480 +// +static void fold(const std::vector & data, int64_t n_out, int64_t n_win, int64_t n_hop, int64_t n_pad, std::vector & output) { + int64_t output_height = n_out; + int64_t kernel_w = n_win; + int64_t stride_w = n_hop; + int64_t width = n_out; + + output.resize(width, 0.0f); + + int64_t col_idx = 0; + for (int64_t w_col = 0; w_col < width; ++w_col) { + int64_t start = w_col * stride_w - n_pad; + int64_t end = start + kernel_w; + + for (int64_t w_im = start; w_im < end; ++w_im) { + if (w_im >= 0 && w_im < output_height && col_idx < (int64_t) data.size()) { + output[w_im] += data[col_idx]; + } + col_idx++; + } + } + + output.resize(n_out - 2 * n_pad); +} + +// TODO: not optimized at all +static std::vector embd_to_audio( + const float * embd, + const int n_codes, + const int n_embd, + const int n_thread) { + const int n_fft = 1280; + const int n_hop = 320; + const int n_win = 1280; + const int n_pad = (n_win - n_hop)/2; + const int n_out = (n_codes - 1)*n_hop + n_win; + + std::vector hann(n_fft); + + fill_hann_window(hann.size(), true, hann.data()); + + int n_spec = n_embd*n_codes; + + std::vector E (n_spec); + std::vector S (n_spec); + std::vector ST(n_spec); + + for (int l = 0; l < n_codes; ++l) { + for (int k = 0; k < n_embd; ++k) { + E[k*n_codes + l] = embd[l*n_embd + k]; + } + } + + for (int k = 0; k < n_embd/2; ++k) { + for (int l = 0; l < n_codes; ++l) { + float mag = E[(k )*n_codes + l]; + float phi = E[(k + n_embd/2)*n_codes + l]; + + mag = exp(mag); + + if (mag > 1e2) { + mag = 1e2; + } + S[2*(k*n_codes + l) + 0] = mag*cosf(phi); + S[2*(k*n_codes + l) + 1] = mag*sinf(phi); + } + } + + for (int l = 0; l < n_codes; ++l) { + for (int k = 0; k < n_embd/2; ++k) { + ST[l*n_embd + 2*k + 0] = S[2*(k*n_codes + l) + 0]; + ST[l*n_embd + 2*k + 1] = S[2*(k*n_codes + l) + 1]; + } + } + + std::vector res (n_codes*n_fft); + std::vector hann2(n_codes*n_fft); + + std::vector workers(n_thread); + for (int i = 0; i < n_thread; ++i) { + workers[i] = std::thread([&, i]() { + for (int l = i; l < n_codes; l += n_thread) { + irfft(n_fft, ST.data() + l*n_embd, res.data() + l*n_fft); + for (int j = 0; j < n_fft; ++j) { + res [l*n_fft + j] *= hann[j]; + hann2[l*n_fft + j] = hann[j] * hann[j]; + } + } + }); + } + for (int i = 0; i < n_thread; ++i) { + workers[i].join(); + } + + std::vector audio; + std::vector env; + + fold(res, n_out, n_win, n_hop, n_pad, audio); + fold(hann2, n_out, n_win, n_hop, n_pad, env); // TODO: can be done once + + for (size_t i = 0; i < audio.size(); ++i) { + audio[i] /= env[i]; + } + + return audio; +} + +static const std::map ones = { + {0, "zero"}, {1, "one"}, {2, "two"}, {3, "three"}, {4, "four"}, + {5, "five"}, {6, "six"}, {7, "seven"}, {8, "eight"}, {9, "nine"}, + {10, "ten"}, {11, "eleven"}, {12, "twelve"}, {13, "thirteen"}, {14, "fourteen"}, + {15, "fifteen"}, {16, "sixteen"}, {17, "seventeen"}, {18, "eighteen"}, {19, "nineteen"} +}; + +static const std::map tens = { + {2, "twenty"}, {3, "thirty"}, {4, "forty"}, {5, "fifty"}, + {6, "sixty"}, {7, "seventy"}, {8, "eighty"}, {9, "ninety"} +}; + +// Convert a number less than 1000 to words +static std::string convert_less_than_thousand(int num) { + std::string result; + + if (num >= 100) { + result += ones.at(num / 100) + " hundred "; + num %= 100; + } + + if (num >= 20) { + result += tens.at(num / 10); + if (num % 10 > 0) { + result += "-" + ones.at(num % 10); + } + } else if (num > 0) { + result += ones.at(num); + } + + return result; +} + +static std::string number_to_words(const std::string & number_str) { + try { + size_t decimal_pos = number_str.find('.'); + std::string integer_part = number_str.substr(0, decimal_pos); + + int int_number = std::stoi(integer_part); + std::string result; + + if (int_number == 0) { + result = "zero"; + } else { + if (int_number >= 1000000000) { + int billions = int_number / 1000000000; + result += convert_less_than_thousand(billions) + " billion "; + int_number %= 1000000000; + } + + if (int_number >= 1000000) { + int millions = int_number / 1000000; + result += convert_less_than_thousand(millions) + " million "; + int_number %= 1000000; + } + + if (int_number >= 1000) { + int thousands = int_number / 1000; + result += convert_less_than_thousand(thousands) + " thousand "; + int_number %= 1000; + } + + if (int_number > 0) { + result += convert_less_than_thousand(int_number); + } + } + + // Handle decimal part + if (decimal_pos != std::string::npos) { + result += " point"; + std::string decimal_part = number_str.substr(decimal_pos + 1); + for (char digit : decimal_part) { + result += " " + ones.at(digit - '0'); + } + } + + return result; + } catch (const std::exception& e) { + // Skip if fails + return " "; + } +} + +static std::string replace_numbers_with_words(const std::string & input_text) { + std::regex number_pattern(R"(\d+(\.\d+)?)"); + std::string result; + auto it = std::sregex_iterator(input_text.begin(), input_text.end(), number_pattern); + auto end = std::sregex_iterator(); + + size_t last_pos = 0; + for (std::sregex_iterator i = it; i != end; ++i) { + const std::smatch& match = *i; + result.append(input_text, last_pos, match.position() - last_pos); + result.append(number_to_words(match.str())); + last_pos = match.position() + match.length(); + } + result.append(input_text, last_pos); + + return result; +} + +// Based on: https://github.com/edwko/OuteTTS/blob/a613e79c489d8256dd657ea9168d78de75895d82/outetts/version/v1/prompt_processor.py#L39 +static std::string process_text(const std::string & text) { + + // For now I skipped text romanization as I am unsure how to handle + // uroman and MeCab implementations in C++ + // maybe something like https://github.com/anyascii/anyascii/ could work. + // currently only English would be supported in this function + + std::string processed_text = replace_numbers_with_words(text); + + std::transform(processed_text.begin(), processed_text.end(), + processed_text.begin(), ::tolower); + + std::regex special_chars(R"([-_/,\.\\])"); + processed_text = std::regex_replace(processed_text, special_chars, " "); + + std::regex non_alpha(R"([^a-z\s])"); + processed_text = std::regex_replace(processed_text, non_alpha, ""); + + std::regex multiple_spaces(R"(\s+)"); + processed_text = std::regex_replace(processed_text, multiple_spaces, " "); + + processed_text = std::regex_replace(processed_text, std::regex(R"(^\s+|\s+$)"), ""); + + /* + Replace spaces with the separator token same as in line 365 + + for (auto & c : prompt_user) { + if (c == ' ') { + prompt_clean += "<|text_sep|>"; + */ + processed_text = std::regex_replace(processed_text, std::regex(R"(\s)"), "<|text_sep|>"); + + return processed_text; +} + +static void prompt_add(llama_tokens & prompt, llama_token token) { + prompt.push_back(token); +} + +static void prompt_add(llama_tokens & prompt, const llama_tokens & tokens) { + prompt.insert(prompt.end(), tokens.begin(), tokens.end()); +} + +static void prompt_add(llama_tokens & prompt, const llama_model * model, const std::string & txt, bool add_special, bool parse_special) { + auto tmp = common_tokenize(model, txt, add_special, parse_special); + prompt_add(prompt, tmp); +} + +static void prompt_init(llama_tokens & prompt, const llama_model * model) { + prompt.clear(); + + prompt_add(prompt, model, "<|im_start|>\n", true, true); +} + +int main(int argc, char ** argv) { + common_params params; + + params.prompt = ""; + + params.n_predict = 4096; + params.n_batch = 8192; + params.n_ctx = 8192; + + params.sampling.top_k = 4; + params.sampling.samplers = { COMMON_SAMPLER_TYPE_TOP_K, }; + + if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_TTS, print_usage)) { + return 1; + } + + const int n_parallel = params.n_parallel; + const int n_predict = params.n_predict; + + common_init(); + + // init LLM + + llama_backend_init(); + llama_numa_init(params.numa); + + llama_model * model_ttc = NULL; // text-to-codes + llama_model * model_cts = NULL; // codes-to-speech + + llama_context * ctx_ttc = NULL; + llama_context * ctx_cts = NULL; + + common_init_result llama_init_ttc = common_init_from_params(params); + model_ttc = llama_init_ttc.model; + ctx_ttc = llama_init_ttc.context; + + // TODO: refactor in a common struct + params.model = params.vocoder.model; + params.model_url = params.vocoder.model_url; + params.hf_repo = params.vocoder.hf_repo; + params.hf_file = params.vocoder.hf_file; + + params.embedding = true; + + common_init_result llama_init_cts = common_init_from_params(params); + model_cts = llama_init_cts.model; + ctx_cts = llama_init_cts.context; + + std::vector smpl(n_parallel); + for (int i = 0; i < n_parallel; ++i) { + params.sampling.no_perf = (i != 0); + params.sampling.seed = params.sampling.seed + 1; + + smpl[i] = common_sampler_init(model_ttc, params.sampling); + } + + LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl[0])); + LOG_INF("sampler params: \n%s\n", params.sampling.print().c_str()); + LOG_INF("sampler chain: %s\n", common_sampler_print(smpl[0]).c_str()); + + LOG_INF("%s: loading done\n", __func__); + + const auto t_main_start = ggml_time_us(); + + std::vector codes; + + // process prompt and generate voice codes + { + LOG_INF("%s: constructing prompt ..\n", __func__); + + std::vector prompt_inp; + + prompt_init(prompt_inp, model_ttc); + + prompt_add(prompt_inp, model_ttc, "<|text_start|>the<|text_sep|>overall<|text_sep|>package<|text_sep|>from<|text_sep|>just<|text_sep|>two<|text_sep|>people<|text_sep|>is<|text_sep|>pretty<|text_sep|>remarkable<|text_sep|>sure<|text_sep|>i<|text_sep|>have<|text_sep|>some<|text_sep|>critiques<|text_sep|>about<|text_sep|>some<|text_sep|>of<|text_sep|>the<|text_sep|>gameplay<|text_sep|>aspects<|text_sep|>but<|text_sep|>its<|text_sep|>still<|text_sep|>really<|text_sep|>enjoyable<|text_sep|>and<|text_sep|>it<|text_sep|>looks<|text_sep|>lovely<|text_sep|>", false, true); + + // convert the input text into the necessary format expected by OuteTTS + { + std::string prompt_clean = process_text(params.prompt); + + LOG_INF("%s: prompt: '%s'\n", __func__, prompt_clean.c_str()); + + prompt_add(prompt_inp, model_ttc, prompt_clean, false, true); + } + + prompt_add(prompt_inp, model_ttc, "<|text_end|>\n", false, true); + + // disabled to save time on tokenizing each time + // TODO: load voices from the json files +#if 0 + const std::string voice_data = R"(<|audio_start|> +the<|t_0.08|><|code_start|><|257|><|740|><|636|><|913|><|788|><|1703|><|code_end|> +overall<|t_0.36|><|code_start|><|127|><|201|><|191|><|774|><|700|><|532|><|1056|><|557|><|798|><|298|><|1741|><|747|><|1662|><|1617|><|1702|><|1527|><|368|><|1588|><|1049|><|1008|><|1625|><|747|><|1576|><|728|><|1019|><|1696|><|1765|><|code_end|> +package<|t_0.56|><|code_start|><|935|><|584|><|1319|><|627|><|1016|><|1491|><|1344|><|1117|><|1526|><|1040|><|239|><|1435|><|951|><|498|><|723|><|1180|><|535|><|789|><|1649|><|1637|><|78|><|465|><|1668|><|901|><|595|><|1675|><|117|><|1009|><|1667|><|320|><|840|><|79|><|507|><|1762|><|1508|><|1228|><|1768|><|802|><|1450|><|1457|><|232|><|639|><|code_end|> +from<|t_0.19|><|code_start|><|604|><|782|><|1682|><|872|><|1532|><|1600|><|1036|><|1761|><|647|><|1554|><|1371|><|653|><|1595|><|950|><|code_end|> +just<|t_0.25|><|code_start|><|1782|><|1670|><|317|><|786|><|1748|><|631|><|599|><|1155|><|1364|><|1524|><|36|><|1591|><|889|><|1535|><|541|><|440|><|1532|><|50|><|870|><|code_end|> +two<|t_0.24|><|code_start|><|1681|><|1510|><|673|><|799|><|805|><|1342|><|330|><|519|><|62|><|640|><|1138|><|565|><|1552|><|1497|><|1552|><|572|><|1715|><|1732|><|code_end|> +people<|t_0.39|><|code_start|><|593|><|274|><|136|><|740|><|691|><|633|><|1484|><|1061|><|1138|><|1485|><|344|><|428|><|397|><|1562|><|645|><|917|><|1035|><|1449|><|1669|><|487|><|442|><|1484|><|1329|><|1832|><|1704|><|600|><|761|><|653|><|269|><|code_end|> +is<|t_0.16|><|code_start|><|566|><|583|><|1755|><|646|><|1337|><|709|><|802|><|1008|><|485|><|1583|><|652|><|10|><|code_end|> +pretty<|t_0.32|><|code_start|><|1818|><|1747|><|692|><|733|><|1010|><|534|><|406|><|1697|><|1053|><|1521|><|1355|><|1274|><|816|><|1398|><|211|><|1218|><|817|><|1472|><|1703|><|686|><|13|><|822|><|445|><|1068|><|code_end|> +remarkable<|t_0.68|><|code_start|><|230|><|1048|><|1705|><|355|><|706|><|1149|><|1535|><|1787|><|1356|><|1396|><|835|><|1583|><|486|><|1249|><|286|><|937|><|1076|><|1150|><|614|><|42|><|1058|><|705|><|681|><|798|><|934|><|490|><|514|><|1399|><|572|><|1446|><|1703|><|1346|><|1040|><|1426|><|1304|><|664|><|171|><|1530|><|625|><|64|><|1708|><|1830|><|1030|><|443|><|1509|><|1063|><|1605|><|1785|><|721|><|1440|><|923|><|code_end|> +sure<|t_0.36|><|code_start|><|792|><|1780|><|923|><|1640|><|265|><|261|><|1525|><|567|><|1491|><|1250|><|1730|><|362|><|919|><|1766|><|543|><|1|><|333|><|113|><|970|><|252|><|1606|><|133|><|302|><|1810|><|1046|><|1190|><|1675|><|code_end|> +i<|t_0.08|><|code_start|><|123|><|439|><|1074|><|705|><|1799|><|637|><|code_end|> +have<|t_0.16|><|code_start|><|1509|><|599|><|518|><|1170|><|552|><|1029|><|1267|><|864|><|419|><|143|><|1061|><|0|><|code_end|> +some<|t_0.16|><|code_start|><|619|><|400|><|1270|><|62|><|1370|><|1832|><|917|><|1661|><|167|><|269|><|1366|><|1508|><|code_end|> +critiques<|t_0.60|><|code_start|><|559|><|584|><|1163|><|1129|><|1313|><|1728|><|721|><|1146|><|1093|><|577|><|928|><|27|><|630|><|1080|><|1346|><|1337|><|320|><|1382|><|1175|><|1682|><|1556|><|990|><|1683|><|860|><|1721|><|110|><|786|><|376|><|1085|><|756|><|1523|><|234|><|1334|><|1506|><|1578|><|659|><|612|><|1108|><|1466|><|1647|><|308|><|1470|><|746|><|556|><|1061|><|code_end|> +about<|t_0.29|><|code_start|><|26|><|1649|><|545|><|1367|><|1263|><|1728|><|450|><|859|><|1434|><|497|><|1220|><|1285|><|179|><|755|><|1154|><|779|><|179|><|1229|><|1213|><|922|><|1774|><|1408|><|code_end|> +some<|t_0.23|><|code_start|><|986|><|28|><|1649|><|778|><|858|><|1519|><|1|><|18|><|26|><|1042|><|1174|><|1309|><|1499|><|1712|><|1692|><|1516|><|1574|><|code_end|> +of<|t_0.07|><|code_start|><|197|><|716|><|1039|><|1662|><|64|><|code_end|> +the<|t_0.08|><|code_start|><|1811|><|1568|><|569|><|886|><|1025|><|1374|><|code_end|> +gameplay<|t_0.48|><|code_start|><|1269|><|1092|><|933|><|1362|><|1762|><|1700|><|1675|><|215|><|781|><|1086|><|461|><|838|><|1022|><|759|><|649|><|1416|><|1004|><|551|><|909|><|787|><|343|><|830|><|1391|><|1040|><|1622|><|1779|><|1360|><|1231|><|1187|><|1317|><|76|><|997|><|989|><|978|><|737|><|189|><|code_end|> +aspects<|t_0.56|><|code_start|><|1423|><|797|><|1316|><|1222|><|147|><|719|><|1347|><|386|><|1390|><|1558|><|154|><|440|><|634|><|592|><|1097|><|1718|><|712|><|763|><|1118|><|1721|><|1311|><|868|><|580|><|362|><|1435|><|868|><|247|><|221|><|886|><|1145|><|1274|><|1284|><|457|><|1043|><|1459|><|1818|><|62|><|599|><|1035|><|62|><|1649|><|778|><|code_end|> +but<|t_0.20|><|code_start|><|780|><|1825|><|1681|><|1007|><|861|><|710|><|702|><|939|><|1669|><|1491|><|613|><|1739|><|823|><|1469|><|648|><|code_end|> +its<|t_0.09|><|code_start|><|92|><|688|><|1623|><|962|><|1670|><|527|><|599|><|code_end|> +still<|t_0.27|><|code_start|><|636|><|10|><|1217|><|344|><|713|><|957|><|823|><|154|><|1649|><|1286|><|508|><|214|><|1760|><|1250|><|456|><|1352|><|1368|><|921|><|615|><|5|><|code_end|> +really<|t_0.36|><|code_start|><|55|><|420|><|1008|><|1659|><|27|><|644|><|1266|><|617|><|761|><|1712|><|109|><|1465|><|1587|><|503|><|1541|><|619|><|197|><|1019|><|817|><|269|><|377|><|362|><|1381|><|507|><|1488|><|4|><|1695|><|code_end|> +enjoyable<|t_0.49|><|code_start|><|678|><|501|><|864|><|319|><|288|><|1472|><|1341|><|686|><|562|><|1463|><|619|><|1563|><|471|><|911|><|730|><|1811|><|1006|><|520|><|861|><|1274|><|125|><|1431|><|638|><|621|><|153|><|876|><|1770|><|437|><|987|><|1653|><|1109|><|898|><|1285|><|80|><|593|><|1709|><|843|><|code_end|> +and<|t_0.15|><|code_start|><|1285|><|987|><|303|><|1037|><|730|><|1164|><|502|><|120|><|1737|><|1655|><|1318|><|code_end|> +it<|t_0.09|><|code_start|><|848|><|1366|><|395|><|1601|><|1513|><|593|><|1302|><|code_end|> +looks<|t_0.27|><|code_start|><|1281|><|1266|><|1755|><|572|><|248|><|1751|><|1257|><|695|><|1380|><|457|><|659|><|585|><|1315|><|1105|><|1776|><|736|><|24|><|736|><|654|><|1027|><|code_end|> +lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|1481|><|1721|><|1123|><|438|><|1246|><|1251|><|795|><|659|><|1381|><|1658|><|217|><|1772|><|562|><|952|><|107|><|1129|><|1112|><|467|><|550|><|1079|><|840|><|1615|><|1469|><|1380|><|168|><|917|><|836|><|1827|><|437|><|583|><|67|><|595|><|1087|><|1646|><|1493|><|1677|><|code_end|>)"; + + auto tmp = common_tokenize(model_ttc, voice_data, false, true); + printf("\n\n"); + for (int i = 0; i < tmp.size(); ++i) { + printf("%d, ", tmp[i]); + } + printf("\n\n"); +#else + prompt_add(prompt_inp, llama_tokens { + 151667, 198, 1782, 155780, 151669, 151929, 152412, 152308, 152585, + 152460, 153375, 151670, 198, 74455, 155808, 151669, 151799, + 151873, 151863, 152446, 152372, 152204, 152728, 152229, 152470, + 151970, 153413, 152419, 153334, 153289, 153374, 153199, 152040, + 153260, 152721, 152680, 153297, 152419, 153248, 152400, 152691, + 153368, 153437, 151670, 198, 1722, 155828, 151669, 152607, + 152256, 152991, 152299, 152688, 153163, 153016, 152789, 153198, + 152712, 151911, 153107, 152623, 152170, 152395, 152852, 152207, + 152461, 153321, 153309, 151750, 152137, 153340, 152573, 152267, + 153347, 151789, 152681, 153339, 151992, 152512, 151751, 152179, + 153434, 153180, 152900, 153440, 152474, 153122, 153129, 151904, + 152311, 151670, 198, 1499, 155791, 151669, 152276, 152454, + 153354, 152544, 153204, 153272, 152708, 153433, 152319, 153226, + 153043, 152325, 153267, 152622, 151670, 198, 4250, 155797, + 151669, 153454, 153342, 151989, 152458, 153420, 152303, 152271, + 152827, 153036, 153196, 151708, 153263, 152561, 153207, 152213, + 152112, 153204, 151722, 152542, 151670, 198, 19789, 155796, + 151669, 153353, 153182, 152345, 152471, 152477, 153014, 152002, + 152191, 151734, 152312, 152810, 152237, 153224, 153169, 153224, + 152244, 153387, 153404, 151670, 198, 16069, 155811, 151669, + 152265, 151946, 151808, 152412, 152363, 152305, 153156, 152733, + 152810, 153157, 152016, 152100, 152069, 153234, 152317, 152589, + 152707, 153121, 153341, 152159, 152114, 153156, 153001, 153504, + 153376, 152272, 152433, 152325, 151941, 151670, 198, 285, + 155788, 151669, 152238, 152255, 153427, 152318, 153009, 152381, + 152474, 152680, 152157, 153255, 152324, 151682, 151670, 198, + 32955, 155804, 151669, 153490, 153419, 152364, 152405, 152682, + 152206, 152078, 153369, 152725, 153193, 153027, 152946, 152488, + 153070, 151883, 152890, 152489, 153144, 153375, 152358, 151685, + 152494, 152117, 152740, 151670, 198, 37448, 480, 155840, 151669, + 151902, 152720, 153377, 152027, 152378, 152821, 153207, 153459, + 153028, 153068, 152507, 153255, 152158, 152921, 151958, 152609, + 152748, 152822, 152286, 151714, 152730, 152377, 152353, 152470, + 152606, 152162, 152186, 153071, 152244, 153118, 153375, 153018, + 152712, 153098, 152976, 152336, 151843, 153202, 152297, 151736, + 153380, 153502, 152702, 152115, 153181, 152735, 153277, 153457, + 152393, 153112, 152595, 151670, 198, 19098, 155808, 151669, + 152464, 153452, 152595, 153312, 151937, 151933, 153197, 152239, + 153163, 152922, 153402, 152034, 152591, 153438, 152215, 151673, + 152005, 151785, 152642, 151924, 153278, 151805, 151974, 153482, + 152718, 152862, 153347, 151670, 198, 72, 155780, 151669, 151795, + 152111, 152746, 152377, 153471, 152309, 151670, 198, 19016, + 155788, 151669, 153181, 152271, 152190, 152842, 152224, 152701, + 152939, 152536, 152091, 151815, 152733, 151672, 151670, 198, + 14689, 155788, 151669, 152291, 152072, 152942, 151734, 153042, + 153504, 152589, 153333, 151839, 151941, 153038, 153180, 151670, + 198, 36996, 8303, 155832, 151669, 152231, 152256, 152835, + 152801, 152985, 153400, 152393, 152818, 152765, 152249, 152600, + 151699, 152302, 152752, 153018, 153009, 151992, 153054, 152847, + 153354, 153228, 152662, 153355, 152532, 153393, 151782, 152458, + 152048, 152757, 152428, 153195, 151906, 153006, 153178, 153250, + 152331, 152284, 152780, 153138, 153319, 151980, 153142, 152418, + 152228, 152733, 151670, 198, 9096, 155801, 151669, 151698, + 153321, 152217, 153039, 152935, 153400, 152122, 152531, 153106, + 152169, 152892, 152957, 151851, 152427, 152826, 152451, 151851, + 152901, 152885, 152594, 153446, 153080, 151670, 198, 14689, + 155795, 151669, 152658, 151700, 153321, 152450, 152530, 153191, + 151673, 151690, 151698, 152714, 152846, 152981, 153171, 153384, + 153364, 153188, 153246, 151670, 198, 1055, 155779, 151669, + 151869, 152388, 152711, 153334, 151736, 151670, 198, 1782, + 155780, 151669, 153483, 153240, 152241, 152558, 152697, 153046, + 151670, 198, 5804, 1363, 155820, 151669, 152941, 152764, 152605, + 153034, 153434, 153372, 153347, 151887, 152453, 152758, 152133, + 152510, 152694, 152431, 152321, 153088, 152676, 152223, 152581, + 152459, 152015, 152502, 153063, 152712, 153294, 153451, 153032, + 152903, 152859, 152989, 151748, 152669, 152661, 152650, 152409, + 151861, 151670, 198, 300, 7973, 155828, 151669, 153095, 152469, + 152988, 152894, 151819, 152391, 153019, 152058, 153062, 153230, + 151826, 152112, 152306, 152264, 152769, 153390, 152384, 152435, + 152790, 153393, 152983, 152540, 152252, 152034, 153107, 152540, + 151919, 151893, 152558, 152817, 152946, 152956, 152129, 152715, + 153131, 153490, 151734, 152271, 152707, 151734, 153321, 152450, + 151670, 198, 8088, 155792, 151669, 152452, 153497, 153353, + 152679, 152533, 152382, 152374, 152611, 153341, 153163, 152285, + 153411, 152495, 153141, 152320, 151670, 198, 1199, 155781, + 151669, 151764, 152360, 153295, 152634, 153342, 152199, 152271, + 151670, 198, 43366, 155799, 151669, 152308, 151682, 152889, + 152016, 152385, 152629, 152495, 151826, 153321, 152958, 152180, + 151886, 153432, 152922, 152128, 153024, 153040, 152593, 152287, + 151677, 151670, 198, 53660, 155808, 151669, 151727, 152092, + 152680, 153331, 151699, 152316, 152938, 152289, 152433, 153384, + 151781, 153137, 153259, 152175, 153213, 152291, 151869, 152691, + 152489, 151941, 152049, 152034, 153053, 152179, 153160, 151676, + 153367, 151670, 198, 268, 4123, 480, 155821, 151669, 152350, + 152173, 152536, 151991, 151960, 153144, 153013, 152358, 152234, + 153135, 152291, 153235, 152143, 152583, 152402, 153483, 152678, + 152192, 152533, 152946, 151797, 153103, 152310, 152293, 151825, + 152548, 153442, 152109, 152659, 153325, 152781, 152570, 152957, + 151752, 152265, 153381, 152515, 151670, 198, 437, 155787, + 151669, 152957, 152659, 151975, 152709, 152402, 152836, 152174, + 151792, 153409, 153327, 152990, 151670, 198, 275, 155781, + 151669, 152520, 153038, 152067, 153273, 153185, 152265, 152974, + 151670, 198, 94273, 155799, 151669, 152953, 152938, 153427, + 152244, 151920, 153423, 152929, 152367, 153052, 152129, 152331, + 152257, 152987, 152777, 153448, 152408, 151696, 152408, 152326, + 152699, 151670, 198, 385, 16239, 155828, 151669, 152306, 152268, + 153438, 153228, 152978, 152957, 153153, 153393, 152795, 152110, + 152918, 152923, 152467, 152331, 153053, 153330, 151889, 153444, + 152234, 152624, 151779, 152801, 152784, 152139, 152222, 152751, + 152512, 153287, 153141, 153052, 151840, 152589, 152508, 153499, + 152109, 152255, 151739, 152267, 152759, 153318, 153165, 153349, + 151670,}); +#endif + + // print the prompt token-by-token + + LOG("\n"); + + for (auto id : prompt_inp) { + LOG("%s", common_token_to_piece(ctx_ttc, id).c_str()); + } + + LOG_INF("%s: prompt size: %d\n", __func__, (int) prompt_inp.size()); + + LOG("\n"); + + // create a llama_batch + // we use this object to submit token data for decoding + llama_batch batch = llama_batch_init(std::max(prompt_inp.size(), (size_t) n_parallel), 0, n_parallel); + + std::vector seq_ids(n_parallel, 0); + for (int32_t i = 0; i < n_parallel; ++i) { + seq_ids[i] = i; + } + + // evaluate the initial prompt + for (size_t i = 0; i < prompt_inp.size(); ++i) { + common_batch_add(batch, prompt_inp[i], i, seq_ids, false); + } + GGML_ASSERT(batch.n_tokens == (int) prompt_inp.size()); + + // llama_decode will output logits only for the last token of the prompt + batch.logits[batch.n_tokens - 1] = true; + + if (llama_decode(ctx_ttc, batch) != 0) { + LOG_ERR("%s: llama_decode() failed\n", __func__); + return 1; + } + + if (n_parallel > 1) { + LOG_INF("\n\n%s: generating %d sequences ...\n", __func__, n_parallel); + } + + llama_synchronize(ctx_ttc); + + LOG_INF("%s: time for prompt: %.3f ms\n\n", __func__, (ggml_time_us() - t_main_start) / 1000.0f); + + const auto t_dec_start = ggml_time_us(); + + // main loop + + // remember the batch index of the last token for each parallel sequence + // we need this to determine which logits to sample from + std::vector i_batch(n_parallel, batch.n_tokens - 1); + + int n_past = batch.n_tokens; + int n_decode = 0; + + while (n_decode <= n_predict) { + // prepare the next batch + common_batch_clear(batch); + + // sample the next token for each parallel sequence / stream + for (int32_t i = 0; i < n_parallel; ++i) { + if (i_batch[i] < 0) { + // the stream has already finished + continue; + } + + const llama_token new_token_id = common_sampler_sample(smpl[i], ctx_ttc, i_batch[i]); + + common_sampler_accept(smpl[i], new_token_id, true); + + codes.push_back(new_token_id); + + const auto * cands = common_sampler_get_candidates(smpl[i]); + + // is it an end of generation? -> mark the stream as finished + if (llama_token_is_eog(model_ttc, new_token_id) || n_decode == n_predict) { + std::string reason; + if (llama_token_is_eog(model_ttc, new_token_id)) { + reason = "eos"; + } else { + reason = "n_predict"; + } + + i_batch[i] = -1; + + LOG("\n"); + if (n_parallel > 1) { + LOG_CNT("\n"); + LOG_INF("%s: stream %d finished at n_past = %d, reason = '%s'\n", __func__, i, n_past, reason.c_str()); + } + + continue; + } + + { + const float p = cands->data[cands->selected].p; + + const int col = std::max(0, std::min((int) k_colors.size() - 1, (int) ((3*p)*float(k_colors.size())))); + + LOG_CNT("%s%d%s", k_colors[col].c_str(), i, "\033[0m"); + //LOG_CNT("%d", i); + } + + i_batch[i] = batch.n_tokens; + + // push this new token for next evaluation + common_batch_add(batch, new_token_id, n_past, { i }, true); + } + + // all streams are finished + if (batch.n_tokens == 0) { + break; + } + + n_decode += 1; + n_past += 1; + + // evaluate the current batch with the transformer model + if (llama_decode(ctx_ttc, batch)) { + LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1); + return 1; + } + } + + llama_batch_free(batch); + + LOG("\n"); + LOG_INF("%s: time for decoder: %.3f ms\n", __func__, (ggml_time_us() - t_dec_start) / 1000.0f); + } + + common_perf_print(ctx_ttc, smpl[0]); + + //std::vector codes = {198, 88225, 155856, 151669, 152205, + // 153064, 152537, 153421, 153209, 152524, 151689, 152993, 152438, 152695, + // 153091, 152945, 152829, 152534, 152934, 153020, 151997, 152263, 153010, + // 153146, 152399, 153208, 152496, 151793, 152848, 152263, 152571, 153286, + // 152227, 153300, 152934, 152263, 153208, 152263, 152965, 152430, 152296, + // 153146, 152920, 152376, 152556, 153363, 151775, 152044, 152972, 152690, + // 153379, 152368, 152233, 153422, 152490, 151996, 152022, 151694, 152061, + // 153238, 152539, 153356, 152640, 153021, 153123, 151962, 153094, 151670, + // 198, 20339, 13189, 155824, 151669, 152070, 152007, 152910, 151683, + // 152000, 152373, 152760, 152046, 151735, 152334, 152394, 153073, 152908, + // 151856, 151953, 153247, 153293, 151903, 153480, 153168, 152478, 153359, + // 153429, 151905, 151678, 152567, 152411, 152165, 152556, 153075, 153424, + // 151993, 152999, 153078, 152151, 152088, 153389, 152484, 151874, 151670, + // 198, 285, 155784, 151669, 152226, 152126, 152638, 153215, 151729, + // 152959, 153479, 153059, 151838, 151670, 198, 1782, 155783, 151669, + // 153288, 153055, 153314, 152497, 152962, 152741, 152076, 153253, 151670, + // 198, 471, 16488, 155825, 151669, 152060, 152916, 151893, 153469, 152501, + // 152080, 152743, 151932, 153161, 152096, 152761, 152698, 153401, 153242, + // 153336, 152441, 152838, 153467, 152706, 153496, 153310, 152422, 153360, + // 153115, 152763, 151998, 152373, 153450, 152554, 151968, 153323, 152055, + // 152468, 153111, 153358, 152813, 152010, 151770, 152823, 152960, 151670, + // 198, 22627, 155823, 151669, 152814, 152366, 153484, 152931, 153441, + // 152164, 152877, 152915, 153463, 151692, 152911, 152747, 152776, 151831, + // 153449, 151882, 152975, 152031, 152513, 153150, 152448, 152667, 153133, + // 153189, 152619, 153466, 152054, 152106, 153119, 152277, 152439, 153109, + // 152997, 152141, 153154, 153256, 153311, 151922, 151670, 198, 1055, + // 155781, 151669, 152633, 151850, 153060, 153270, 152560, 153348, 152729, + // 151670, 198, 25312, 155803, 151669, 152521, 153403, 152561, 153337, + // 153383, 152199, 153493, 153326, 151830, 152254, 152248, 152349, 152153, + // 153007, 151823, 153037, 152575, 152457, 152406, 152592, 153116, 153365, + // 153456, 151670, 198, 88225, 155817, 151669, 153271, 151925, 152218, + // 152418, 152253, 153140, 151903, 153151, 152626, 152338, 152647, 153464, + // 152785, 152768, 151711, 152037, 152033, 151804, 152216, 151701, 151855, + // 152348, 152995, 152955, 152905, 152342, 152340, 153391, 153453, 152418, + // 153415, 151990, 153083, 152884, 151670, 198, 151668, 198, 151645}; + + { + const std::string inp_txt = common_detokenize(ctx_ttc, codes, true); + + LOG("\n"); + LOG_INF("codes: '%s'\n", inp_txt.c_str()); + LOG_INF("%s: codes size: %d\n", __func__, (int) codes.size()); + } + + // remove all non-audio tokens (i.e. < 151672 || > 155772) + codes.erase(std::remove_if(codes.begin(), codes.end(), [](llama_token t) { return t < 151672 || t > 155772; }), codes.end()); + + { + const std::string inp_txt = common_detokenize(ctx_ttc, codes, true); + LOG_INF("codes audio: '%s'\n", inp_txt.c_str()); + LOG_INF("%s: codes audio size: %d\n", __func__, (int) codes.size()); + } + + for (auto & token : codes) { + token -= 151672; + } + + const auto t_voc_start = ggml_time_us(); + + const int n_codes = codes.size(); + + llama_batch batch = llama_batch_init(n_codes, 0, 1); + + for (size_t i = 0; i < codes.size(); ++i) { + common_batch_add(batch, codes[i], i, { 0 }, true); // TODO: all logits? + } + GGML_ASSERT(batch.n_tokens == n_codes); + + if (llama_decode(ctx_cts, batch) != 0) { + LOG_ERR("%s: llama_decode() failed\n", __func__); + return 1; + } + + llama_synchronize(ctx_cts); + + LOG_INF("%s: time for vocoder: %.3f ms\n", __func__, (ggml_time_us() - t_voc_start) / 1000.0f); + + const auto t_spec_start = ggml_time_us(); + +#if 1 + // spectral operations + const int n_embd = llama_n_embd(model_cts); + const float * embd = llama_get_embeddings(ctx_cts); + + auto audio = embd_to_audio(embd, n_codes, n_embd, params.cpuparams.n_threads); + +#else + // read the spectrogram from a file for debugging purposes + std::vector audio; + { + std::ifstream fin("out.bin", std::ios::binary); + if (!fin) { + LOG_ERR("%s: failed to open file '%s'\n", __func__, "out.bin"); + return 1; + } + + std::vector embd; + + int n_codes; + int n_embd; + + fin.read(reinterpret_cast(&n_codes), sizeof(int)); + fin.read(reinterpret_cast(&n_embd), sizeof(int)); + + embd.resize(n_codes * n_embd); + fin.read(reinterpret_cast(embd.data()), n_codes * n_embd * sizeof(float)); + fin.close(); + + LOG_INF("%s: n_codes: %d, n_embd: %d\n", __func__, n_codes, n_embd); + + audio = embd_to_audio(embd.data(), n_codes, n_embd, params.cpuparams.n_threads); + } +#endif + + const std::string fname = "output.wav"; + + const int n_sr = 24000; // sampling rate + + // zero out first 0.25 seconds + for (int i = 0; i < 24000/4; ++i) { + audio[i] = 0.0f; + } + + LOG_INF("%s: time for spectral ops: %.3f ms\n", __func__, (ggml_time_us() - t_spec_start) / 1000.0f); + LOG_INF("%s: total time: %.3f ms\n", __func__, (ggml_time_us() - t_main_start) / 1000.0f); + + save_wav16(fname, audio, n_sr); + + LOG_INF("%s: audio written to file '%s'\n", __func__, fname.c_str()); + + llama_free(ctx_ttc); + llama_free_model(model_ttc); + + llama_free(ctx_cts); + llama_free_model(model_cts); + + llama_backend_free(); + + return 0; +} diff --git a/ggml/CMakeLists.txt b/ggml/CMakeLists.txt index 3442142adbb43..e33d974827cbe 100644 --- a/ggml/CMakeLists.txt +++ b/ggml/CMakeLists.txt @@ -74,10 +74,10 @@ if (NOT GGML_CUDA_GRAPHS_DEFAULT) endif() # general -option(GGML_STATIC "ggml: static link libraries" OFF) -option(GGML_NATIVE "ggml: enable -march=native flag" ${GGML_NATIVE_DEFAULT}) -option(GGML_LTO "ggml: enable link time optimization" OFF) -option(GGML_CCACHE "ggml: use ccache if available" ON) +option(GGML_STATIC "ggml: static link libraries" OFF) +option(GGML_NATIVE "ggml: optimize the build for the current system" ${GGML_NATIVE_DEFAULT}) +option(GGML_LTO "ggml: enable link time optimization" OFF) +option(GGML_CCACHE "ggml: use ccache if available" ON) # debug option(GGML_ALL_WARNINGS "ggml: enable all compiler warnings" ON) @@ -120,8 +120,9 @@ endif() option(GGML_LASX "ggml: enable lasx" ON) option(GGML_LSX "ggml: enable lsx" ON) option(GGML_RVV "ggml: enable rvv" ON) -option(GGML_SVE "ggml: enable SVE" OFF) + option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF) +set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM") if (WIN32) diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index 386d5a15d81a1..c714fc8c837bb 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -237,7 +237,9 @@ #define GGML_EXIT_SUCCESS 0 #define GGML_EXIT_ABORTED 1 -#define GGML_ROPE_TYPE_NEOX 2 +#define GGML_ROPE_TYPE_NEOX 2 +#define GGML_ROPE_TYPE_MROPE 8 +#define GGML_ROPE_TYPE_VISION 24 #define GGUF_MAGIC "GGUF" @@ -1443,6 +1445,22 @@ extern "C" { float beta_fast, float beta_slow); + GGML_API struct ggml_tensor * ggml_rope_multi( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + int n_dims, + int sections[4], + int mode, + int n_ctx_orig, + float freq_base, + float freq_scale, + float ext_factor, + float attn_factor, + float beta_fast, + float beta_slow); + // in-place, returns view(a) GGML_API struct ggml_tensor * ggml_rope_ext_inplace( struct ggml_context * ctx, @@ -1546,17 +1564,6 @@ extern "C" { int d1, // dilation dimension 1 bool is_2D); - GGML_API struct ggml_tensor * ggml_conv_depthwise_2d( - struct ggml_context * ctx, - struct ggml_tensor * a, // convolution kernel - struct ggml_tensor * b, // data - int s0, // stride dimension 0 - int s1, // stride dimension 1 - int p0, // padding dimension 0 - int p1, // padding dimension 1 - int d0, // dilation dimension 0 - int d1); // dilation dimension 1 - GGML_API struct ggml_tensor * ggml_conv_1d( struct ggml_context * ctx, struct ggml_tensor * a, // convolution kernel @@ -1574,6 +1581,23 @@ extern "C" { int s, // stride int d); // dilation + // depthwise + // TODO: this is very likely wrong for some cases! - needs more testing + GGML_API struct ggml_tensor * ggml_conv_1d_dw( + struct ggml_context * ctx, + struct ggml_tensor * a, // convolution kernel + struct ggml_tensor * b, // data + int s0, // stride + int p0, // padding + int d0); // dilation + + GGML_API struct ggml_tensor * ggml_conv_1d_dw_ph( + struct ggml_context * ctx, + struct ggml_tensor * a, // convolution kernel + struct ggml_tensor * b, // data + int s0, // stride + int d0); // dilation + GGML_API struct ggml_tensor * ggml_conv_transpose_1d( struct ggml_context * ctx, struct ggml_tensor * a, // convolution kernel @@ -1593,7 +1617,6 @@ extern "C" { int d0, // dilation dimension 0 int d1); // dilation dimension 1 - // kernel size is a->ne[0] x a->ne[1] // stride is equal to kernel size // padding is zero @@ -1620,6 +1643,18 @@ extern "C" { struct ggml_tensor * a, struct ggml_tensor * b); + // depthwise + GGML_API struct ggml_tensor * ggml_conv_2d_dw( + struct ggml_context * ctx, + struct ggml_tensor * a, // convolution kernel + struct ggml_tensor * b, // data + int s0, // stride dimension 0 + int s1, // stride dimension 1 + int p0, // padding dimension 0 + int p1, // padding dimension 1 + int d0, // dilation dimension 0 + int d1); // dilation dimension 1 + GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0( struct ggml_context * ctx, struct ggml_tensor * a, diff --git a/ggml/src/ggml-alloc.c b/ggml/src/ggml-alloc.c index 2b2240be85dd3..8dc8226ac4932 100644 --- a/ggml/src/ggml-alloc.c +++ b/ggml/src/ggml-alloc.c @@ -534,7 +534,6 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor size_t offset = ggml_dyn_tallocr_alloc(alloc, size, node); hn->buffer_id = buffer_id; hn->offset = offset; - return; } } diff --git a/ggml/src/ggml-cann/ggml-cann.cpp b/ggml/src/ggml-cann/ggml-cann.cpp index fa04ab84f3f15..d410c02445c27 100644 --- a/ggml/src/ggml-cann/ggml-cann.cpp +++ b/ggml/src/ggml-cann/ggml-cann.cpp @@ -1747,6 +1747,15 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, if (*ext_factor != 0) { return false; } + + const int mode = ((const int32_t *) op->op_params)[2]; + if (mode & GGML_ROPE_TYPE_MROPE) { + return false; + } + if (mode & GGML_ROPE_TYPE_VISION) { + return false; + } + return true; } case GGML_OP_UPSCALE: { diff --git a/ggml/src/ggml-cpu/CMakeLists.txt b/ggml/src/ggml-cpu/CMakeLists.txt index 0e0556703620f..ea4ef5a006d3c 100644 --- a/ggml/src/ggml-cpu/CMakeLists.txt +++ b/ggml/src/ggml-cpu/CMakeLists.txt @@ -74,112 +74,77 @@ function(ggml_add_cpu_backend_variant_impl tag_name) if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR - (NOT CMAKE_OSX_ARCHITECTURES AND - NOT CMAKE_GENERATOR_PLATFORM_LWR AND + (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$")) message(STATUS "ARM detected") - if (MSVC) - list(APPEND ARCH_DEFINITIONS __aarch64__) # MSVC defines _M_ARM64 instead - list(APPEND ARCH_DEFINITIONS __ARM_NEON) - list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_FMA) - - set(CMAKE_REQUIRED_FLAGS_PREV ${CMAKE_REQUIRED_FLAGS}) - string(JOIN " " CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS} "/arch:armv8.2") - - check_cxx_source_compiles("#include \nint main() { int8x16_t _a, _b; int32x4_t _s = vdotq_s32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_DOTPROD) - if (GGML_COMPILER_SUPPORT_DOTPROD) - list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_DOTPROD) - - message(STATUS "ARM feature DOTPROD enabled") - endif () - - check_cxx_source_compiles("#include \nint main() { int8x16_t _a, _b; int32x4_t _s = vmmlaq_f32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_MATMUL_INT8) - - if (GGML_COMPILER_SUPPORT_MATMUL_INT8) - list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_MATMUL_INT8) - - message(STATUS "ARM feature MATMUL_INT8 enabled") - endif () - - check_cxx_source_compiles("#include \nint main() { float16_t _a; float16x8_t _s = vdupq_n_f16(_a); return 0; }" GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC) - if (GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC) - list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_FP16_VECTOR_ARITHMETIC) - - message(STATUS "ARM feature FP16_VECTOR_ARITHMETIC enabled") - endif () + if (MSVC AND NOT CMAKE_C_COMPILER_ID STREQUAL "Clang") + message(FATAL_ERROR "MSVC is not supported for ARM, use clang") + else() + check_cxx_compiler_flag(-mfp16-format=ieee COMPILER_SUPPORTS_FP16_FORMAT_I3E) + if (NOT "${COMPILER_SUPPORTS_FP16_FORMAT_I3E}" STREQUAL "") + list(APPEND ARCH_FLAGS -mfp16-format=ieee) + endif() - set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_PREV}) - elseif (APPLE) if (GGML_NATIVE) - set(USER_PROVIDED_MARCH FALSE) - foreach(flag_var IN ITEMS CMAKE_C_FLAGS CMAKE_CXX_FLAGS CMAKE_REQUIRED_FLAGS) - if ("${${flag_var}}" MATCHES "-march=[a-zA-Z0-9+._-]+") - set(USER_PROVIDED_MARCH TRUE) - break() - endif() - endforeach() - - if (NOT USER_PROVIDED_MARCH) - set(MARCH_FLAGS "-march=armv8.2a") - - check_cxx_source_compiles("#include \nint main() { int8x16_t _a, _b; int32x4_t _s = vdotq_s32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_DOTPROD) - if (GGML_COMPILER_SUPPORT_DOTPROD) - set(MARCH_FLAGS "${MARCH_FLAGS}+dotprod") - list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_DOTPROD) + list(APPEND ARCH_FLAGS -mcpu=native) - message(STATUS "ARM feature DOTPROD enabled") - endif () + set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS}) - set(TEST_I8MM_FLAGS "-march=armv8.2a+i8mm") + # -mcpu=native does not always enable all the features in some compilers, + # so we check for them manually and enable them if available - set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS}) - set(CMAKE_REQUIRED_FLAGS "${CMAKE_REQUIRED_FLAGS} ${TEST_I8MM_FLAGS}") + include(CheckCXXSourceRuns) - check_cxx_source_compiles("#include \nint main() { int8x16_t _a, _b; int32x4_t _s = vmmlaq_s32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_MATMUL_INT8) - if (GGML_COMPILER_SUPPORT_MATMUL_INT8) - set(MARCH_FLAGS "${MARCH_FLAGS}+i8mm") - list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_MATMUL_INT8) + set(CMAKE_REQUIRED_FLAGS "${ARCH_FLAGS}+dotprod") + check_cxx_source_runs( + "#include \nint main() { int8x16_t _a, _b; int32x4_t _s = vdotq_s32(_s, _a, _b); return 0; }" + GGML_COMPILER_SUPPORT_DOTPROD) + if (GGML_COMPILER_SUPPORT_DOTPROD) + set(ARCH_FLAGS "${ARCH_FLAGS}+dotprod") + endif() - message(STATUS "ARM feature MATMUL_INT8 enabled") - endif () + set(CMAKE_REQUIRED_FLAGS "${ARCH_FLAGS}+i8mm") + check_cxx_source_runs( + "#include \nint main() { int8x16_t _a, _b; int32x4_t _s = vmmlaq_s32(_s, _a, _b); return 0; }" + GGML_COMPILER_SUPPORT_I8MM) + if (GGML_COMPILER_SUPPORT_I8MM) + set(ARCH_FLAGS "${ARCH_FLAGS}+i8mm") + endif() - set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE}) + set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE}) - list(APPEND ARCH_FLAGS "${MARCH_FLAGS}") - endif () - endif () - else() - check_cxx_compiler_flag(-mfp16-format=ieee COMPILER_SUPPORTS_FP16_FORMAT_I3E) - if (NOT "${COMPILER_SUPPORTS_FP16_FORMAT_I3E}" STREQUAL "") - list(APPEND ARCH_FLAGS -mfp16-format=ieee) - endif() - if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv6") - # Raspberry Pi 1, Zero - list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access) - endif() - if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7") - if ("${CMAKE_SYSTEM_NAME}" STREQUAL "Android") - # Android armeabi-v7a - list(APPEND ARCH_FLAGS -mfpu=neon-vfpv4 -mno-unaligned-access -funsafe-math-optimizations) - else() - # Raspberry Pi 2 - list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations) + else() + if (GGML_CPU_ARM_ARCH) + list(APPEND ARCH_FLAGS -march=${GGML_CPU_ARM_ARCH}) endif() endif() - if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8") - # Android arm64-v8a - # Raspberry Pi 3, 4, Zero 2 (32-bit) - list(APPEND ARCH_FLAGS -mno-unaligned-access) - endif() - if (GGML_SVE) - list(APPEND ARCH_FLAGS -march=armv8.6-a+sve) + + # show enabled features + execute_process( + COMMAND ${CMAKE_C_COMPILER} ${ARCH_FLAGS} -dM -E - + INPUT_FILE "/dev/null" + OUTPUT_VARIABLE ARM_FEATURE + RESULT_VARIABLE ARM_FEATURE_RESULT + ) + if (ARM_FEATURE_RESULT) + message(FATAL_ERROR "Failed to get ARM features") + else() + foreach(feature DOTPROD SVE MATMUL_INT8 FMA FP16_VECTOR_ARITHMETIC) + string(FIND "${ARM_FEATURE}" "__ARM_FEATURE_${feature} 1" feature_pos) + if (NOT ${feature_pos} EQUAL -1) + message(STATUS "ARM feature ${feature} enabled") + endif() + endforeach() endif() endif() elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND - CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64)$")) + CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$")) + + message(STATUS "x86 detected") + if (MSVC) # instruction set detection for MSVC only if (GGML_NATIVE) diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c index 92df6fdda18f2..67e67a08968a1 100644 --- a/ggml/src/ggml-cpu/ggml-cpu.c +++ b/ggml/src/ggml-cpu/ggml-cpu.c @@ -9133,6 +9133,64 @@ static void ggml_rope_cache_init( } } +static void ggml_mrope_cache_init( + float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool indep_sects, + float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale, + float * cache, float sin_sign, float theta_scale) { + // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py + float theta_t = theta_base_t; + float theta_h = theta_base_h; + float theta_w = theta_base_w; + float theta_e = theta_base_e; // extra position id for vision encoder + int sect_dims = sections[0] + sections[1] + sections[2] + sections[3]; + int sec_w = sections[1] + sections[0]; + int sec_e = sections[2] + sec_w; + GGML_ASSERT(sect_dims <= ne0); + + for (int64_t i0 = 0; i0 < ne0; i0 += 2) { + const float ff = freq_factors ? freq_factors[i0/2] : 1.0f; + + int sector = (i0 / 2) % sect_dims; + if (indep_sects) { + // compute theta independently for each dim sections + // (i.e. reset corresponding theta when `i0` go from one section to another) + if (sector == 0) { + theta_t = theta_base_t; + } + else if (sector == sections[0]) { + theta_h = theta_base_h;; + } + else if (sector == sec_w) { + theta_w = theta_base_w; + } + else if (sector == sec_e) { + theta_e = theta_base_e; + } + } + + float theta = theta_t; + if (sector >= sections[0] && sector < sec_w) { + theta = theta_h; + } + else if (sector >= sec_w && sector < sec_w + sections[2]) { + theta = theta_w; + } + else if (sector >= sec_w + sections[2]) { + theta = theta_e; + } + + rope_yarn( + theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1] + ); + cache[i0 + 1] *= sin_sign; + + theta_t *= theta_scale; + theta_w *= theta_scale; + theta_h *= theta_scale; + theta_e *= theta_scale; + } +} + static void ggml_compute_forward_rope_f32( const struct ggml_compute_params * params, struct ggml_tensor * dst, @@ -9143,6 +9201,7 @@ static void ggml_compute_forward_rope_f32( const struct ggml_tensor * src2 = dst->src[2]; float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; + int sections[4]; //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; @@ -9156,6 +9215,7 @@ static void ggml_compute_forward_rope_f32( memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); + memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int)*4); GGML_TENSOR_UNARY_OP_LOCALS @@ -9188,6 +9248,16 @@ static void ggml_compute_forward_rope_f32( ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims); const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; + const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, multimodal rotary position embedding + const bool is_vision = mode == GGML_ROPE_TYPE_VISION; + + if (is_mrope) { + GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0); + } + + if (is_vision) { + GGML_ASSERT(n_dims == ne0/2); + } const float * freq_factors = NULL; if (src2 != NULL) { @@ -9203,18 +9273,63 @@ static void ggml_compute_forward_rope_f32( const int32_t * pos = (const int32_t *) src1->data; - for (int64_t i3 = 0; i3 < ne3; i3++) { - for (int64_t i2 = 0; i2 < ne2; i2++) { - const int64_t p = pos[i2]; + for (int64_t i3 = 0; i3 < ne3; i3++) { // batch + for (int64_t i2 = 0; i2 < ne2; i2++) { // seq-len float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith; - ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale); + if (!is_mrope) { + const int64_t p = pos[i2]; + ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale); + } + else { + const int64_t p_t = pos[i2]; + const int64_t p_h = pos[i2 + ne2]; + const int64_t p_w = pos[i2 + ne2 * 2]; + const int64_t p_e = pos[i2 + ne2 * 3]; + ggml_mrope_cache_init( + p_t, p_h, p_w, p_e, sections, is_vision, + freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale); + } - for (int64_t i1 = 0; i1 < ne1; i1++) { + for (int64_t i1 = 0; i1 < ne1; i1++) { // attn-heads if (ir++ < ir0) continue; if (ir > ir1) break; - if (!is_neox) { + if (is_neox || is_mrope) { + if (is_vision){ + for (int64_t i0 = 0; i0 < n_dims; i0 += 2) { + const int64_t ic = i0/2; + + const float cos_theta = cache[i0 + 0]; + const float sin_theta = cache[i0 + 1]; + + const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00); + float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0); + + const float x0 = src[0]; + const float x1 = src[n_dims]; + + dst_data[0] = x0*cos_theta - x1*sin_theta; + dst_data[n_dims] = x0*sin_theta + x1*cos_theta; + } + } else { + for (int64_t i0 = 0; i0 < n_dims; i0 += 2) { + const int64_t ic = i0/2; + + const float cos_theta = cache[i0 + 0]; + const float sin_theta = cache[i0 + 1]; + + const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00); + float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0); + + const float x0 = src[0]; + const float x1 = src[n_dims/2]; + + dst_data[0] = x0*cos_theta - x1*sin_theta; + dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta; + } + } + } else { for (int64_t i0 = 0; i0 < n_dims; i0 += 2) { const float cos_theta = cache[i0 + 0]; const float sin_theta = cache[i0 + 1]; @@ -9228,8 +9343,10 @@ static void ggml_compute_forward_rope_f32( dst_data[0] = x0*cos_theta - x1*sin_theta; dst_data[1] = x0*sin_theta + x1*cos_theta; } - } else { - for (int64_t i0 = 0; i0 < n_dims; i0 += 2) { + } + + if (is_vision) { + for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) { const int64_t ic = i0/2; const float cos_theta = cache[i0 + 0]; @@ -9239,19 +9356,20 @@ static void ggml_compute_forward_rope_f32( float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0); const float x0 = src[0]; - const float x1 = src[n_dims/2]; + const float x1 = src[n_dims]; - dst_data[0] = x0*cos_theta - x1*sin_theta; - dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta; + dst_data[0] = x0*cos_theta - x1*sin_theta; + dst_data[n_dims] = x0*sin_theta + x1*cos_theta; } - } - - for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) { - const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); - float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + } else { + // fill the remain channels with data from src tensor + for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) { + const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); - dst_data[0] = src[0]; - dst_data[1] = src[1]; + dst_data[0] = src[0]; + dst_data[1] = src[1]; + } } } } @@ -9269,6 +9387,7 @@ static void ggml_compute_forward_rope_f16( const struct ggml_tensor * src2 = dst->src[2]; float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; + int sections[4]; //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; @@ -9281,6 +9400,8 @@ static void ggml_compute_forward_rope_f16( memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); + memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int)*4); + GGML_TENSOR_UNARY_OP_LOCALS @@ -9313,6 +9434,16 @@ static void ggml_compute_forward_rope_f16( ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims); const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; + const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; + const bool is_vision = mode == GGML_ROPE_TYPE_VISION; + + if (is_mrope) { + GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0); + } + + if (is_vision) { + GGML_ASSERT(n_dims == ne0/2); + } const float * freq_factors = NULL; if (src2 != NULL) { @@ -9330,16 +9461,61 @@ static void ggml_compute_forward_rope_f16( for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i2 = 0; i2 < ne2; i2++) { - const int64_t p = pos[i2]; float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith; - ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale); + if (!is_mrope) { + const int64_t p = pos[i2]; + ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale); + } + else { + const int64_t p_t = pos[i2]; + const int64_t p_h = pos[i2 + ne2]; + const int64_t p_w = pos[i2 + ne2 * 2]; + const int64_t p_e = pos[i2 + ne2 * 3]; + ggml_mrope_cache_init( + p_t, p_h, p_w, p_e, sections, is_vision, + freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale); + } for (int64_t i1 = 0; i1 < ne1; i1++) { if (ir++ < ir0) continue; if (ir > ir1) break; - if (!is_neox) { + if (is_neox || is_mrope) { + if (is_vision) { + for (int64_t i0 = 0; i0 < n_dims; i0 += 2) { + const int64_t ic = i0/2; + + const float cos_theta = cache[i0 + 0]; + const float sin_theta = cache[i0 + 1]; + + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00); + ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0); + + const float x0 = GGML_FP16_TO_FP32(src[0]); + const float x1 = GGML_FP16_TO_FP32(src[n_dims]); + + dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta); + dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta); + } + } else { + for (int64_t i0 = 0; i0 < n_dims; i0 += 2) { + const int64_t ic = i0/2; + + const float cos_theta = cache[i0 + 0]; + const float sin_theta = cache[i0 + 1]; + + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00); + ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0); + + const float x0 = GGML_FP16_TO_FP32(src[0]); + const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]); + + dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta); + dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta); + } + } + } else { for (int64_t i0 = 0; i0 < n_dims; i0 += 2) { const float cos_theta = cache[i0 + 0]; const float sin_theta = cache[i0 + 1]; @@ -9353,8 +9529,10 @@ static void ggml_compute_forward_rope_f16( dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta); dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta); } - } else { - for (int64_t i0 = 0; i0 < n_dims; i0 += 2) { + } + + if (is_vision) { + for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) { const int64_t ic = i0/2; const float cos_theta = cache[i0 + 0]; @@ -9364,19 +9542,19 @@ static void ggml_compute_forward_rope_f16( ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0); const float x0 = GGML_FP16_TO_FP32(src[0]); - const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]); + const float x1 = GGML_FP16_TO_FP32(src[n_dims]); - dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta); - dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta); + dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta); + dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta); } - } - - for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) { - const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); - ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + } else { + for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) { + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); - dst_data[0] = src[0]; - dst_data[1] = src[1]; + dst_data[0] = src[0]; + dst_data[1] = src[1]; + } } } } diff --git a/ggml/src/ggml-cpu/ggml-cpu.cpp b/ggml/src/ggml-cpu/ggml-cpu.cpp index c390957afa8e3..f11399cc628ca 100644 --- a/ggml/src/ggml-cpu/ggml-cpu.cpp +++ b/ggml/src/ggml-cpu/ggml-cpu.cpp @@ -394,8 +394,11 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st switch (op->op) { case GGML_OP_CPY: return + op->type != GGML_TYPE_IQ3_XXS && + op->type != GGML_TYPE_IQ3_S && op->type != GGML_TYPE_IQ2_XXS && op->type != GGML_TYPE_IQ2_XS && + op->type != GGML_TYPE_IQ2_S && op->type != GGML_TYPE_IQ1_S && op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float case GGML_OP_MUL_MAT: @@ -519,6 +522,12 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r if (ggml_cpu_has_sve()) { features.push_back({ "SVE", "1" }); } + if (ggml_cpu_has_dotprod()) { + features.push_back({ "DOTPROD", "1" }); + } + if (ggml_cpu_has_matmul_int8()) { + features.push_back({ "MATMUL_INT8", "1" }); + } if (ggml_cpu_get_sve_cnt() > 0) { static std::string sve_cnt = std::to_string(ggml_cpu_get_sve_cnt()); features.push_back({ "SVE_CNT", sve_cnt.c_str() }); diff --git a/ggml/src/ggml-cpu/llamafile/sgemm.cpp b/ggml/src/ggml-cpu/llamafile/sgemm.cpp index da4146ec4f688..f80a727819283 100644 --- a/ggml/src/ggml-cpu/llamafile/sgemm.cpp +++ b/ggml/src/ggml-cpu/llamafile/sgemm.cpp @@ -204,6 +204,7 @@ template <> inline float32x4_t load(const float *p) { return vld1q_f32(p); } #if !defined(_MSC_VER) +// FIXME: this should check for __ARM_FEATURE_FP16_VECTOR_ARITHMETIC template <> inline float16x8_t load(const ggml_fp16_t *p) { return vld1q_f16((const float16_t *)p); } diff --git a/ggml/src/ggml-cuda/rope.cu b/ggml/src/ggml-cuda/rope.cu index 88f586d689cfd..2c84778d29c9b 100644 --- a/ggml/src/ggml-cuda/rope.cu +++ b/ggml/src/ggml-cuda/rope.cu @@ -4,6 +4,11 @@ struct rope_corr_dims { float v[2]; }; + +struct mrope_sections { + int v[4]; +}; + static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) { const float y = (i0 / 2 - low) / max(0.001f, high - low); return 1.0f - min(1.0f, max(0.0f, y)); @@ -108,6 +113,105 @@ static __global__ void rope_neox( dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta; } +template +static __global__ void rope_multi( + const T * x, T * dst, int ne0, int ne2, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows, + float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors, mrope_sections sections) { + const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y); + + if (i0 >= ne0) { + return; + } + + const int row = blockDim.x*blockIdx.x + threadIdx.x; + + if (i0 >= n_dims) { + const int i = row*ne0 + i0; + + dst[i + 0] = x[i + 0]; + dst[i + 1] = x[i + 1]; + + return; + } + + const int i = row*ne0 + i0/2; + const int i2 = row/p_delta_rows; + + int sect_dims = sections.v[0] + sections.v[1] + sections.v[2] + sections.v[3]; + int sec_w = sections.v[1] + sections.v[0]; + int sector = (i0 / 2) % sect_dims; + + float theta_base = 0.0; + if (sector < sections.v[0]) { + theta_base = pos[i2]*powf(theta_scale, i0/2.0f); + } + else if (sector >= sections.v[0] && sector < sec_w) { + theta_base = pos[i2 + ne2 * 1]*powf(theta_scale, i0/2.0f); + } + else if (sector >= sec_w && sector < sec_w + sections.v[2]) { + theta_base = pos[i2 + ne2 * 2]*powf(theta_scale, i0/2.0f); + } + else if (sector >= sec_w + sections.v[2]) { + theta_base = pos[i2 + ne2 * 3]*powf(theta_scale, i0/2.0f); + } + + const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f; + + float cos_theta; + float sin_theta; + + rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); + + const float x0 = x[i + 0]; + const float x1 = x[i + n_dims/2]; + + dst[i + 0] = x0*cos_theta - x1*sin_theta; + dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta; +} + +template +static __global__ void rope_vision( + const T * x, T * dst, int ne0, int ne2, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows, + float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors, mrope_sections sections) { + const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y); + + if (i0 >= ne0) { + return; + } + + const int row = blockDim.x*blockIdx.x + threadIdx.x; + + const int i = row*ne0 + i0/2; + const int i2 = row/p_delta_rows; // i2-th tokens + + int sect_dims = sections.v[0] + sections.v[1]; + int sec_w = sections.v[1] + sections.v[0]; + int sector = (i0 / 2) % sect_dims; + + float theta_base = 0.0; + if (sector < sections.v[0]) { + const int p = sector; + theta_base = pos[i2]*powf(theta_scale, p); + } + else if (sector >= sections.v[0] && sector < sec_w) { + const int p = sector - sections.v[0]; + theta_base = pos[i2 + ne2]*powf(theta_scale, p); + } + + const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f; + + float cos_theta; + float sin_theta; + + rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); + + const float x0 = x[i + 0]; + const float x1 = x[i + n_dims]; + + dst[i + 0] = x0*cos_theta - x1*sin_theta; + dst[i + n_dims] = x0*sin_theta + x1*cos_theta; +} + template static void rope_norm_cuda( const T * x, T * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows, @@ -156,6 +260,56 @@ static void rope_neox_cuda( } } +template +static void rope_multi_cuda( + const T * x, T * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream) { + GGML_ASSERT(ne0 % 2 == 0); + const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1); + const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); + const dim3 block_nums(nr, n_blocks_x, 1); + + const float theta_scale = powf(freq_base, -2.0f/n_dims); + + if (freq_factors == nullptr) { + rope_multi<<>>( + x, dst, ne0, ne2, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, + theta_scale, freq_factors, sections + ); + } else { + rope_multi<<>>( + x, dst, ne0, ne2, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, + theta_scale, freq_factors, sections + ); + } +} + +template +static void rope_vision_cuda( + const T * x, T * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream) { + GGML_ASSERT(ne0 % 2 == 0); + const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1); + const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); + const dim3 block_nums(nr, n_blocks_x, 1); + // break down (head_dim, heads, seq) into (CUDA_ROPE_BLOCK_SIZE, x, heads * seq) + // where x ~= ceil(head_dim / CUDA_ROPE_BLOCK_SIZE); + + const float theta_scale = powf(freq_base, -2.0f/n_dims); + + if (freq_factors == nullptr) { + rope_vision<<>>( + x, dst, ne0, ne2, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, + theta_scale, freq_factors, sections + ); + } else { + rope_vision<<>>( + x, dst, ne0, ne2, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, + theta_scale, freq_factors, sections + ); + } +} + static void rope_norm_cuda_f16( const half * x, half * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) { @@ -185,6 +339,38 @@ static void rope_neox_cuda_f32( rope_neox_cuda(x, dst, ne0, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream); } +static void rope_multi_cuda_f16( + const half * x, half * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream +) { + + rope_multi_cuda(x, dst, ne0, ne2, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream); +} + +static void rope_multi_cuda_f32( + const float * x, float * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream +) { + + rope_multi_cuda(x, dst, ne0, ne2, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream); +} + +static void rope_vision_cuda_f16( + const half * x, half * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream +) { + + rope_vision_cuda(x, dst, ne0, ne2, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream); +} + +static void rope_vision_cuda_f32( + const float * x, float * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream +) { + + rope_vision_cuda(x, dst, ne0, ne2, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream); +} + void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; @@ -201,8 +387,9 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); GGML_ASSERT(src0->type == dst->type); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; + const int64_t ne00 = src0->ne[0]; // head dims + const int64_t ne01 = src0->ne[1]; // num heads + const int64_t ne02 = src0->ne[2]; // num heads const int64_t nr = ggml_nrows(src0); //const int n_past = ((int32_t *) dst->op_params)[0]; @@ -210,6 +397,7 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const int mode = ((int32_t *) dst->op_params)[2]; //const int n_ctx = ((int32_t *) dst->op_params)[3]; const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; + mrope_sections sections; // RoPE alteration for extended context float freq_base; @@ -225,8 +413,19 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); + memcpy(§ions.v, (int32_t *) dst->op_params + 11, sizeof(int)*4); const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; + const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; + const bool is_vision = mode == GGML_ROPE_TYPE_VISION; + + if (is_mrope) { + GGML_ASSERT(sections.v[0] > 0 || sections.v[1] > 0 || sections.v[2] > 0); + } + + if (is_vision) { + GGML_ASSERT(n_dims == ne00/2); + } const int32_t * pos = (const int32_t *) src1_d; @@ -253,6 +452,34 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { } else { GGML_ABORT("fatal error"); } + } else if (is_mrope && !is_vision) { + if (src0->type == GGML_TYPE_F32) { + rope_multi_cuda_f32( + (const float *)src0_d, (float *)dst_d, ne00, ne02, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, freq_factors, sections, stream + ); + } else if (src0->type == GGML_TYPE_F16) { + rope_multi_cuda_f16( + (const half *)src0_d, (half *)dst_d, ne00, ne02, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, freq_factors, sections, stream + ); + } else { + GGML_ABORT("fatal error"); + } + } else if (is_vision) { + if (src0->type == GGML_TYPE_F32) { + rope_vision_cuda_f32( + (const float *)src0_d, (float *)dst_d, ne00, ne02, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, freq_factors, sections, stream + ); + } else if (src0->type == GGML_TYPE_F16) { + rope_vision_cuda_f16( + (const half *)src0_d, (half *)dst_d, ne00, ne02, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, freq_factors, sections, stream + ); + } else { + GGML_ABORT("fatal error"); + } } else { if (src0->type == GGML_TYPE_F32) { rope_norm_cuda_f32( diff --git a/ggml/src/ggml-impl.h b/ggml/src/ggml-impl.h index f961134edd735..549772c57c90a 100644 --- a/ggml/src/ggml-impl.h +++ b/ggml/src/ggml-impl.h @@ -551,6 +551,22 @@ static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) { #define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x) #define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x) +// expose GGUF internals for test code + +GGML_API size_t gguf_type_size(enum gguf_type type); + +GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params); + +struct gguf_buf { + void * data; + size_t size; + size_t offset; +}; +GGML_API struct gguf_buf gguf_buf_init(size_t size); +GGML_API void gguf_buf_free(struct gguf_buf buf); + +GGML_API void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta); + #ifdef __cplusplus } #endif diff --git a/ggml/src/ggml-kompute/ggml-kompute.cpp b/ggml/src/ggml-kompute/ggml-kompute.cpp index 28ceecfc40d66..50579227183d3 100644 --- a/ggml/src/ggml-kompute/ggml-kompute.cpp +++ b/ggml/src/ggml-kompute/ggml-kompute.cpp @@ -1419,8 +1419,18 @@ static bool ggml_backend_kompute_device_supports_op(ggml_backend_dev_t dev, cons case GGML_OP_SOFT_MAX: case GGML_OP_RMS_NORM: case GGML_OP_NORM: - case GGML_OP_ROPE: return true; + case GGML_OP_ROPE: + { + const int mode = ((const int32_t *) op->op_params)[2]; + if (mode & GGML_ROPE_TYPE_MROPE) { + return false; + } + if (mode & GGML_ROPE_TYPE_VISION) { + return false; + } + return true; + } case GGML_OP_DUP: case GGML_OP_CPY: case GGML_OP_CONT: diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m index 34fe5778e4f09..28f590f9216be 100644 --- a/ggml/src/ggml-metal/ggml-metal.m +++ b/ggml/src/ggml-metal/ggml-metal.m @@ -1125,8 +1125,18 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex return has_simdgroup_reduction && (op->ne[0] % 4 == 0); case GGML_OP_ARGMAX: case GGML_OP_NORM: - case GGML_OP_ROPE: return true; + case GGML_OP_ROPE: + { + const int mode = ((const int32_t *) op->op_params)[2]; + if (mode & GGML_ROPE_TYPE_MROPE) { + return false; + } + if (mode & GGML_ROPE_TYPE_VISION) { + return false; + } + return true; + } case GGML_OP_IM2COL: return op->src[0]->type == GGML_TYPE_F16; case GGML_OP_POOL_1D: @@ -3026,7 +3036,9 @@ static void ggml_metal_encode_node( } break; case GGML_OP_ROPE: { - GGML_ASSERT(ne10 == ne02); + // make sure we have one or more position id(ne10) per token(ne02) + GGML_ASSERT(ne10 % ne02 == 0); + GGML_ASSERT(ne10 >= ne02); const int nth = MIN(1024, ne00); diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp index 6b9f0b0d9a1c8..84f1328e7cf1c 100644 --- a/ggml/src/ggml-sycl/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl/ggml-sycl.cpp @@ -4488,7 +4488,16 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g case GGML_OP_SOFT_MAX: return true; case GGML_OP_ROPE: - return ggml_is_contiguous(op->src[0]); + { + const int mode = ((const int32_t *) op->op_params)[2]; + if (mode & GGML_ROPE_TYPE_MROPE) { + return false; + } + if (mode & GGML_ROPE_TYPE_VISION) { + return false; + } + return ggml_is_contiguous(op->src[0]); + } case GGML_OP_IM2COL: // TODO: add support for the new F32 operations return op->src[0]->type == GGML_TYPE_F16; diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp index 515d66b393426..1696b6e27369d 100644 --- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp @@ -245,6 +245,7 @@ struct vk_device_struct { vk_pipeline pipeline_im2col_f32, pipeline_im2col_f32_f16; vk_pipeline pipeline_timestep_embedding_f32; vk_pipeline pipeline_pool2d_f32; + vk_pipeline pipeline_rwkv_wkv6_f32; // [2][2][2] is for {f16acc,f32acc}x{large,small_rows}x{unaligned, aligned} vk_pipeline pipeline_flash_attn_f32_f16_D64[GGML_TYPE_COUNT][2][2][2]; @@ -528,6 +529,13 @@ struct vk_op_pool2d_push_constants { int32_t p0; int32_t p1; }; +struct vk_op_rwkv_wkv6_push_constants { + uint32_t B; + uint32_t T; + uint32_t C; + uint32_t H; +}; + // Allow pre-recording command buffers struct vk_staging_memcpy { vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {} @@ -1363,7 +1371,7 @@ static bool ggml_vk_matmul_shmem_support(const vk_device& device, const std::vec // Needs to be kept up to date on shader changes const uint32_t bank_conflict_offset = device->coopmat_support ? 8 : 1; const uint32_t type_size = device->fp16 ? sizeof(ggml_fp16_t) : sizeof(float); - const uint32_t warps = warptile[0] / device->subgroup_size; + const uint32_t warps = warptile[0] / warptile[10]; const uint32_t load_bufs = (warptile[1] + warptile[2]) * (warptile[3] + bank_conflict_offset) * type_size; const uint32_t mmid_row_ids = mul_mat_id ? 3072 * sizeof(uint32_t) : 0; @@ -1377,8 +1385,9 @@ static void ggml_vk_load_shaders(vk_device& device) { std::cerr << "ggml_vulkan: Compiling shaders"; - // some shaders require the subgroup size to be 16 or larger + // some shaders have a minimum subgroup size const uint32_t subgroup_size_16 = std::max(device->subgroup_size, 16u); + const uint32_t subgroup_size_32 = std::max(device->subgroup_size, 32u); // mulmat std::vector l_warptile, m_warptile, s_warptile, @@ -1445,7 +1454,7 @@ static void ggml_vk_load_shaders(vk_device& device) { l_warptile_mmq = { 128, 128, 128, 32, device->subgroup_size * 2, 64, 2, tm_l, tn_l, tk_l, device->subgroup_size }; m_warptile_mmq = { 128, 64, 64, 32, device->subgroup_size, 32, 2, tm_m, tn_m, tk_m, device->subgroup_size }; - s_warptile_mmq = { subgroup_size_16, 32, 32, 32, 32, 32, 2, tm_s, tn_s, tk_s, device->subgroup_size }; + s_warptile_mmq = { subgroup_size_32, 32, 32, 32, 32, 32, 2, tm_s, tn_s, tk_s, device->subgroup_size }; l_mmq_wg_denoms = l_wg_denoms = {128, 128, 1 }; m_mmq_wg_denoms = m_wg_denoms = { 64, 64, 1 }; @@ -1864,7 +1873,7 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f16_f32", mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f16_f32", mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); @@ -1878,7 +1887,7 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); @@ -1892,7 +1901,7 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); // dequant shaders ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1); @@ -2014,6 +2023,8 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_pool2d_f32, "pool2d_f32", pool2d_f32_len, pool2d_f32_data, "main", 2, sizeof(vk_op_pool2d_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_rwkv_wkv6_f32, "rwkv_wkv6_f32", rwkv_wkv6_f32_len, rwkv_wkv6_f32_data, "main", 7, sizeof(vk_op_rwkv_wkv6_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); + for (auto &c : compiles) { c.wait(); } @@ -5022,6 +5033,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_pool2d_f32; } return nullptr; + case GGML_OP_RWKV_WKV6: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_rwkv_wkv6_f32; + } + return nullptr; case GGML_OP_LEAKY_RELU: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_leaky_relu_f32; @@ -5424,6 +5440,134 @@ static void ggml_vk_div(ggml_backend_vk_context * ctx, vk_context& subctx, const }, dryrun); } +static void ggml_vk_op_f32_rwkv6(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, const vk_op_rwkv_wkv6_push_constants&& pc, bool dryrun = false) { + const ggml_tensor * k = dst->src[0]; + const ggml_tensor * v = dst->src[1]; + const ggml_tensor * r = dst->src[2]; + const ggml_tensor * tf = dst->src[3]; + const ggml_tensor * td = dst->src[4]; + const ggml_tensor * state = dst->src[5]; + + GGML_ASSERT(!ggml_is_quantized(k->type)); + GGML_ASSERT(!ggml_is_quantized(v->type)); + GGML_ASSERT(!ggml_is_quantized(r->type)); + GGML_ASSERT(!ggml_is_quantized(tf->type)); + GGML_ASSERT(!ggml_is_quantized(td->type)); + GGML_ASSERT(!ggml_is_quantized(state->type)); + GGML_ASSERT(dst->buffer != nullptr); + + vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, k, v, r, dst, GGML_OP_RWKV_WKV6); + GGML_ASSERT(pipeline != nullptr); + + if (dryrun) { + ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1); + return; + } + + ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context; + ggml_backend_vk_buffer_context * k_buf_ctx = (ggml_backend_vk_buffer_context *)k->buffer->context; + ggml_backend_vk_buffer_context * v_buf_ctx = (ggml_backend_vk_buffer_context *)v->buffer->context; + ggml_backend_vk_buffer_context * r_buf_ctx = (ggml_backend_vk_buffer_context *)r->buffer->context; + ggml_backend_vk_buffer_context * tf_buf_ctx = (ggml_backend_vk_buffer_context *)tf->buffer->context; + ggml_backend_vk_buffer_context * td_buf_ctx = (ggml_backend_vk_buffer_context *)td->buffer->context; + ggml_backend_vk_buffer_context * state_buf_ctx = (ggml_backend_vk_buffer_context *)state->buffer->context; + + ggml_vk_sync_buffers(subctx); + + vk_buffer d_D, d_K, d_V, d_R, d_TF, d_TD, d_State; + uint64_t k_offset, v_offset, r_offset, tf_offset, td_offset, state_offset, dst_offset; + bool K_uma = false, V_uma = false, R_uma = false, TF_uma = false, TD_uma = false, STATE_uma = false, DST_uma = false; + + if (ctx->device->uma) { + ggml_vk_host_get(ctx->device, k->data, d_K, k_offset); + ggml_vk_host_get(ctx->device, v->data, d_V, v_offset); + ggml_vk_host_get(ctx->device, r->data, d_R, r_offset); + ggml_vk_host_get(ctx->device, tf->data, d_TF, tf_offset); + ggml_vk_host_get(ctx->device, td->data, d_TD, td_offset); + ggml_vk_host_get(ctx->device, state->data, d_State, state_offset); + ggml_vk_host_get(ctx->device, dst->data, d_D, dst_offset); + + K_uma = d_K != nullptr; + V_uma = d_V != nullptr; + R_uma = d_R != nullptr; + TF_uma = d_TF != nullptr; + TD_uma = d_TD != nullptr; + STATE_uma = d_State != nullptr; + DST_uma = d_D != nullptr; + } + + if (!K_uma) { + d_K = k_buf_ctx->dev_buffer; + k_offset = vk_tensor_offset(k) + k->view_offs; + } + if (!V_uma) { + d_V = v_buf_ctx->dev_buffer; + v_offset = vk_tensor_offset(v) + v->view_offs; + } + if (!R_uma) { + d_R = r_buf_ctx->dev_buffer; + r_offset = vk_tensor_offset(r) + r->view_offs; + } + if (!TF_uma) { + d_TF = tf_buf_ctx->dev_buffer; + tf_offset = vk_tensor_offset(tf) + tf->view_offs; + } + if (!TD_uma) { + d_TD = td_buf_ctx->dev_buffer; + td_offset = vk_tensor_offset(td) + td->view_offs; + } + if (!STATE_uma) { + d_State = state_buf_ctx->dev_buffer; + state_offset = vk_tensor_offset(state) + state->view_offs; + } + if (!DST_uma) { + d_D = dst_buf_ctx->dev_buffer; + dst_offset = vk_tensor_offset(dst) + dst->view_offs; + } + + const uint64_t k_size = ggml_nbytes(k); + const uint64_t v_size = ggml_nbytes(v); + const uint64_t r_size = ggml_nbytes(r); + const uint64_t tf_size = ggml_nbytes(tf); + const uint64_t td_size = ggml_nbytes(td); + const uint64_t state_size = ggml_nbytes(state); + const uint64_t dst_size = ggml_nbytes(dst); + + std::array elements = { + (uint32_t)(pc.B * pc.H), + 1, + 1 + }; + + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { + vk_subbuffer{ d_K, k_offset, k_size }, + vk_subbuffer{ d_V, v_offset, v_size }, + vk_subbuffer{ d_R, r_offset, r_size }, + vk_subbuffer{ d_TF, tf_offset, tf_size }, + vk_subbuffer{ d_TD, td_offset, td_size }, + vk_subbuffer{ d_State, state_offset, state_size }, + vk_subbuffer{ d_D, dst_offset, dst_size } + }, sizeof(vk_op_rwkv_wkv6_push_constants), &pc, elements); +} + +static void ggml_vk_rwkv_wkv6(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, bool dryrun = false) { + const size_t seq_length = dst->src[0]->ne[3]; + const size_t n_embed = dst->ne[0]; + const size_t n_heads = dst->src[0]->ne[2]; + const size_t n_seqs = dst->src[5]->ne[1]; + + ggml_vk_op_f32_rwkv6( + ctx, subctx, dst, + { + (uint32_t)n_seqs, + (uint32_t)seq_length, + (uint32_t)n_embed, + (uint32_t)n_heads, + }, + dryrun + ); +} + static void ggml_vk_concat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { int * op_params = (int *)dst->op_params; @@ -6569,6 +6713,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod case GGML_OP_IM2COL: case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_POOL_2D: + case GGML_OP_RWKV_WKV6: case GGML_OP_LEAKY_RELU: case GGML_OP_FLASH_ATTN_EXT: break; @@ -6768,6 +6913,11 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod case GGML_OP_FLASH_ATTN_EXT: ggml_vk_flash_attn(ctx, compute_ctx, src0, src1, src2, src3, node, dryrun); + break; + + case GGML_OP_RWKV_WKV6: + ggml_vk_rwkv_wkv6(ctx, compute_ctx, node, dryrun); + break; default: return false; @@ -6848,6 +6998,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * case GGML_OP_IM2COL: case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_POOL_2D: + case GGML_OP_RWKV_WKV6: case GGML_OP_LEAKY_RELU: case GGML_OP_REPEAT: buf = tensor->buffer; @@ -7687,7 +7838,16 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm case GGML_OP_REPEAT: return ggml_type_size(op->type) == sizeof(float) && ggml_type_size(op->src[0]->type) == sizeof(float); case GGML_OP_ROPE: - return ggml_is_contiguous(op->src[0]); + { + const int mode = ((const int32_t *) op->op_params)[2]; + if (mode & GGML_ROPE_TYPE_MROPE) { + return false; + } + if (mode & GGML_ROPE_TYPE_VISION) { + return false; + } + return ggml_is_contiguous(op->src[0]); + } case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: @@ -7715,6 +7875,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm case GGML_OP_IM2COL: case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_POOL_2D: + case GGML_OP_RWKV_WKV6: case GGML_OP_LEAKY_RELU: return true; default: @@ -8291,7 +8452,11 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) { } else if (tensor->op == GGML_OP_LEAKY_RELU) { const float * op_params = (const float *)tensor->op_params; tensor_clone = ggml_leaky_relu(ggml_ctx, src0_clone, op_params[0], false); - } else { + } else if (tensor->op == GGML_OP_RWKV_WKV6) { + tensor_clone = ggml_rwkv_wkv6(ggml_ctx, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], + tensor->src[4], tensor->src[5]); + } + else { std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl; GGML_ABORT("fatal error"); } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/soft_max.comp b/ggml/src/ggml-vulkan/vulkan-shaders/soft_max.comp index 6e20b6411cadc..a25808e16568a 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/soft_max.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/soft_max.comp @@ -32,7 +32,7 @@ shared FLOAT_TYPE vals[BLOCK_SIZE]; void soft_max(uint num_iters) { const uint tid = gl_LocalInvocationID.x; const uint rowx = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x; - const uint rowy = rowx % p.KY; + const uint rowy = (p.KY > 0) ? (rowx % p.KY) : 0; if (rowx >= p.nrows_x) { return; diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp index c48a228aef65d..7a0d7285dcb23 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp @@ -479,6 +479,8 @@ void process_shaders() { string_to_spv("pool2d_f32", "pool2d.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); + string_to_spv("rwkv_wkv6_f32", "wkv6.comp", merge_maps(base_dict, {{"A_TYPE", "float"}})); + for (auto &c : compiles) { c.wait(); } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/wkv6.comp b/ggml/src/ggml-vulkan/vulkan-shaders/wkv6.comp new file mode 100644 index 0000000000000..35cc6c45f90a5 --- /dev/null +++ b/ggml/src/ggml-vulkan/vulkan-shaders/wkv6.comp @@ -0,0 +1,87 @@ +#version 450 + +#extension GL_EXT_control_flow_attributes : require + +#define BLOCK_SIZE 64 +layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in; + +layout(push_constant) uniform Parameters { + uint B; + uint T; + uint C; + uint H; +}; + +layout(binding = 0) readonly buffer KBuf { A_TYPE k[]; }; +layout(binding = 1) readonly buffer VBuf { A_TYPE v[]; }; +layout(binding = 2) readonly buffer RBuf { A_TYPE r[]; }; +layout(binding = 3) readonly buffer TimeFBuf { A_TYPE tf[]; }; +layout(binding = 4) readonly buffer TimeDBuf { A_TYPE td[]; }; +layout(binding = 5) readonly buffer StateBuf { A_TYPE state_in[]; }; +layout(binding = 6) buffer DstBuf { A_TYPE dst[]; }; + +shared A_TYPE _k[BLOCK_SIZE], _r[BLOCK_SIZE], _tf[BLOCK_SIZE], _td[BLOCK_SIZE]; + +void main() { + const uint head_size = BLOCK_SIZE; + const uint batch_id = gl_WorkGroupID.x / H; + const uint head_id = gl_WorkGroupID.x % H; + const uint tid = gl_LocalInvocationID.x; + + const uint state_size = C * head_size; + const uint n_seq_tokens = T / B; + + if (batch_id >= B || head_id >= H) { + return; + } + + A_TYPE state[BLOCK_SIZE]; + [[unroll]] for (uint i = 0; i < head_size; i++) { + state[i] = state_in[batch_id * state_size + head_id * head_size * head_size + + i * head_size + tid]; + } + + barrier(); + _tf[tid] = tf[head_id * head_size + tid]; + barrier(); + + const uint start_t = batch_id * n_seq_tokens * C + head_id * head_size + tid; + const uint end_t = (batch_id + 1) * n_seq_tokens * C + head_id * head_size + tid; + + for (uint t = start_t; t < end_t; t += C) { + barrier(); + _k[tid] = k[t]; + _r[tid] = r[t]; + _td[tid] = td[t]; + barrier(); + + const A_TYPE v_val = v[t]; + A_TYPE y = 0.0; + + [[unroll]] for (uint j = 0; j < head_size; j += 4) { + vec4 k_vec = vec4(_k[j], _k[j+1], _k[j+2], _k[j+3]); + vec4 r_vec = vec4(_r[j], _r[j+1], _r[j+2], _r[j+3]); + vec4 tf_vec = vec4(_tf[j], _tf[j+1], _tf[j+2], _tf[j+3]); + vec4 td_vec = vec4(_td[j], _td[j+1], _td[j+2], _td[j+3]); + vec4 s_vec = vec4(state[j], state[j+1], state[j+2], state[j+3]); + + vec4 kv = k_vec * v_val; + + vec4 temp = tf_vec * kv + s_vec; + y += dot(r_vec, temp); + + s_vec = s_vec * td_vec + kv; + state[j] = s_vec.x; + state[j+1] = s_vec.y; + state[j+2] = s_vec.z; + state[j+3] = s_vec.w; + } + + dst[t] = y; + } + + [[unroll]] for (uint i = 0; i < head_size; i++) { + dst[T * C + batch_id * state_size + head_id * head_size * head_size + + i * head_size + tid] = state[i]; + } +} diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 058941c7a1441..2bbe5f48257b2 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -3517,15 +3517,18 @@ static struct ggml_tensor * ggml_rope_impl( GGML_ASSERT(c->ne[0] >= n_dims / 2); } + int sections[4] = {0, 0, 0, 0}; + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); - int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig }; + int32_t params[15] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig }; memcpy(params + 5, &freq_base, sizeof(float)); memcpy(params + 6, &freq_scale, sizeof(float)); memcpy(params + 7, &ext_factor, sizeof(float)); memcpy(params + 8, &attn_factor, sizeof(float)); memcpy(params + 9, &beta_fast, sizeof(float)); memcpy(params + 10, &beta_slow, sizeof(float)); + memcpy(params + 11, §ions, sizeof(int)*4); ggml_set_op_params(result, params, sizeof(params)); result->op = GGML_OP_ROPE; @@ -3547,6 +3550,53 @@ struct ggml_tensor * ggml_rope( ); } +struct ggml_tensor * ggml_rope_multi( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + int n_dims, + int sections[4], + int mode, + int n_ctx_orig, + float freq_base, + float freq_scale, + float ext_factor, + float attn_factor, + float beta_fast, + float beta_slow) { + // Multimodal Rotary Position Embedding + GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported"); + + GGML_ASSERT(ggml_is_vector(b)); + GGML_ASSERT(b->type == GGML_TYPE_I32); + GGML_ASSERT(a->ne[2] * 4 == b->ne[0]); // mrope expecting 4 position ids per token + + if (c) { + GGML_ASSERT(c->type == GGML_TYPE_F32); + GGML_ASSERT(c->ne[0] >= n_dims / 2); + } + + struct ggml_tensor * result = ggml_dup_tensor(ctx, a); + + int32_t params[11 + 4] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig }; + memcpy(params + 5, &freq_base, sizeof(float)); + memcpy(params + 6, &freq_scale, sizeof(float)); + memcpy(params + 7, &ext_factor, sizeof(float)); + memcpy(params + 8, &attn_factor, sizeof(float)); + memcpy(params + 9, &beta_fast, sizeof(float)); + memcpy(params + 10, &beta_slow, sizeof(float)); + memcpy(¶ms[11], sections, sizeof(int)*4); + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_ROPE; + result->src[0] = a; + result->src[1] = b; + result->src[2] = c; + + return result; +} + struct ggml_tensor * ggml_rope_inplace( struct ggml_context * ctx, struct ggml_tensor * a, @@ -3710,13 +3760,84 @@ struct ggml_tensor * ggml_clamp( return result; } -// ggml_conv_1d - static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) { return (ins + 2 * p - d * (ks - 1) - 1) / s + 1; } -GGML_API struct ggml_tensor * ggml_conv_1d( +// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW] +// a: [OC,IC, KH, KW] +// b: [N, IC, IH, IW] +// result: [N, OH, OW, IC*KH*KW] +struct ggml_tensor * ggml_im2col( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int s1, + int p0, + int p1, + int d0, + int d1, + bool is_2D, + enum ggml_type dst_type) { + if (is_2D) { + GGML_ASSERT(a->ne[2] == b->ne[2]); + } else { + //GGML_ASSERT(b->ne[1] % a->ne[1] == 0); + GGML_ASSERT(b->ne[1] == a->ne[1]); + GGML_ASSERT(b->ne[3] == 1); + } + + const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0; + const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0); + + GGML_ASSERT((!is_2D || OH > 0) && "b too small compared to a"); + GGML_ASSERT((OW > 0) && "b too small compared to a"); + + const int64_t ne[4] = { + is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0], + OW, + is_2D ? OH : b->ne[2], + is_2D ? b->ne[3] : 1, + }; + + struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne); + int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) }; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_IM2COL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +struct ggml_tensor * ggml_im2col_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int64_t * ne, + int s0, + int s1, + int p0, + int p1, + int d0, + int d1, + bool is_2D) { + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) }; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_IM2COL_BACK; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +// ggml_conv_1d + +struct ggml_tensor * ggml_conv_1d( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, @@ -3746,137 +3867,75 @@ struct ggml_tensor* ggml_conv_1d_ph( return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d); } -// ggml_conv_transpose_1d - -static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) { - return (ins - 1) * s - 2 * p + d * (ks - 1) + 1; -} +// ggml_conv_1d_dw -GGML_API struct ggml_tensor * ggml_conv_transpose_1d( +struct ggml_tensor * ggml_conv_1d_dw( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, int s0, int p0, int d0) { - GGML_ASSERT(ggml_is_matrix(b)); - GGML_ASSERT(a->ne[2] == b->ne[1]); - GGML_ASSERT(a->ne[3] == 1); + struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], 1, a->ne[1], a->ne[2]); + struct ggml_tensor * new_b = ggml_reshape_4d(ctx, b, b->ne[0], 1, b->ne[1], b->ne[2]); - GGML_ASSERT(p0 == 0); - GGML_ASSERT(d0 == 1); - - const int64_t ne[4] = { - ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/), - a->ne[1], b->ne[2], 1, - }; - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + struct ggml_tensor * im2col = ggml_im2col(ctx, new_a, new_b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); - int32_t params[] = { s0, p0, d0 }; - ggml_set_op_params(result, params, sizeof(params)); + struct ggml_tensor * result = ggml_mul_mat(ctx, im2col, a); - result->op = GGML_OP_CONV_TRANSPOSE_1D; - result->src[0] = a; - result->src[1] = b; + result = ggml_reshape_3d(ctx, result, b->ne[0], b->ne[1], 1); return result; } -// ggml_conv_depthwise +// ggml_conv_1d_dw_ph -struct ggml_tensor * ggml_conv_depthwise_2d( +struct ggml_tensor * ggml_conv_1d_dw_ph( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, int s0, - int s1, - int p0, - int p1, - int d0, - int d1) { - struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]); - struct ggml_tensor * im2col = ggml_im2col(ctx, new_a, - ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]), - s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW] - struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW] + int d0) { + return ggml_conv_1d_dw(ctx, a, b, s0, a->ne[0] / 2, d0); +} - new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW] - struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b); - result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW] +// ggml_conv_transpose_1d - return result; +static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) { + return (ins - 1) * s - 2 * p + d * (ks - 1) + 1; } -// ggml_conv_2d -// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW] -// a: [OC,IC, KH, KW] -// b: [N, IC, IH, IW] -// result: [N, OH, OW, IC*KH*KW] -struct ggml_tensor * ggml_im2col( +GGML_API struct ggml_tensor * ggml_conv_transpose_1d( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, int s0, - int s1, int p0, - int p1, - int d0, - int d1, - bool is_2D, - enum ggml_type dst_type) { - if(is_2D) { - GGML_ASSERT(a->ne[2] == b->ne[2]); - } else { - GGML_ASSERT(a->ne[1] == b->ne[1]); - GGML_ASSERT(b->ne[3] == 1); - } - - const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0; - const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0); + int d0) { + GGML_ASSERT(ggml_is_matrix(b)); + GGML_ASSERT(a->ne[2] == b->ne[1]); + GGML_ASSERT(a->ne[3] == 1); - GGML_ASSERT((!is_2D || OH > 0) && "b too small compared to a"); - GGML_ASSERT((OW > 0) && "b too small compared to a"); + GGML_ASSERT(p0 == 0); + GGML_ASSERT(d0 == 1); const int64_t ne[4] = { - is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0], - OW, - is_2D ? OH : b->ne[2], - is_2D ? b->ne[3] : 1, + ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/), + a->ne[1], b->ne[2], 1, }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); - struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne); - int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) }; + int32_t params[] = { s0, p0, d0 }; ggml_set_op_params(result, params, sizeof(params)); - result->op = GGML_OP_IM2COL; + result->op = GGML_OP_CONV_TRANSPOSE_1D; result->src[0] = a; result->src[1] = b; return result; } -struct ggml_tensor * ggml_im2col_back( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b, - int64_t * ne, - int s0, - int s1, - int p0, - int p1, - int d0, - int d1, - bool is_2D) { - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); - int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) }; - ggml_set_op_params(result, params, sizeof(params)); - - result->op = GGML_OP_IM2COL_BACK; - result->src[0] = a; - result->src[1] = b; - - return result; -} +// ggml_conv_2d // a: [OC,IC, KH, KW] // b: [N, IC, IH, IW] @@ -3923,6 +3982,31 @@ struct ggml_tensor * ggml_conv_2d_s1_ph( return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1); } +// ggml_conv_2d_dw + +struct ggml_tensor * ggml_conv_2d_dw( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int s1, + int p0, + int p1, + int d0, + int d1) { + struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]); + struct ggml_tensor * im2col = ggml_im2col(ctx, new_a, + ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]), + s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW] + struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW] + + new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW] + struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b); + result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW] + + return result; +} + // ggml_conv_transpose_2d_p0 static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) { @@ -5987,12 +6071,12 @@ struct ggml_tensor * ggml_graph_get_tensor(const struct ggml_cgraph * cgraph, co struct ggml_tensor * ggml_graph_get_grad(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node); - return igrad != GGML_HASHSET_FULL && ggml_bitset_get(cgraph->visited_hash_set.used, igrad) ? cgraph->grads[igrad] : NULL; + return igrad != GGML_HASHSET_FULL && ggml_bitset_get(cgraph->visited_hash_set.used, igrad) && cgraph->grads ? cgraph->grads[igrad] : NULL; } struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node); - return igrad != GGML_HASHSET_FULL && ggml_bitset_get(cgraph->visited_hash_set.used, igrad) ? cgraph->grad_accs[igrad] : NULL; + return igrad != GGML_HASHSET_FULL && ggml_bitset_get(cgraph->visited_hash_set.used, igrad) && cgraph->grad_accs ? cgraph->grad_accs[igrad] : NULL; } void ggml_graph_print(const struct ggml_cgraph * cgraph) { @@ -6439,7 +6523,7 @@ struct gguf_context { void * data; }; -static size_t gguf_type_size(enum gguf_type type) { +size_t gguf_type_size(enum gguf_type type) { GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT); return GGUF_TYPE_SIZE[type]; } @@ -6567,13 +6651,7 @@ struct gguf_context * gguf_init_empty(void) { return ctx; } -struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) { - FILE * file = ggml_fopen(fname, "rb"); - if (!file) { - fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno)); - return NULL; - } - +struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) { // offset from start of file size_t offset = 0; @@ -6586,7 +6664,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p for (uint32_t i = 0; i < sizeof(magic); i++) { if (magic[i] != GGUF_MAGIC[i]) { fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]); - fclose(file); return NULL; } } @@ -6597,7 +6674,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p struct gguf_context * ctx = calloc(1, sizeof(struct gguf_context)); if (!ctx) { fprintf(stderr, "%s: failed to allocate memory for context\n", __func__); - fclose(file); return NULL; } @@ -6615,7 +6691,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p if (ctx->header.version == 1) { fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__); - fclose(file); gguf_free(ctx); return NULL; } @@ -6628,7 +6703,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p if (!ok) { fprintf(stderr, "%s: failed to read header\n", __func__); - fclose(file); gguf_free(ctx); return NULL; } @@ -6638,12 +6712,13 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p { const uint64_t n_kv = ctx->header.n_kv; - ctx->kv = calloc(n_kv, sizeof(struct gguf_kv)); - if (!ctx->kv) { - fprintf(stderr, "%s: failed to allocate memory for kv pairs\n", __func__); - fclose(file); - gguf_free(ctx); - return NULL; + if (n_kv > 0) { + ctx->kv = calloc(n_kv, sizeof(struct gguf_kv)); + if (!ctx->kv) { + fprintf(stderr, "%s: failed to allocate memory for kv pairs\n", __func__); + gguf_free(ctx); + return NULL; + } } for (uint64_t i = 0; i < n_kv; ++i) { @@ -6690,7 +6765,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p // prevent from integer overflow in the malloc below if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) { fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n); - fclose(file); gguf_free(ctx); return NULL; } @@ -6698,7 +6772,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p kv->value.arr.data = calloc(kv->value.arr.n, gguf_type_size(kv->value.arr.type)); if (!kv->value.arr.data) { fprintf(stderr, "%s: failed to allocate memory for array\n", __func__); - fclose(file); gguf_free(ctx); return NULL; } @@ -6710,7 +6783,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p // prevent from integer overflow in the malloc below if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) { fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n); - fclose(file); gguf_free(ctx); return NULL; } @@ -6718,7 +6790,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p kv->value.arr.data = calloc(kv->value.arr.n, sizeof(struct gguf_str)); if (!kv->value.arr.data) { fprintf(stderr, "%s: failed to allocate memory for array\n", __func__); - fclose(file); gguf_free(ctx); return NULL; } @@ -6749,7 +6820,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p if (!ok) { fprintf(stderr, "%s: failed to read key-value pairs\n", __func__); - fclose(file); gguf_free(ctx); return NULL; } @@ -6760,7 +6830,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p ctx->infos = calloc(ctx->header.n_tensors, sizeof(struct gguf_tensor_info)); if (!ctx->infos) { fprintf(stderr, "%s: failed to allocate memory for tensor infos\n", __func__); - fclose(file); gguf_free(ctx); return NULL; } @@ -6796,7 +6865,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p if (!ok) { fprintf(stderr, "%s: failed to read tensor info\n", __func__); - fclose(file); gguf_free(ctx); return NULL; } @@ -6839,7 +6907,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p // this tensor type support have been removed: fprintf(stderr, "%s: tensor '%s' of type %d: %s\n", __func__, info->name.data, (int) info->type, ggml_type_name(info->type)); - fclose(file); gguf_free(ctx); return NULL; } @@ -6847,7 +6914,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p if (ne % ggml_blck_size(info->type) != 0) { fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n", __func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type)); - fclose(file); gguf_free(ctx); return NULL; } @@ -6879,7 +6945,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p *params.ctx = ggml_init(pdata); if (*params.ctx == NULL) { fprintf(stderr, "%s: failed to initialize context\n", __func__); - fclose(file); gguf_free(ctx); return NULL; } @@ -6898,7 +6963,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p if (!ok) { fprintf(stderr, "%s: failed to read tensor data\n", __func__); - fclose(file); ggml_free(ctx_data); gguf_free(ctx); return NULL; @@ -6937,7 +7001,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p if (!ok) { fprintf(stderr, "%s: failed to read the tensor data\n", __func__); - fclose(file); ggml_free(ctx_data); gguf_free(ctx); return NULL; @@ -6946,11 +7009,21 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p ggml_set_no_alloc(ctx_data, params.no_alloc); } - fclose(file); - return ctx; } +struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) { + FILE * file = ggml_fopen(fname, "rb"); + if (!file) { + fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno)); + return NULL; + } + + struct gguf_context * result = gguf_init_from_file_impl(file, params); + fclose(file); + return result; +} + void gguf_free(struct gguf_context * ctx) { if (ctx == NULL) { return; @@ -7410,13 +7483,7 @@ void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const vo // fwrite(val, sizeof(char), size, file); //} -struct gguf_buf { - void * data; - size_t size; - size_t offset; -}; - -static struct gguf_buf gguf_buf_init(size_t size) { +struct gguf_buf gguf_buf_init(size_t size) { struct gguf_buf buf = { /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size), /*buf.size =*/ size, @@ -7426,7 +7493,7 @@ static struct gguf_buf gguf_buf_init(size_t size) { return buf; } -static void gguf_buf_free(struct gguf_buf buf) { +void gguf_buf_free(struct gguf_buf buf) { if (buf.data) { GGML_FREE(buf.data); } @@ -7464,7 +7531,7 @@ static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_si buf->offset += el_size; } -static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) { +void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) { // write header gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic)); gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version)); diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 4c8710b39e830..a40df974d1fca 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -90,6 +90,7 @@ class LLM: VOCAB_SIZE = "{arch}.vocab_size" CONTEXT_LENGTH = "{arch}.context_length" EMBEDDING_LENGTH = "{arch}.embedding_length" + FEATURES_LENGTH = "{arch}.features_length" BLOCK_COUNT = "{arch}.block_count" LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count" FEED_FORWARD_LENGTH = "{arch}.feed_forward_length" @@ -122,6 +123,8 @@ class Attention: VALUE_LENGTH = "{arch}.attention.value_length" LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon" LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon" + GROUPNORM_EPS = "{arch}.attention.group_norm_epsilon" + GROUPNORM_GROUPS = "{arch}.attention.group_norm_groups" CAUSAL = "{arch}.attention.causal" Q_LORA_RANK = "{arch}.attention.q_lora_rank" KV_LORA_RANK = "{arch}.attention.kv_lora_rank" @@ -131,6 +134,7 @@ class Attention: class Rope: DIMENSION_COUNT = "{arch}.rope.dimension_count" + DIMENSION_SECTIONS = "{arch}.rope.dimension_sections" FREQ_BASE = "{arch}.rope.freq_base" SCALING_TYPE = "{arch}.rope.scaling.type" SCALING_FACTOR = "{arch}.rope.scaling.factor" @@ -154,6 +158,14 @@ class SSM: class WKV: HEAD_SIZE = "{arch}.wkv.head_size" + class PosNet: + EMBEDDING_LENGTH = "{arch}.posnet.embedding_length" + BLOCK_COUNT = "{arch}.posnet.block_count" + + class ConvNext: + EMBEDDING_LENGTH = "{arch}.convnext.embedding_length" + BLOCK_COUNT = "{arch}.convnext.block_count" + class Tokenizer: MODEL = "tokenizer.ggml.model" PRE = "tokenizer.ggml.pre" @@ -208,56 +220,59 @@ class GGUFType: class MODEL_ARCH(IntEnum): - LLAMA = auto() - FALCON = auto() - BAICHUAN = auto() - GROK = auto() - GPT2 = auto() - GPTJ = auto() - GPTNEOX = auto() - MPT = auto() - STARCODER = auto() - REFACT = auto() - BERT = auto() - NOMIC_BERT = auto() - JINA_BERT_V2 = auto() - BLOOM = auto() - STABLELM = auto() - QWEN = auto() - QWEN2 = auto() - QWEN2MOE = auto() - PHI2 = auto() - PHI3 = auto() - PLAMO = auto() - CODESHELL = auto() - ORION = auto() - INTERNLM2 = auto() - MINICPM = auto() - MINICPM3 = auto() - GEMMA = auto() - GEMMA2 = auto() - STARCODER2 = auto() - RWKV6 = auto() - MAMBA = auto() - XVERSE = auto() - COMMAND_R = auto() - DBRX = auto() - OLMO = auto() - OLMO2 = auto() - OLMOE = auto() - OPENELM = auto() - ARCTIC = auto() - DEEPSEEK2 = auto() - CHATGLM = auto() - BITNET = auto() - T5 = auto() - T5ENCODER = auto() - JAIS = auto() - NEMOTRON = auto() - EXAONE = auto() - GRANITE = auto() - GRANITE_MOE = auto() - CHAMELEON = auto() + LLAMA = auto() + FALCON = auto() + BAICHUAN = auto() + GROK = auto() + GPT2 = auto() + GPTJ = auto() + GPTNEOX = auto() + MPT = auto() + STARCODER = auto() + REFACT = auto() + BERT = auto() + NOMIC_BERT = auto() + JINA_BERT_V2 = auto() + BLOOM = auto() + STABLELM = auto() + QWEN = auto() + QWEN2 = auto() + QWEN2MOE = auto() + QWEN2VL = auto() + PHI2 = auto() + PHI3 = auto() + PLAMO = auto() + CODESHELL = auto() + ORION = auto() + INTERNLM2 = auto() + MINICPM = auto() + MINICPM3 = auto() + GEMMA = auto() + GEMMA2 = auto() + STARCODER2 = auto() + RWKV6 = auto() + MAMBA = auto() + XVERSE = auto() + COMMAND_R = auto() + DBRX = auto() + OLMO = auto() + OLMO2 = auto() + OLMOE = auto() + OPENELM = auto() + ARCTIC = auto() + DEEPSEEK = auto() + DEEPSEEK2 = auto() + CHATGLM = auto() + BITNET = auto() + T5 = auto() + T5ENCODER = auto() + JAIS = auto() + NEMOTRON = auto() + EXAONE = auto() + GRANITE = auto() + GRANITE_MOE = auto() + CHAMELEON = auto() + WAVTOKENIZER_DEC = auto() class MODEL_TENSOR(IntEnum): @@ -367,59 +382,78 @@ class MODEL_TENSOR(IntEnum): ENC_OUTPUT_NORM = auto() CLS = auto() # classifier CLS_OUT = auto() # classifier output projection + CONV1D = auto() + CONVNEXT_DW = auto() + CONVNEXT_NORM = auto() + CONVNEXT_PW1 = auto() + CONVNEXT_PW2 = auto() + CONVNEXT_GAMMA = auto() + POSNET_CONV1 = auto() + POSNET_CONV2 = auto() + POSNET_NORM = auto() + POSNET_NORM1 = auto() + POSNET_NORM2 = auto() + POSNET_ATTN_NORM = auto() + POSNET_ATTN_Q = auto() + POSNET_ATTN_K = auto() + POSNET_ATTN_V = auto() + POSNET_ATTN_OUT = auto() MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { - MODEL_ARCH.LLAMA: "llama", - MODEL_ARCH.FALCON: "falcon", - MODEL_ARCH.BAICHUAN: "baichuan", - MODEL_ARCH.GROK: "grok", - MODEL_ARCH.GPT2: "gpt2", - MODEL_ARCH.GPTJ: "gptj", - MODEL_ARCH.GPTNEOX: "gptneox", - MODEL_ARCH.MPT: "mpt", - MODEL_ARCH.STARCODER: "starcoder", - MODEL_ARCH.REFACT: "refact", - MODEL_ARCH.BERT: "bert", - MODEL_ARCH.NOMIC_BERT: "nomic-bert", - MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2", - MODEL_ARCH.BLOOM: "bloom", - MODEL_ARCH.STABLELM: "stablelm", - MODEL_ARCH.QWEN: "qwen", - MODEL_ARCH.QWEN2: "qwen2", - MODEL_ARCH.QWEN2MOE: "qwen2moe", - MODEL_ARCH.PHI2: "phi2", - MODEL_ARCH.PHI3: "phi3", - MODEL_ARCH.PLAMO: "plamo", - MODEL_ARCH.CODESHELL: "codeshell", - MODEL_ARCH.ORION: "orion", - MODEL_ARCH.INTERNLM2: "internlm2", - MODEL_ARCH.MINICPM: "minicpm", - MODEL_ARCH.MINICPM3: "minicpm3", - MODEL_ARCH.GEMMA: "gemma", - MODEL_ARCH.GEMMA2: "gemma2", - MODEL_ARCH.STARCODER2: "starcoder2", - MODEL_ARCH.RWKV6: "rwkv6", - MODEL_ARCH.MAMBA: "mamba", - MODEL_ARCH.XVERSE: "xverse", - MODEL_ARCH.COMMAND_R: "command-r", - MODEL_ARCH.DBRX: "dbrx", - MODEL_ARCH.OLMO: "olmo", - MODEL_ARCH.OLMO2: "olmo2", - MODEL_ARCH.OLMOE: "olmoe", - MODEL_ARCH.OPENELM: "openelm", - MODEL_ARCH.ARCTIC: "arctic", - MODEL_ARCH.DEEPSEEK2: "deepseek2", - MODEL_ARCH.CHATGLM: "chatglm", - MODEL_ARCH.BITNET: "bitnet", - MODEL_ARCH.T5: "t5", - MODEL_ARCH.T5ENCODER: "t5encoder", - MODEL_ARCH.JAIS: "jais", - MODEL_ARCH.NEMOTRON: "nemotron", - MODEL_ARCH.EXAONE: "exaone", - MODEL_ARCH.GRANITE: "granite", - MODEL_ARCH.GRANITE_MOE: "granitemoe", - MODEL_ARCH.CHAMELEON: "chameleon", + MODEL_ARCH.LLAMA: "llama", + MODEL_ARCH.FALCON: "falcon", + MODEL_ARCH.BAICHUAN: "baichuan", + MODEL_ARCH.GROK: "grok", + MODEL_ARCH.GPT2: "gpt2", + MODEL_ARCH.GPTJ: "gptj", + MODEL_ARCH.GPTNEOX: "gptneox", + MODEL_ARCH.MPT: "mpt", + MODEL_ARCH.STARCODER: "starcoder", + MODEL_ARCH.REFACT: "refact", + MODEL_ARCH.BERT: "bert", + MODEL_ARCH.NOMIC_BERT: "nomic-bert", + MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2", + MODEL_ARCH.BLOOM: "bloom", + MODEL_ARCH.STABLELM: "stablelm", + MODEL_ARCH.QWEN: "qwen", + MODEL_ARCH.QWEN2: "qwen2", + MODEL_ARCH.QWEN2MOE: "qwen2moe", + MODEL_ARCH.QWEN2VL: "qwen2vl", + MODEL_ARCH.PHI2: "phi2", + MODEL_ARCH.PHI3: "phi3", + MODEL_ARCH.PLAMO: "plamo", + MODEL_ARCH.CODESHELL: "codeshell", + MODEL_ARCH.ORION: "orion", + MODEL_ARCH.INTERNLM2: "internlm2", + MODEL_ARCH.MINICPM: "minicpm", + MODEL_ARCH.MINICPM3: "minicpm3", + MODEL_ARCH.GEMMA: "gemma", + MODEL_ARCH.GEMMA2: "gemma2", + MODEL_ARCH.STARCODER2: "starcoder2", + MODEL_ARCH.RWKV6: "rwkv6", + MODEL_ARCH.MAMBA: "mamba", + MODEL_ARCH.XVERSE: "xverse", + MODEL_ARCH.COMMAND_R: "command-r", + MODEL_ARCH.DBRX: "dbrx", + MODEL_ARCH.OLMO: "olmo", + MODEL_ARCH.OLMO2: "olmo2", + MODEL_ARCH.OLMOE: "olmoe", + MODEL_ARCH.OPENELM: "openelm", + MODEL_ARCH.ARCTIC: "arctic", + MODEL_ARCH.DEEPSEEK: "deepseek", + MODEL_ARCH.DEEPSEEK2: "deepseek2", + MODEL_ARCH.CHATGLM: "chatglm", + MODEL_ARCH.BITNET: "bitnet", + MODEL_ARCH.T5: "t5", + MODEL_ARCH.T5ENCODER: "t5encoder", + MODEL_ARCH.JAIS: "jais", + MODEL_ARCH.NEMOTRON: "nemotron", + MODEL_ARCH.EXAONE: "exaone", + MODEL_ARCH.GRANITE: "granite", + MODEL_ARCH.GRANITE_MOE: "granitemoe", + MODEL_ARCH.CHAMELEON: "chameleon", + MODEL_ARCH.WAVTOKENIZER_DEC: "wavtokenizer-dec", } TENSOR_NAMES: dict[MODEL_TENSOR, str] = { @@ -529,6 +563,22 @@ class MODEL_TENSOR(IntEnum): MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm", MODEL_TENSOR.CLS: "cls", MODEL_TENSOR.CLS_OUT: "cls.output", + MODEL_TENSOR.CONV1D: "conv1d", + MODEL_TENSOR.CONVNEXT_DW: "convnext.{bid}.dw", + MODEL_TENSOR.CONVNEXT_NORM: "convnext.{bid}.norm", + MODEL_TENSOR.CONVNEXT_PW1: "convnext.{bid}.pw1", + MODEL_TENSOR.CONVNEXT_PW2: "convnext.{bid}.pw2", + MODEL_TENSOR.CONVNEXT_GAMMA: "convnext.{bid}.gamma", + MODEL_TENSOR.POSNET_CONV1: "posnet.{bid}.conv1", + MODEL_TENSOR.POSNET_CONV2: "posnet.{bid}.conv2", + MODEL_TENSOR.POSNET_NORM: "posnet.{bid}.norm", + MODEL_TENSOR.POSNET_NORM1: "posnet.{bid}.norm1", + MODEL_TENSOR.POSNET_NORM2: "posnet.{bid}.norm2", + MODEL_TENSOR.POSNET_ATTN_NORM: "posnet.{bid}.attn_norm", + MODEL_TENSOR.POSNET_ATTN_Q: "posnet.{bid}.attn_q", + MODEL_TENSOR.POSNET_ATTN_K: "posnet.{bid}.attn_k", + MODEL_TENSOR.POSNET_ATTN_V: "posnet.{bid}.attn_v", + MODEL_TENSOR.POSNET_ATTN_OUT: "posnet.{bid}.attn_output", } MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { @@ -772,6 +822,20 @@ class MODEL_TENSOR(IntEnum): MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.QWEN2VL: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], MODEL_ARCH.QWEN2MOE: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, @@ -1141,6 +1205,29 @@ class MODEL_TENSOR(IntEnum): MODEL_TENSOR.FFN_DOWN_EXP, MODEL_TENSOR.FFN_UP_EXP, ], + MODEL_ARCH.DEEPSEEK: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.ATTN_ROT_EMBD, + MODEL_TENSOR.FFN_GATE_INP, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.FFN_GATE_EXP, + MODEL_TENSOR.FFN_DOWN_EXP, + MODEL_TENSOR.FFN_UP_EXP, + MODEL_TENSOR.FFN_GATE_SHEXP, + MODEL_TENSOR.FFN_DOWN_SHEXP, + MODEL_TENSOR.FFN_UP_SHEXP, + ], MODEL_ARCH.DEEPSEEK2: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, @@ -1330,6 +1417,28 @@ class MODEL_TENSOR(IntEnum): MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.WAVTOKENIZER_DEC: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.TOKEN_EMBD_NORM, + MODEL_TENSOR.CONV1D, + MODEL_TENSOR.CONVNEXT_DW, + MODEL_TENSOR.CONVNEXT_NORM, + MODEL_TENSOR.CONVNEXT_PW1, + MODEL_TENSOR.CONVNEXT_PW2, + MODEL_TENSOR.CONVNEXT_GAMMA, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.POSNET_CONV1, + MODEL_TENSOR.POSNET_CONV2, + MODEL_TENSOR.POSNET_NORM, + MODEL_TENSOR.POSNET_NORM1, + MODEL_TENSOR.POSNET_NORM2, + MODEL_TENSOR.POSNET_ATTN_NORM, + MODEL_TENSOR.POSNET_ATTN_Q, + MODEL_TENSOR.POSNET_ATTN_K, + MODEL_TENSOR.POSNET_ATTN_V, + MODEL_TENSOR.POSNET_ATTN_OUT, + ], # TODO } @@ -1363,6 +1472,10 @@ class MODEL_TENSOR(IntEnum): MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, ], + MODEL_ARCH.DEEPSEEK: [ + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_ROT_EMBD, + ], MODEL_ARCH.DEEPSEEK2: [ MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index 7a55d12965362..3023b539ae82b 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -631,6 +631,21 @@ def add_context_length(self, length: int) -> None: def add_embedding_length(self, length: int) -> None: self.add_uint32(Keys.LLM.EMBEDDING_LENGTH.format(arch=self.arch), length) + def add_features_length(self, length: int) -> None: + self.add_uint32(Keys.LLM.FEATURES_LENGTH.format(arch=self.arch), length) + + def add_posnet_embedding_length(self, length: int) -> None: + self.add_uint32(Keys.PosNet.EMBEDDING_LENGTH.format(arch=self.arch), length) + + def add_posnet_block_count(self, length: int) -> None: + self.add_uint32(Keys.PosNet.BLOCK_COUNT.format(arch=self.arch), length) + + def add_convnext_embedding_length(self, length: int) -> None: + self.add_uint32(Keys.ConvNext.EMBEDDING_LENGTH.format(arch=self.arch), length) + + def add_convnext_block_count(self, length: int) -> None: + self.add_uint32(Keys.ConvNext.BLOCK_COUNT.format(arch=self.arch), length) + def add_block_count(self, length: int) -> None: self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length) @@ -727,6 +742,12 @@ def add_layer_norm_eps(self, value: float) -> None: def add_layer_norm_rms_eps(self, value: float) -> None: self.add_float32(Keys.Attention.LAYERNORM_RMS_EPS.format(arch=self.arch), value) + def add_group_norm_eps(self, value: float) -> None: + self.add_float32(Keys.Attention.GROUPNORM_EPS.format(arch=self.arch), value) + + def add_group_norm_groups(self, value: int) -> None: + self.add_uint32(Keys.Attention.GROUPNORM_GROUPS.format(arch=self.arch), value) + def add_causal_attention(self, value: bool) -> None: self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value) @@ -751,6 +772,9 @@ def add_pooling_type(self, value: PoolingType) -> None: def add_rope_dimension_count(self, count: int) -> None: self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count) + def add_rope_dimension_sections(self, dims: Sequence[int]) -> None: + self.add_array(Keys.Rope.DIMENSION_SECTIONS.format(arch=self.arch), dims) + def add_rope_freq_base(self, value: float) -> None: self.add_float32(Keys.Rope.FREQ_BASE.format(arch=self.arch), value) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index f0a7b6478508e..82cdb121a1f26 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -42,6 +42,7 @@ class TensorNameMap: "emb_ln", # nomic-bert "transformer.norm", # openelm "rwkv.blocks.0.pre_ln", # rwkv + "backbone.norm", # wavtokenizer ), # Position embeddings @@ -60,6 +61,7 @@ class TensorNameMap: "lm_head.linear", # phi2 "output_layer", # chatglm "head", # rwkv + "head.out", # wavtokenizer ), # Output norm @@ -80,6 +82,7 @@ class TensorNameMap: "transformer.norm", # openelm "model.norm", # nemotron "rwkv.ln_out", # rwkv + "backbone.final_layer_norm", # wavtokenizer ), # Rope frequencies @@ -90,6 +93,10 @@ class TensorNameMap: MODEL_TENSOR.ROPE_FACTORS_LONG: (), MODEL_TENSOR.ROPE_FACTORS_SHORT: (), + + MODEL_TENSOR.CONV1D: ( + "backbone.embed", # roberta + ), } block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = { @@ -306,7 +313,7 @@ class TensorNameMap: MODEL_TENSOR.FFN_UP_SHEXP: ( "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe - "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2 + "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2 ), # AWQ-activation gate @@ -338,7 +345,7 @@ class TensorNameMap: MODEL_TENSOR.FFN_GATE_SHEXP: ( "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe - "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2 + "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2 ), # Feed-forward down @@ -379,7 +386,7 @@ class TensorNameMap: MODEL_TENSOR.FFN_DOWN_SHEXP: ( "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe - "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2 + "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2 ), MODEL_TENSOR.ATTN_Q_NORM: ( @@ -681,6 +688,8 @@ class TensorNameMap: "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5 ), + ############################################################################ + # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg MODEL_TENSOR.ENC_OUTPUT_NORM: ( "encoder.final_layer_norm", # t5 ), @@ -693,6 +702,67 @@ class TensorNameMap: MODEL_TENSOR.CLS_OUT: ( "classifier.out_proj", # roberta ), + ############################################################################# + + MODEL_TENSOR.CONVNEXT_DW: ( + "backbone.convnext.{bid}.dwconv", # wavtokenizer + ), + + MODEL_TENSOR.CONVNEXT_NORM: ( + "backbone.convnext.{bid}.norm", # wavtokenizer + ), + + MODEL_TENSOR.CONVNEXT_PW1: ( + "backbone.convnext.{bid}.pwconv1", # wavtokenizer + ), + + MODEL_TENSOR.CONVNEXT_PW2: ( + "backbone.convnext.{bid}.pwconv2", # wavtokenizer + ), + + MODEL_TENSOR.CONVNEXT_GAMMA: ( + "backbone.convnext.{bid}.gamma", # wavtokenizer + ), + + MODEL_TENSOR.POSNET_CONV1: ( + "backbone.posnet.{bid}.conv1", # wavtokenizer + ), + + MODEL_TENSOR.POSNET_CONV2: ( + "backbone.posnet.{bid}.conv2", # wavtokenizer + ), + + MODEL_TENSOR.POSNET_NORM: ( + "backbone.posnet.{bid}.norm", # wavtokenizer + ), + + MODEL_TENSOR.POSNET_NORM1: ( + "backbone.posnet.{bid}.norm1", # wavtokenizer + ), + + MODEL_TENSOR.POSNET_NORM2: ( + "backbone.posnet.{bid}.norm2", # wavtokenizer + ), + + MODEL_TENSOR.POSNET_ATTN_NORM: ( + "backbone.posnet.{bid}.norm", # wavtokenizer + ), + + MODEL_TENSOR.POSNET_ATTN_Q: ( + "backbone.posnet.{bid}.q", # wavtokenizer + ), + + MODEL_TENSOR.POSNET_ATTN_K: ( + "backbone.posnet.{bid}.k", # wavtokenizer + ), + + MODEL_TENSOR.POSNET_ATTN_V: ( + "backbone.posnet.{bid}.v", # wavtokenizer + ), + + MODEL_TENSOR.POSNET_ATTN_OUT: ( + "backbone.posnet.{bid}.proj_out", # wavtokenizer + ), } # architecture-specific block mappings diff --git a/gguf-py/pyproject.toml b/gguf-py/pyproject.toml index 10e94876c9c8e..9c39562560c9e 100644 --- a/gguf-py/pyproject.toml +++ b/gguf-py/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "gguf" -version = "0.11.0" +version = "0.13.0" description = "Read and write ML models in GGUF for GGML" authors = ["GGML "] packages = [ diff --git a/gguf-py/tests/test_quants.py b/gguf-py/tests/test_quants.py index 762067814224e..f04d5acce2793 100755 --- a/gguf-py/tests/test_quants.py +++ b/gguf-py/tests/test_quants.py @@ -136,7 +136,7 @@ def compare_tensors(t1: np.ndarray, t2: np.ndarray, qtype: GGMLQuantizationType) logger.debug(f"Sample bad block ({diff_bits[bad_block_id]} differing bits):\n{t1[bad_block_id]}\nReference:\n{t2[bad_block_id]}") sum_diff_bits = np.sum(diff_bits) - logger.debug(f"{sum_diff_bits} bits differ ({100 * sum_diff_bits/(x.size * 8):.6f}%)") + logger.debug(f"{sum_diff_bits} bits differ ({100 * sum_diff_bits / (x.size * 8):.6f}%)") return False diff --git a/include/llama.h b/include/llama.h index eebbacb803454..a4abf395bcd93 100644 --- a/include/llama.h +++ b/include/llama.h @@ -108,9 +108,11 @@ extern "C" { }; enum llama_rope_type { - LLAMA_ROPE_TYPE_NONE = -1, - LLAMA_ROPE_TYPE_NORM = 0, - LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX, + LLAMA_ROPE_TYPE_NONE = -1, + LLAMA_ROPE_TYPE_NORM = 0, + LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX, + LLAMA_ROPE_TYPE_MROPE = GGML_ROPE_TYPE_MROPE, + LLAMA_ROPE_TYPE_VISION = GGML_ROPE_TYPE_VISION, }; enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file @@ -480,9 +482,6 @@ extern "C" { // Returns the total number of parameters in the model LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model); - // Get a llama model tensor - LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name); - // Returns true if the model contains an encoder that requires llama_encode() call LLAMA_API bool llama_model_has_encoder(const struct llama_model * model); @@ -1137,16 +1136,12 @@ extern "C" { const char * grammar_str, const char * grammar_root); + /// NOTE: Avoid using on the full vocabulary as searching for repeated tokens can become slow. For example, apply top-k or top-p sampling first. LLAMA_API struct llama_sampler * llama_sampler_init_penalties( - int32_t n_vocab, // llama_n_vocab() - llama_token special_eos_id, // llama_token_eos() - llama_token linefeed_id, // llama_token_nl() - int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size) - float penalty_repeat, // 1.0 = disabled - float penalty_freq, // 0.0 = disabled - float penalty_present, // 0.0 = disabled - bool penalize_nl, // consider newlines as a repeatable token - bool ignore_eos); // ignore the end-of-sequence token + int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size) + float penalty_repeat, // 1.0 = disabled + float penalty_freq, // 0.0 = disabled + float penalty_present); // 0.0 = disabled /// @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982 LLAMA_API struct llama_sampler * llama_sampler_init_dry( diff --git a/scripts/compare-commits.sh b/scripts/compare-commits.sh index 143d987290daf..e40d1cc6d988f 100755 --- a/scripts/compare-commits.sh +++ b/scripts/compare-commits.sh @@ -20,11 +20,13 @@ if [ -n "$GGML_CUDA" ]; then cmake_opts="-DGGML_CUDA=ON" fi +dir="build-bench" + function run { - rm -fr build > /dev/null - cmake -B build -S . $cmake_opts > /dev/null - cmake --build build -t llama-bench > /dev/null - build/bin/llama-bench -o sql -oe md $bench_args | sqlite3 llama-bench.sqlite + rm -fr ${dir} > /dev/null + cmake -B ${dir} -S . $cmake_opts > /dev/null + cmake --build ${dir} -t llama-bench > /dev/null + ${dir}/bin/llama-bench -o sql -oe md $bench_args | sqlite3 llama-bench.sqlite } git checkout $1 > /dev/null diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index 47eae44f7d7b6..b4ac38bbf4669 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -74d66b63eaf207a24f3e93bb922aba131cbf2906 +e6d93f40dffe8733d5d72f1d8fa6b3ca27ae899f diff --git a/src/llama-sampling.cpp b/src/llama-sampling.cpp index fd8ca8a9edfac..bebff77cfa09d 100644 --- a/src/llama-sampling.cpp +++ b/src/llama-sampling.cpp @@ -1396,19 +1396,15 @@ struct llama_sampler * llama_sampler_init_grammar_impl(const struct llama_vocab // penalties struct llama_sampler_penalties { - const int32_t n_vocab; - const llama_token special_eos_id; - const llama_token linefeed_id; - const int32_t penalty_last_n; const float penalty_repeat; const float penalty_freq; const float penalty_present; - const bool penalize_nl; - const bool ignore_eos; - ring_buffer prev; + + // a frequency map to count token occurrences + std::unordered_map token_count; }; static const char * llama_sampler_penalties_name(const struct llama_sampler * /*smpl*/) { @@ -1421,76 +1417,50 @@ static void llama_sampler_penalties_accept(struct llama_sampler * smpl, llama_to return; } - ctx->prev.push_back(token); -} - -static void llama_sampler_penalties_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { - auto * ctx = (llama_sampler_penalties *) smpl->ctx; + ctx->token_count[token]++; - if (ctx->ignore_eos) { - assert(ctx->special_eos_id >= 0); + // if the ring buffer is full, remove the oldest token + if (ctx->prev.size() >= (size_t) ctx->penalty_last_n) { + const auto old = ctx->prev.front(); - // optimistically check if the candidates are not yet sorted/shuffled/truncated - if (cur_p->size > (size_t) ctx->special_eos_id && cur_p->data[ctx->special_eos_id].id == ctx->special_eos_id) { - cur_p->data[ctx->special_eos_id].logit = -INFINITY; - } else { - // else, search for the special EOS token - for (size_t i = 0; i < cur_p->size; ++i) { - if (cur_p->data[i].id == ctx->special_eos_id) { - cur_p->data[i].logit = -INFINITY; - break; - } - } + ctx->token_count[old]--; + if (ctx->token_count[old] == 0) { + ctx->token_count.erase(old); } } - if ((ctx->penalty_last_n == 0) || - (ctx->penalty_repeat == 1.0f && ctx->penalty_freq == 0.0f && ctx->penalty_present == 0.0f)) { - return; - } - - bool nl_found = false; - size_t nl_idx = 0; - float nl_logit = -INFINITY; - if (!ctx->penalize_nl) { - assert(ctx->linefeed_id >= 0); + ctx->prev.push_back(token); - // optimistically check if the candidates are not yet sorted/shuffled/truncated - if (cur_p->size > (size_t) ctx->linefeed_id && cur_p->data[ctx->linefeed_id].id == ctx->linefeed_id) { - nl_found = true; - nl_idx = ctx->linefeed_id; - nl_logit = cur_p->data[ctx->linefeed_id].logit; - } else { - // else, search for the linefeed token - for (size_t i = 0; i < cur_p->size; ++i) { - if (cur_p->data[i].id == ctx->linefeed_id) { - nl_found = true; - nl_idx = i; - nl_logit = cur_p->data[i].logit; - break; - } - } - } +#if 0 + // sanity check + std::unordered_map tmp; + for (int i = 0; i < std::min(ctx->penalty_last_n, ctx->prev.size()); ++i) { + tmp[ctx->prev.rat(i)]++; } - // Create a frequency map to count occurrences of each token in last_tokens - // TODO: optimize this by maintaining the token count in the sampler context - using llama_token_cnt = std::unordered_map; - llama_token_cnt token_count; + assert(ctx->token_count == tmp); +#endif +} + +static void llama_sampler_penalties_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { + auto * ctx = (llama_sampler_penalties *) smpl->ctx; - for (int i = 0; i < std::min(ctx->penalty_last_n, ctx->prev.size()); ++i) { - token_count[ctx->prev.rat(i)]++; + if ((ctx->penalty_last_n == 0) || + (ctx->penalty_repeat == 1.0f && ctx->penalty_freq == 0.0f && ctx->penalty_present == 0.0f)) { + return; } // Apply frequency and presence penalties to the cur_p for (size_t i = 0; i < cur_p->size; ++i) { - const auto token_iter = token_count.find(cur_p->data[i].id); - if (token_iter == token_count.end()) { + const auto token_iter = ctx->token_count.find(cur_p->data[i].id); + if (token_iter == ctx->token_count.end()) { continue; } const int count = token_iter->second; + assert(count > 0 && count <= ctx->penalty_last_n); + // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. // This is common fix for this problem, which is to multiply by the penalty instead of dividing. if (cur_p->data[i].logit <= 0) { @@ -1503,30 +1473,21 @@ static void llama_sampler_penalties_apply(struct llama_sampler * smpl, llama_tok } cur_p->sorted = false; - - if (!ctx->penalize_nl && nl_found) { - // restore the logit of the newline token if it was penalized - cur_p->data[nl_idx].logit = nl_logit; - } } static void llama_sampler_penalties_reset(struct llama_sampler * smpl) { auto * ctx = (llama_sampler_penalties *) smpl->ctx; ctx->prev.clear(); + ctx->token_count.clear(); } static struct llama_sampler * llama_sampler_penalties_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_penalties *) smpl->ctx; auto * result = llama_sampler_init_penalties( - ctx->n_vocab, - ctx->special_eos_id, - ctx->linefeed_id, ctx->penalty_last_n, ctx->penalty_repeat, ctx->penalty_freq, - ctx->penalty_present, - ctx->penalize_nl, - ctx->ignore_eos); + ctx->penalty_present); // copy the state { @@ -1552,38 +1513,21 @@ static struct llama_sampler_i llama_sampler_penalties_i = { }; struct llama_sampler * llama_sampler_init_penalties( - int32_t n_vocab, - llama_token special_eos_id, - llama_token linefeed_id, int32_t penalty_last_n, float penalty_repeat, float penalty_freq, - float penalty_present, - bool penalize_nl, - bool ignore_eos) { - if (linefeed_id == LLAMA_TOKEN_NULL) { - penalize_nl = true; - } - - if (special_eos_id == LLAMA_TOKEN_NULL) { - ignore_eos = false; - } - + float penalty_present) { penalty_last_n = std::max(penalty_last_n, 0); return new llama_sampler { /* .iface = */ &llama_sampler_penalties_i, /* .ctx = */ new llama_sampler_penalties { - /* .n_vocab = */ n_vocab, - /* .special_eos_id = */ special_eos_id, - /* .linefeed_id = */ linefeed_id, /* .penalty_last_n = */ penalty_last_n, /* .penalty_repeat = */ penalty_repeat, /* .penalty_freq = */ penalty_freq, /* .penalty_present = */ penalty_present, - /* .penalize_nl = */ penalize_nl, - /* .ignore_eos = */ ignore_eos, /* .prev = */ ring_buffer(penalty_last_n), + /* .token_count = */ {}, }, }; } @@ -1611,7 +1555,8 @@ static void get_overlapping_token_sequences(const llama_vocab & vocab, const std if (word.find(str) != std::string::npos) { token_sequences.emplace(token_id, std::vector()); } else { - size_t word_len = word.size(), str_len = str.size(); + size_t word_len = word.size(); + size_t str_len = str.size(); size_t pos = -1; while ((pos = word.find(str[0], pos + 1)) != std::string::npos) { bool match = true; diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 8c9aaf5a0c85d..7f2725f94be13 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -738,7 +738,7 @@ struct llm_tokenizer_wpm_session { std::vector words(1, ""); for (const uint32_t cpt : cpts_nfd) { - const auto flags = unicode_cpt_flags(cpt); + const auto flags = unicode_cpt_flags_from_cpt(cpt); if (flags.is_whitespace) { if (words.back().size()) { // finish previous word if any @@ -1867,6 +1867,10 @@ int32_t llama_detokenize_impl( int32_t text_len_max, bool remove_special, bool unparse_special) { + if (vocab.type == LLAMA_VOCAB_TYPE_NONE) { + return 0; + } + GGML_ASSERT(vocab.tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first."); int32_t avail = text_len_max; diff --git a/src/llama.cpp b/src/llama.cpp index 87a246097720f..ac6b2e1003a54 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -163,6 +163,7 @@ enum llm_arch { LLM_ARCH_QWEN, LLM_ARCH_QWEN2, LLM_ARCH_QWEN2MOE, + LLM_ARCH_QWEN2VL, LLM_ARCH_PHI2, LLM_ARCH_PHI3, LLM_ARCH_PLAMO, @@ -183,6 +184,7 @@ enum llm_arch { LLM_ARCH_OLMOE, LLM_ARCH_OPENELM, LLM_ARCH_ARCTIC, + LLM_ARCH_DEEPSEEK, LLM_ARCH_DEEPSEEK2, LLM_ARCH_CHATGLM, LLM_ARCH_BITNET, @@ -195,61 +197,65 @@ enum llm_arch { LLM_ARCH_GRANITE, LLM_ARCH_GRANITE_MOE, LLM_ARCH_CHAMELEON, + LLM_ARCH_WAVTOKENIZER_DEC, LLM_ARCH_UNKNOWN, }; static const std::map LLM_ARCH_NAMES = { - { LLM_ARCH_LLAMA, "llama" }, - { LLM_ARCH_FALCON, "falcon" }, - { LLM_ARCH_GROK, "grok" }, - { LLM_ARCH_GPT2, "gpt2" }, - { LLM_ARCH_GPTJ, "gptj" }, - { LLM_ARCH_GPTNEOX, "gptneox" }, - { LLM_ARCH_MPT, "mpt" }, - { LLM_ARCH_BAICHUAN, "baichuan" }, - { LLM_ARCH_STARCODER, "starcoder" }, - { LLM_ARCH_REFACT, "refact" }, - { LLM_ARCH_BERT, "bert" }, - { LLM_ARCH_NOMIC_BERT, "nomic-bert" }, - { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" }, - { LLM_ARCH_BLOOM, "bloom" }, - { LLM_ARCH_STABLELM, "stablelm" }, - { LLM_ARCH_QWEN, "qwen" }, - { LLM_ARCH_QWEN2, "qwen2" }, - { LLM_ARCH_QWEN2MOE, "qwen2moe" }, - { LLM_ARCH_PHI2, "phi2" }, - { LLM_ARCH_PHI3, "phi3" }, - { LLM_ARCH_PLAMO, "plamo" }, - { LLM_ARCH_CODESHELL, "codeshell" }, - { LLM_ARCH_ORION, "orion" }, - { LLM_ARCH_INTERNLM2, "internlm2" }, - { LLM_ARCH_MINICPM, "minicpm" }, - { LLM_ARCH_MINICPM3, "minicpm3" }, - { LLM_ARCH_GEMMA, "gemma" }, - { LLM_ARCH_GEMMA2, "gemma2" }, - { LLM_ARCH_STARCODER2, "starcoder2" }, - { LLM_ARCH_MAMBA, "mamba" }, - { LLM_ARCH_XVERSE, "xverse" }, - { LLM_ARCH_COMMAND_R, "command-r" }, - { LLM_ARCH_DBRX, "dbrx" }, - { LLM_ARCH_OLMO, "olmo" }, - { LLM_ARCH_OLMO2, "olmo2" }, - { LLM_ARCH_OLMOE, "olmoe" }, - { LLM_ARCH_OPENELM, "openelm" }, - { LLM_ARCH_ARCTIC, "arctic" }, - { LLM_ARCH_DEEPSEEK2, "deepseek2" }, - { LLM_ARCH_CHATGLM, "chatglm" }, - { LLM_ARCH_BITNET, "bitnet" }, - { LLM_ARCH_T5, "t5" }, - { LLM_ARCH_T5ENCODER, "t5encoder" }, - { LLM_ARCH_JAIS, "jais" }, - { LLM_ARCH_NEMOTRON, "nemotron" }, - { LLM_ARCH_EXAONE, "exaone" }, - { LLM_ARCH_RWKV6, "rwkv6" }, - { LLM_ARCH_GRANITE, "granite" }, - { LLM_ARCH_GRANITE_MOE, "granitemoe" }, - { LLM_ARCH_CHAMELEON, "chameleon" }, - { LLM_ARCH_UNKNOWN, "(unknown)" }, + { LLM_ARCH_LLAMA, "llama" }, + { LLM_ARCH_FALCON, "falcon" }, + { LLM_ARCH_GROK, "grok" }, + { LLM_ARCH_GPT2, "gpt2" }, + { LLM_ARCH_GPTJ, "gptj" }, + { LLM_ARCH_GPTNEOX, "gptneox" }, + { LLM_ARCH_MPT, "mpt" }, + { LLM_ARCH_BAICHUAN, "baichuan" }, + { LLM_ARCH_STARCODER, "starcoder" }, + { LLM_ARCH_REFACT, "refact" }, + { LLM_ARCH_BERT, "bert" }, + { LLM_ARCH_NOMIC_BERT, "nomic-bert" }, + { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" }, + { LLM_ARCH_BLOOM, "bloom" }, + { LLM_ARCH_STABLELM, "stablelm" }, + { LLM_ARCH_QWEN, "qwen" }, + { LLM_ARCH_QWEN2, "qwen2" }, + { LLM_ARCH_QWEN2MOE, "qwen2moe" }, + { LLM_ARCH_QWEN2VL, "qwen2vl" }, + { LLM_ARCH_PHI2, "phi2" }, + { LLM_ARCH_PHI3, "phi3" }, + { LLM_ARCH_PLAMO, "plamo" }, + { LLM_ARCH_CODESHELL, "codeshell" }, + { LLM_ARCH_ORION, "orion" }, + { LLM_ARCH_INTERNLM2, "internlm2" }, + { LLM_ARCH_MINICPM, "minicpm" }, + { LLM_ARCH_MINICPM3, "minicpm3" }, + { LLM_ARCH_GEMMA, "gemma" }, + { LLM_ARCH_GEMMA2, "gemma2" }, + { LLM_ARCH_STARCODER2, "starcoder2" }, + { LLM_ARCH_MAMBA, "mamba" }, + { LLM_ARCH_XVERSE, "xverse" }, + { LLM_ARCH_COMMAND_R, "command-r" }, + { LLM_ARCH_DBRX, "dbrx" }, + { LLM_ARCH_OLMO, "olmo" }, + { LLM_ARCH_OLMO2, "olmo2" }, + { LLM_ARCH_OLMOE, "olmoe" }, + { LLM_ARCH_OPENELM, "openelm" }, + { LLM_ARCH_ARCTIC, "arctic" }, + { LLM_ARCH_DEEPSEEK, "deepseek" }, + { LLM_ARCH_DEEPSEEK2, "deepseek2" }, + { LLM_ARCH_CHATGLM, "chatglm" }, + { LLM_ARCH_BITNET, "bitnet" }, + { LLM_ARCH_T5, "t5" }, + { LLM_ARCH_T5ENCODER, "t5encoder" }, + { LLM_ARCH_JAIS, "jais" }, + { LLM_ARCH_NEMOTRON, "nemotron" }, + { LLM_ARCH_EXAONE, "exaone" }, + { LLM_ARCH_RWKV6, "rwkv6" }, + { LLM_ARCH_GRANITE, "granite" }, + { LLM_ARCH_GRANITE_MOE, "granitemoe" }, + { LLM_ARCH_CHAMELEON, "chameleon" }, + { LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" }, + { LLM_ARCH_UNKNOWN, "(unknown)" }, }; enum llm_kv { @@ -269,6 +275,7 @@ enum llm_kv { LLM_KV_VOCAB_SIZE, LLM_KV_CONTEXT_LENGTH, LLM_KV_EMBEDDING_LENGTH, + LLM_KV_FEATURES_LENGTH, LLM_KV_BLOCK_COUNT, LLM_KV_LEADING_DENSE_BLOCK_COUNT, LLM_KV_FEED_FORWARD_LENGTH, @@ -300,6 +307,8 @@ enum llm_kv { LLM_KV_ATTENTION_VALUE_LENGTH, LLM_KV_ATTENTION_LAYERNORM_EPS, LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, + LLM_KV_ATTENTION_GROUPNORM_EPS, + LLM_KV_ATTENTION_GROUPNORM_GROUPS, LLM_KV_ATTENTION_CAUSAL, LLM_KV_ATTENTION_Q_LORA_RANK, LLM_KV_ATTENTION_KV_LORA_RANK, @@ -308,6 +317,7 @@ enum llm_kv { LLM_KV_ATTENTION_SCALE, LLM_KV_ROPE_DIMENSION_COUNT, + LLM_KV_ROPE_DIMENSION_SECTIONS, LLM_KV_ROPE_FREQ_BASE, LLM_KV_ROPE_SCALE_LINEAR, LLM_KV_ROPE_SCALING_TYPE, @@ -362,6 +372,12 @@ enum llm_kv { LLM_KV_ADAPTER_TYPE, LLM_KV_ADAPTER_LORA_ALPHA, + LLM_KV_POSNET_EMBEDDING_LENGTH, + LLM_KV_POSNET_BLOCK_COUNT, + + LLM_KV_CONVNEXT_EMBEDDING_LENGTH, + LLM_KV_CONVNEXT_BLOCK_COUNT, + // deprecated: LLM_KV_TOKENIZER_PREFIX_ID, LLM_KV_TOKENIZER_SUFFIX_ID, @@ -385,6 +401,7 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_VOCAB_SIZE, "%s.vocab_size" }, { LLM_KV_CONTEXT_LENGTH, "%s.context_length" }, { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" }, + { LLM_KV_FEATURES_LENGTH, "%s.features_length" }, { LLM_KV_BLOCK_COUNT, "%s.block_count" }, { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" }, { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" }, @@ -416,6 +433,8 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" }, { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" }, { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" }, + { LLM_KV_ATTENTION_GROUPNORM_EPS, "%s.attention.group_norm_epsilon" }, + { LLM_KV_ATTENTION_GROUPNORM_GROUPS, "%s.attention.group_norm_groups" }, { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" }, { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" }, { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" }, @@ -424,6 +443,7 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_ATTENTION_SCALE, "%s.attention.scale" }, { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, + { LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" }, { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" }, { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" }, { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" }, @@ -445,6 +465,12 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_WKV_HEAD_SIZE, "%s.wkv.head_size" }, + { LLM_KV_POSNET_EMBEDDING_LENGTH, "%s.posnet.embedding_length" }, + { LLM_KV_POSNET_BLOCK_COUNT, "%s.posnet.block_count" }, + + { LLM_KV_CONVNEXT_EMBEDDING_LENGTH, "%s.convnext.embedding_length" }, + { LLM_KV_CONVNEXT_BLOCK_COUNT, "%s.convnext.block_count" }, + { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" }, { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" }, { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" }, @@ -603,6 +629,22 @@ enum llm_tensor { LLM_TENSOR_ENC_OUTPUT_NORM, LLM_TENSOR_CLS, LLM_TENSOR_CLS_OUT, + LLM_TENSOR_CONV1D, + LLM_TENSOR_CONVNEXT_DW, + LLM_TENSOR_CONVNEXT_NORM, + LLM_TENSOR_CONVNEXT_PW1, + LLM_TENSOR_CONVNEXT_PW2, + LLM_TENSOR_CONVNEXT_GAMMA, + LLM_TENSOR_POS_NET_CONV1, + LLM_TENSOR_POS_NET_CONV2, + LLM_TENSOR_POS_NET_NORM, + LLM_TENSOR_POS_NET_NORM1, + LLM_TENSOR_POS_NET_NORM2, + LLM_TENSOR_POS_NET_ATTN_NORM, + LLM_TENSOR_POS_NET_ATTN_Q, + LLM_TENSOR_POS_NET_ATTN_K, + LLM_TENSOR_POS_NET_ATTN_V, + LLM_TENSOR_POS_NET_ATTN_OUT, }; static const std::map> LLM_TENSOR_NAMES = { @@ -898,6 +940,23 @@ static const std::map> LLM_TENSOR_N { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_QWEN2VL, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_QWEN2MOE, { @@ -1288,6 +1347,33 @@ static const std::map> LLM_TENSOR_N { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, }, }, + { + LLM_ARCH_DEEPSEEK, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" }, + { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, + { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, + { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, + }, + }, { LLM_ARCH_DEEPSEEK2, { @@ -1543,6 +1629,31 @@ static const std::map> LLM_TENSOR_N { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, }, }, + { + LLM_ARCH_WAVTOKENIZER_DEC, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, + { LLM_TENSOR_CONV1D, "conv1d" }, + { LLM_TENSOR_CONVNEXT_DW, "convnext.%d.dw" }, + { LLM_TENSOR_CONVNEXT_NORM, "convnext.%d.norm" }, + { LLM_TENSOR_CONVNEXT_PW1, "convnext.%d.pw1" }, + { LLM_TENSOR_CONVNEXT_PW2, "convnext.%d.pw2" }, + { LLM_TENSOR_CONVNEXT_GAMMA, "convnext.%d.gamma" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_POS_NET_CONV1, "posnet.%d.conv1" }, + { LLM_TENSOR_POS_NET_CONV2, "posnet.%d.conv2" }, + { LLM_TENSOR_POS_NET_NORM, "posnet.%d.norm" }, + { LLM_TENSOR_POS_NET_NORM1, "posnet.%d.norm1" }, + { LLM_TENSOR_POS_NET_NORM2, "posnet.%d.norm2" }, + { LLM_TENSOR_POS_NET_ATTN_NORM, "posnet.%d.attn_norm" }, + { LLM_TENSOR_POS_NET_ATTN_Q, "posnet.%d.attn_q" }, + { LLM_TENSOR_POS_NET_ATTN_K, "posnet.%d.attn_k" }, + { LLM_TENSOR_POS_NET_ATTN_V, "posnet.%d.attn_v" }, + { LLM_TENSOR_POS_NET_ATTN_OUT, "posnet.%d.attn_output" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -1579,6 +1690,7 @@ enum llm_chat_template { LLM_CHAT_TEMPLATE_EXAONE_3, LLM_CHAT_TEMPLATE_RWKV_WORLD, LLM_CHAT_TEMPLATE_GRANITE, + LLM_CHAT_TEMPLATE_GIGACHAT, LLM_CHAT_TEMPLATE_UNKNOWN, }; @@ -1610,6 +1722,7 @@ static const std::map LLM_CHAT_TEMPLATES = { { "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 }, { "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD }, { "granite", LLM_CHAT_TEMPLATE_GRANITE }, + { "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT }, }; static llm_arch llm_arch_from_string(const std::string & name) { @@ -2431,15 +2544,26 @@ static const size_t kiB = 1024; static const size_t MiB = 1024*kiB; static const size_t GiB = 1024*MiB; +struct llama_hparams_posnet { + uint32_t n_embd; + uint32_t n_layer; +}; + +struct llama_hparams_convnext { + uint32_t n_embd; + uint32_t n_layer; +}; + struct llama_hparams { bool vocab_only; bool rope_finetuned; bool use_par_res; bool swin_norm; - uint32_t n_vocab; + uint32_t n_vocab = 0; uint32_t n_ctx_train; // context size the model was trained on uint32_t n_embd; + uint32_t n_embd_features = 0; uint32_t n_layer; uint32_t n_rot; uint32_t n_swa = 0; // sliding window attention (SWA) @@ -2450,6 +2574,10 @@ struct llama_hparams { uint32_t n_vocab_type = 0; // for BERT-style token types uint32_t n_rel_attn_bkts = 0; + // for WavTokenizer + struct llama_hparams_posnet posnet; + struct llama_hparams_convnext convnext; + std::array n_head_arr; std::array n_head_kv_arr; std::array n_ff_arr; @@ -2464,6 +2592,9 @@ struct llama_hparams { float f_norm_eps; float f_norm_rms_eps; + float f_norm_group_eps; + + uint32_t n_norm_groups; float f_attn_logit_softcapping = 50.0f; float f_final_logit_softcapping = 30.0f; @@ -2474,11 +2605,12 @@ struct llama_hparams { uint32_t time_decay_extra_dim = 0; uint32_t wkv_head_size = 0; - float rope_attn_factor = 1.0f; - float rope_freq_base_train; - float rope_freq_scale_train; - uint32_t n_ctx_orig_yarn; - float rope_yarn_log_mul; + float rope_attn_factor = 1.0f; + float rope_freq_base_train; + float rope_freq_scale_train; + uint32_t n_ctx_orig_yarn; + float rope_yarn_log_mul; + int rope_sections[4]; // for State Space Models uint32_t ssm_d_conv = 0; @@ -2508,63 +2640,6 @@ struct llama_hparams { enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE; - bool operator!=(const llama_hparams & other) const { - if (this->vocab_only != other.vocab_only) return true; - if (this->n_vocab != other.n_vocab) return true; - if (this->n_ctx_train != other.n_ctx_train) return true; - if (this->n_embd != other.n_embd) return true; - if (this->n_layer != other.n_layer) return true; - if (this->n_rot != other.n_rot) return true; - if (this->n_swa != other.n_swa) return true; - if (this->n_embd_head_k != other.n_embd_head_k) return true; - if (this->n_embd_head_v != other.n_embd_head_v) return true; - if (this->n_expert != other.n_expert) return true; - if (this->n_expert_used != other.n_expert_used) return true; - - if (this->n_head_arr != other.n_head_arr) return true; - if (this->n_head_kv_arr != other.n_head_kv_arr) return true; - if (this->n_ff_arr != other.n_ff_arr) return true; - - if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true; - if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true; - if (this->n_lora_q != other.n_lora_q) return true; - if (this->n_lora_kv != other.n_lora_kv) return true; - if (this->n_ff_exp != other.n_ff_exp) return true; - if (this->n_ff_shexp != other.n_ff_shexp) return true; - if (this->n_expert_shared != other.n_expert_shared) return true; - - if (this->rope_finetuned != other.rope_finetuned) return true; - if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true; - - if (this->ssm_d_conv != other.ssm_d_conv) return true; - if (this->ssm_d_inner != other.ssm_d_inner) return true; - if (this->ssm_d_state != other.ssm_d_state) return true; - if (this->ssm_dt_rank != other.ssm_dt_rank) return true; - if (this->ssm_dt_b_c_rms != other.ssm_dt_b_c_rms) return true; - - if (this->rescale_every_n_layers != other.rescale_every_n_layers) return true; - if (this->time_mix_extra_dim != other.time_mix_extra_dim) return true; - if (this->time_decay_extra_dim != other.time_decay_extra_dim) return true; - if (this->wkv_head_size != other.wkv_head_size) return true; - - if (this->dec_start_token_id != other.dec_start_token_id) return true; - - const float EPSILON = 1e-9f; - - if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true; - if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true; - if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true; - if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true; - if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true; - if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true; - if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true; - if (!is_float_close(this->f_residual_scale, other.f_residual_scale, EPSILON)) return true; - if (!is_float_close(this->f_embedding_scale, other.f_embedding_scale, EPSILON)) return true; - if (!is_float_close(this->f_attention_scale, other.f_attention_scale, EPSILON)) return true; - - return false; - } - uint32_t n_head(uint32_t il = 0) const { if (il < n_layer) { return n_head_arr[il]; @@ -2617,21 +2692,21 @@ struct llama_hparams { if (wkv_head_size != 0) { // for RWKV models return 2 * n_embd; - } else { - // TODO: maybe support other convolution strides than 1 - // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed - return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner; } + + // TODO: maybe support other convolution strides than 1 + // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed + return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner; } uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings if (wkv_head_size != 0) { // corresponds to RWKV's wkv_states size return n_embd * wkv_head_size; - } else { - // corresponds to Mamba's ssm_states size - return ssm_d_state * ssm_d_inner; } + + // corresponds to Mamba's ssm_states size + return ssm_d_state * ssm_d_inner; } }; @@ -2669,142 +2744,187 @@ struct llama_cparams { void * cb_eval_user_data; }; -// TODO: separate into "llama_layer_enc" and "llama_layer_dec" -struct llama_layer { - llama_layer() { - // initialize all pointers to NULL - std::memset(this, 0, sizeof(*this)); - } +struct llama_layer_posnet { + // resnet + struct ggml_tensor * norm1 = nullptr; + struct ggml_tensor * norm1_b = nullptr; + + struct ggml_tensor * conv1 = nullptr; + struct ggml_tensor * conv1_b = nullptr; + + struct ggml_tensor * norm2 = nullptr; + struct ggml_tensor * norm2_b = nullptr; + + struct ggml_tensor * conv2 = nullptr; + struct ggml_tensor * conv2_b = nullptr; + + // attention + struct ggml_tensor * attn_norm = nullptr; + struct ggml_tensor * attn_norm_b = nullptr; + + struct ggml_tensor * attn_q = nullptr; + struct ggml_tensor * attn_q_b = nullptr; + + struct ggml_tensor * attn_k = nullptr; + struct ggml_tensor * attn_k_b = nullptr; + + struct ggml_tensor * attn_v = nullptr; + struct ggml_tensor * attn_v_b = nullptr; + + struct ggml_tensor * attn_o = nullptr; + struct ggml_tensor * attn_o_b = nullptr; + + // normalize + struct ggml_tensor * norm = nullptr; + struct ggml_tensor * norm_b = nullptr; +}; +struct llama_layer_convnext { + struct ggml_tensor * dw = nullptr; + struct ggml_tensor * dw_b = nullptr; + + struct ggml_tensor * norm = nullptr; + struct ggml_tensor * norm_b = nullptr; + + struct ggml_tensor * pw1 = nullptr; + struct ggml_tensor * pw1_b = nullptr; + + struct ggml_tensor * pw2 = nullptr; + struct ggml_tensor * pw2_b = nullptr; + + struct ggml_tensor * gamma = nullptr; +}; + +struct llama_layer { // normalization - struct ggml_tensor * attn_norm; - struct ggml_tensor * attn_norm_b; - struct ggml_tensor * attn_norm_2; - struct ggml_tensor * attn_norm_2_b; - struct ggml_tensor * attn_q_norm; - struct ggml_tensor * attn_q_norm_b; - struct ggml_tensor * attn_k_norm; - struct ggml_tensor * attn_k_norm_b; - struct ggml_tensor * attn_out_norm; - struct ggml_tensor * attn_out_norm_b; - struct ggml_tensor * attn_q_a_norm; - struct ggml_tensor * attn_kv_a_norm; - struct ggml_tensor * attn_sub_norm; - struct ggml_tensor * attn_post_norm; - struct ggml_tensor * ffn_sub_norm; - struct ggml_tensor * attn_norm_cross; - struct ggml_tensor * attn_norm_enc; + struct ggml_tensor * attn_norm = nullptr; + struct ggml_tensor * attn_norm_b = nullptr; + struct ggml_tensor * attn_norm_2 = nullptr; + struct ggml_tensor * attn_norm_2_b = nullptr; + struct ggml_tensor * attn_q_norm = nullptr; + struct ggml_tensor * attn_q_norm_b = nullptr; + struct ggml_tensor * attn_k_norm = nullptr; + struct ggml_tensor * attn_k_norm_b = nullptr; + struct ggml_tensor * attn_out_norm = nullptr; + struct ggml_tensor * attn_out_norm_b = nullptr; + struct ggml_tensor * attn_q_a_norm = nullptr; + struct ggml_tensor * attn_kv_a_norm = nullptr; + struct ggml_tensor * attn_sub_norm = nullptr; + struct ggml_tensor * attn_post_norm = nullptr; + struct ggml_tensor * ffn_sub_norm = nullptr; + struct ggml_tensor * attn_norm_cross = nullptr; + struct ggml_tensor * attn_norm_enc = nullptr; // attention - struct ggml_tensor * wq; - struct ggml_tensor * wk; - struct ggml_tensor * wv; - struct ggml_tensor * wo; - struct ggml_tensor * wqkv; - struct ggml_tensor * wq_a; - struct ggml_tensor * wq_b; - struct ggml_tensor * wkv_a_mqa; - struct ggml_tensor * wkv_b; - struct ggml_tensor * wq_cross; - struct ggml_tensor * wk_cross; - struct ggml_tensor * wv_cross; - struct ggml_tensor * wo_cross; - struct ggml_tensor * wq_enc; - struct ggml_tensor * wk_enc; - struct ggml_tensor * wv_enc; - struct ggml_tensor * wo_enc; + struct ggml_tensor * wq = nullptr; + struct ggml_tensor * wk = nullptr; + struct ggml_tensor * wv = nullptr; + struct ggml_tensor * wo = nullptr; + struct ggml_tensor * wqkv = nullptr; + struct ggml_tensor * wq_a = nullptr; + struct ggml_tensor * wq_b = nullptr; + struct ggml_tensor * wkv_a_mqa = nullptr; + struct ggml_tensor * wkv_b = nullptr; + struct ggml_tensor * wq_cross = nullptr; + struct ggml_tensor * wk_cross = nullptr; + struct ggml_tensor * wv_cross = nullptr; + struct ggml_tensor * wo_cross = nullptr; + struct ggml_tensor * wq_enc = nullptr; + struct ggml_tensor * wk_enc = nullptr; + struct ggml_tensor * wv_enc = nullptr; + struct ggml_tensor * wo_enc = nullptr; // attention bias - struct ggml_tensor * bq; - struct ggml_tensor * bk; - struct ggml_tensor * bv; - struct ggml_tensor * bo; - struct ggml_tensor * bqkv; + struct ggml_tensor * bq = nullptr; + struct ggml_tensor * bk = nullptr; + struct ggml_tensor * bv = nullptr; + struct ggml_tensor * bo = nullptr; + struct ggml_tensor * bqkv = nullptr; // relative position bias - struct ggml_tensor * attn_rel_b; - struct ggml_tensor * attn_rel_b_enc; - struct ggml_tensor * attn_rel_b_cross; + struct ggml_tensor * attn_rel_b = nullptr; + struct ggml_tensor * attn_rel_b_enc = nullptr; + struct ggml_tensor * attn_rel_b_cross = nullptr; // normalization - struct ggml_tensor * ffn_norm; - struct ggml_tensor * ffn_norm_b; - struct ggml_tensor * ffn_post_norm; - struct ggml_tensor * layer_out_norm; - struct ggml_tensor * layer_out_norm_b; - struct ggml_tensor * ffn_norm_exps; - struct ggml_tensor * ffn_norm_enc; + struct ggml_tensor * ffn_norm = nullptr; + struct ggml_tensor * ffn_norm_b = nullptr; + struct ggml_tensor * ffn_post_norm = nullptr; + struct ggml_tensor * layer_out_norm = nullptr; + struct ggml_tensor * layer_out_norm_b = nullptr; + struct ggml_tensor * ffn_norm_exps = nullptr; + struct ggml_tensor * ffn_norm_enc = nullptr; // ff - struct ggml_tensor * ffn_gate; // w1 - struct ggml_tensor * ffn_down; // w2 - struct ggml_tensor * ffn_up; // w3 - struct ggml_tensor * ffn_gate_enc; - struct ggml_tensor * ffn_down_enc; - struct ggml_tensor * ffn_up_enc; + struct ggml_tensor * ffn_gate = nullptr; // w1 + struct ggml_tensor * ffn_down = nullptr; // w2 + struct ggml_tensor * ffn_up = nullptr; // w3 + struct ggml_tensor * ffn_gate_enc = nullptr; + struct ggml_tensor * ffn_down_enc = nullptr; + struct ggml_tensor * ffn_up_enc = nullptr; // ff MoE - struct ggml_tensor * ffn_gate_inp; - struct ggml_tensor * ffn_gate_exps; - struct ggml_tensor * ffn_down_exps; - struct ggml_tensor * ffn_up_exps ; + struct ggml_tensor * ffn_gate_inp = nullptr; + struct ggml_tensor * ffn_gate_exps = nullptr; + struct ggml_tensor * ffn_down_exps = nullptr; + struct ggml_tensor * ffn_up_exps = nullptr; // ff shared expert (shexp) - struct ggml_tensor * ffn_gate_inp_shexp; - struct ggml_tensor * ffn_gate_shexp; - struct ggml_tensor * ffn_down_shexp; - struct ggml_tensor * ffn_up_shexp; + struct ggml_tensor * ffn_gate_inp_shexp = nullptr; + struct ggml_tensor * ffn_gate_shexp = nullptr; + struct ggml_tensor * ffn_down_shexp = nullptr; + struct ggml_tensor * ffn_up_shexp = nullptr; // ff bias - struct ggml_tensor * ffn_gate_b; - struct ggml_tensor * ffn_down_b; // b2 - struct ggml_tensor * ffn_up_b; // b3 - struct ggml_tensor * ffn_act; + struct ggml_tensor * ffn_gate_b = nullptr; + struct ggml_tensor * ffn_down_b = nullptr; // b2 + struct ggml_tensor * ffn_up_b = nullptr; // b3 + struct ggml_tensor * ffn_act = nullptr; // mamba proj - struct ggml_tensor * ssm_in; - struct ggml_tensor * ssm_x; - struct ggml_tensor * ssm_dt; - struct ggml_tensor * ssm_out; + struct ggml_tensor * ssm_in = nullptr; + struct ggml_tensor * ssm_x = nullptr; + struct ggml_tensor * ssm_dt = nullptr; + struct ggml_tensor * ssm_out = nullptr; // mamba - struct ggml_tensor * ssm_conv1d; - struct ggml_tensor * ssm_a; - struct ggml_tensor * ssm_d; + struct ggml_tensor * ssm_conv1d = nullptr; + struct ggml_tensor * ssm_a = nullptr; + struct ggml_tensor * ssm_d = nullptr; // mamba bias - struct ggml_tensor * ssm_conv1d_b; - struct ggml_tensor * ssm_dt_b; + struct ggml_tensor * ssm_conv1d_b = nullptr; + struct ggml_tensor * ssm_dt_b = nullptr; // rwkv - struct ggml_tensor * time_mix_w1; - struct ggml_tensor * time_mix_w2; - struct ggml_tensor * time_mix_lerp_x; - struct ggml_tensor * time_mix_lerp_w; - struct ggml_tensor * time_mix_lerp_k; - struct ggml_tensor * time_mix_lerp_v; - struct ggml_tensor * time_mix_lerp_r; - struct ggml_tensor * time_mix_lerp_g; - - struct ggml_tensor * time_mix_first; - struct ggml_tensor * time_mix_decay; - struct ggml_tensor * time_mix_decay_w1; - struct ggml_tensor * time_mix_decay_w2; - struct ggml_tensor * time_mix_key; - struct ggml_tensor * time_mix_value; - struct ggml_tensor * time_mix_receptance; - struct ggml_tensor * time_mix_gate; - - struct ggml_tensor * time_mix_ln; - struct ggml_tensor * time_mix_ln_b; - struct ggml_tensor * time_mix_output; - - struct ggml_tensor * channel_mix_lerp_k; - struct ggml_tensor * channel_mix_lerp_r; - - struct ggml_tensor * channel_mix_key; - struct ggml_tensor * channel_mix_receptance; - struct ggml_tensor * channel_mix_value; + struct ggml_tensor * time_mix_w1 = nullptr; + struct ggml_tensor * time_mix_w2 = nullptr; + struct ggml_tensor * time_mix_lerp_x = nullptr; + struct ggml_tensor * time_mix_lerp_w = nullptr; + struct ggml_tensor * time_mix_lerp_k = nullptr; + struct ggml_tensor * time_mix_lerp_v = nullptr; + struct ggml_tensor * time_mix_lerp_r = nullptr; + struct ggml_tensor * time_mix_lerp_g = nullptr; + + struct ggml_tensor * time_mix_first = nullptr; + struct ggml_tensor * time_mix_decay = nullptr; + struct ggml_tensor * time_mix_decay_w1 = nullptr; + struct ggml_tensor * time_mix_decay_w2 = nullptr; + struct ggml_tensor * time_mix_key = nullptr; + struct ggml_tensor * time_mix_value = nullptr; + struct ggml_tensor * time_mix_receptance = nullptr; + struct ggml_tensor * time_mix_gate = nullptr; + + struct ggml_tensor * time_mix_ln = nullptr; + struct ggml_tensor * time_mix_ln_b = nullptr; + struct ggml_tensor * time_mix_output = nullptr; + + struct ggml_tensor * channel_mix_lerp_k = nullptr; + struct ggml_tensor * channel_mix_lerp_r = nullptr; + + struct ggml_tensor * channel_mix_key = nullptr; + struct ggml_tensor * channel_mix_receptance = nullptr; + struct ggml_tensor * channel_mix_value = nullptr; // long rope factors struct ggml_tensor * rope_long = nullptr; @@ -2812,13 +2932,17 @@ struct llama_layer { struct ggml_tensor * rope_freqs = nullptr; // bitnet scale - struct ggml_tensor * wq_scale; - struct ggml_tensor * wk_scale; - struct ggml_tensor * wv_scale; - struct ggml_tensor * wo_scale; - struct ggml_tensor * ffn_gate_scale; - struct ggml_tensor * ffn_up_scale; - struct ggml_tensor * ffn_down_scale; + struct ggml_tensor * wq_scale = nullptr; + struct ggml_tensor * wk_scale = nullptr; + struct ggml_tensor * wv_scale = nullptr; + struct ggml_tensor * wo_scale = nullptr; + struct ggml_tensor * ffn_gate_scale = nullptr; + struct ggml_tensor * ffn_up_scale = nullptr; + struct ggml_tensor * ffn_down_scale = nullptr; + + struct llama_layer_posnet posnet; + + struct llama_layer_convnext convnext; }; // very similar to llama_batch, @@ -2949,6 +3073,9 @@ struct llama_model { struct ggml_tensor * cls_out = nullptr; struct ggml_tensor * cls_out_b = nullptr; + struct ggml_tensor * conv1d = nullptr; + struct ggml_tensor * conv1d_b = nullptr; + std::vector layers; // gguf metadata @@ -3033,6 +3160,7 @@ struct llama_sbatch { // batch indices of the output std::vector out_ids; std::vector seq; + const llama_batch * batch = nullptr; // buffers for the ubatch @@ -3378,6 +3506,11 @@ struct llama_context { // whether we are computing encoder output or decoder output bool is_encoding = false; + // TODO: find a better way to accommodate mutli-dimension position encoding methods + // number of position id each token get, 1 for each token in most cases. + // when using m-rope, it will be 3 position ids per token to representing 3 dimension coordinate. + int n_pos_per_token = 1; + // output of the encoder part of the encoder-decoder models std::vector embd_enc; std::vector> seq_ids_enc; @@ -3448,6 +3581,17 @@ static int llama_get_device_count(const llama_model & model) { return (int) model.devices.size(); } +static struct ggml_tensor * llama_get_model_tensor(const struct llama_model * model, const char * name) { + auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(), + [name](const std::pair & it) { + return it.first == name; + }); + if (it == model->tensors_by_name.end()) { + return nullptr; + } + return it->second; +} + template static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) { ggml_init_params params = { @@ -3501,7 +3645,9 @@ static bool llama_kv_cache_init( const struct llama_hparams & hparams = model.hparams; - const int64_t n_layer = hparams.n_layer; + const int32_t n_layer = hparams.n_layer; + + LLAMA_LOG_INFO("%s: kv_size = %d, offload = %d, type_k = '%s', type_v = '%s', n_layer = %d\n", __func__, kv_size, offload, ggml_type_name(type_k), ggml_type_name(type_v), n_layer); cache.has_shift = false; @@ -3542,10 +3688,12 @@ static bool llama_kv_cache_init( cache.k_l.reserve(n_layer); cache.v_l.reserve(n_layer); - for (int i = 0; i < (int) n_layer; i++) { + for (int i = 0; i < n_layer; i++) { const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s(); const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s(); + LLAMA_LOG_DEBUG("%s: layer %d: n_embd_k_gqa = %d, n_embd_v_gqa = %d\n", __func__, i, n_embd_k_gqa, n_embd_v_gqa); + ggml_backend_buffer_type_t buft; if (offload) { auto * dev = model.dev_layer.at(i).dev; @@ -5458,7 +5606,7 @@ static void llm_load_hparams( ml.get_key(LLM_KV_GENERAL_NAME, model.name, false); // get hparams kv - ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab); + ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab, false); // everything past this point is not vocab-related if (hparams.vocab_only) { @@ -5471,6 +5619,16 @@ static void llm_load_hparams( ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false); ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false); + if (model.arch == LLM_ARCH_WAVTOKENIZER_DEC) { + ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features); + + ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd); + ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer); + + ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd); + ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer); + } + GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS); GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert); if (hparams.n_expert > 0) { @@ -5479,13 +5637,13 @@ static void llm_load_hparams( GGML_ASSERT(hparams.n_expert_used == 0); } - // zero-out the per-layer hparams + // zero-out the array hparams std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0); std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0); std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0); - ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer); - ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer); + ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false); + ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false); // n_head_kv is optional, default to n_head hparams.n_head_kv_arr = hparams.n_head_arr; @@ -5747,6 +5905,13 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_QWEN2VL: + { + std::array section_dims; + ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, section_dims, 4, true); + std::copy(section_dims.begin(), section_dims.begin() + 4, std::begin(hparams.rope_sections)); + } + // fall through case LLM_ARCH_QWEN2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); @@ -6057,6 +6222,19 @@ static void llm_load_hparams( model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_DEEPSEEK: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); + ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); + ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); + ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); + + switch (hparams.n_layer) { + case 28: model.type = e_model::MODEL_20B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; case LLM_ARCH_DEEPSEEK2: { bool is_lite = (hparams.n_layer == 27); @@ -6210,6 +6388,13 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_WAVTOKENIZER_DEC: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps); + ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups); + ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); + } break; default: (void)0; } @@ -6239,7 +6424,7 @@ static void llm_load_vocab( ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model); ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false); - if (tokenizer_model == "no_vocab") { + if (tokenizer_model == "no_vocab" || tokenizer_model == "none") { vocab.type = LLAMA_VOCAB_TYPE_NONE; // default special tokens @@ -6403,6 +6588,7 @@ static void llm_load_vocab( tokenizer_pre == "phi-2" || tokenizer_pre == "jina-es" || tokenizer_pre == "jina-de" || + tokenizer_pre == "gigachat" || tokenizer_pre == "jina-v1-en" || tokenizer_pre == "jina-v2-es" || tokenizer_pre == "jina-v2-de" || @@ -7055,6 +7241,13 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, vocab.max_token_len); + if (model.arch == LLM_ARCH_DEEPSEEK) { + LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead); + LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); + LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared); + LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale); + } + if (model.arch == LLM_ARCH_DEEPSEEK2) { LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead); LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q); @@ -7211,6 +7404,22 @@ static const std::map llm_tensor_info_mapping = { {LLM_TENSOR_FFN_UP_EXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}}, // this tensor is loaded for T5, but never used {LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}}, + {LLM_TENSOR_CONV1D, {LLM_TENSOR_LAYER_INPUT, GGML_OP_IM2COL}}, + {LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_POS_NET_NORM2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_POS_NET_CONV1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_IM2COL}}, + {LLM_TENSOR_POS_NET_CONV2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_IM2COL}}, + {LLM_TENSOR_POS_NET_ATTN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_POS_NET_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_POS_NET_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_POS_NET_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_POS_NET_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_CONVNEXT_DW, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_IM2COL}}, + {LLM_TENSOR_CONVNEXT_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_CONVNEXT_PW1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_CONVNEXT_PW2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_CONVNEXT_GAMMA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, }; // checks if the weight tensor can be used with the specified buffer type and device @@ -7315,6 +7524,12 @@ static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H); op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state); } break; + case GGML_OP_IM2COL: + { + const int n_embd = hparams.n_embd; + ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1); + op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16); + } break; default: GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name); } @@ -7445,7 +7660,8 @@ static bool llm_load_tensors( model.main_gpu = main_gpu; model.n_gpu_layers = n_gpu_layers; - const int n_layer = hparams.n_layer; + const int n_layer = hparams.n_layer; + bool use_mmap_buffer = true; // build a list of buffer types for the CPU and GPU devices @@ -8168,6 +8384,7 @@ static bool llm_load_tensors( } } break; case LLM_ARCH_QWEN2: + case LLM_ARCH_QWEN2VL: { model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); @@ -8828,6 +9045,55 @@ static bool llm_load_tensors( layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); } } break; + case LLM_ARCH_DEEPSEEK: + { + + const int64_t n_ff_exp = hparams.n_ff_exp; + const int64_t n_expert_shared = hparams.n_expert_shared; + + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + + // output + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); + + for (int i = 0; i < n_layer; ++i) { + auto & layer = model.layers[i]; + + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + + if (i < (int) hparams.n_layer_dense_lead) { + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + } else { + layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); + + if (n_expert == 0) { + throw std::runtime_error("n_expert must be > 0"); + } + if (n_expert_used == 0) { + throw std::runtime_error("n_expert_used must be > 0"); + } + + // MoE branch + layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); + layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); + layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); + + // Shared expert branch + layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); + layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0); + layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); + } + } + } break; case LLM_ARCH_DEEPSEEK2: { const bool is_lite = (hparams.n_layer == 27); @@ -9198,9 +9464,9 @@ static bool llm_load_tensors( } break; case LLM_ARCH_CHAMELEON: { - model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); - // output + // output model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed @@ -9229,6 +9495,109 @@ static bool llm_load_tensors( layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; + case LLM_ARCH_WAVTOKENIZER_DEC: + { + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0); + + model.conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0); + model.conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0); + + // posnet + { + const int64_t n_embd = hparams.posnet.n_embd; + + for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) { + auto & layer = model.layers[i].posnet; + + // posnet: + // + // - resnet + // - resnet + // - attn + // - resnet + // - resnet + // - norm + // + switch (i) { + case 0: + case 1: + case 3: + case 4: + { + layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0); + layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0); + + layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0); + layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0); + + layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0); + layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0); + + layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0); + layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0); + } break; + case 2: + { + layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0); + layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0); + + layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0); + layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0); + + layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0); + layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0); + + layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0); + layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0); + + layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0); + layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0); + } break; + case 5: + { + layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0); + layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0); + } break; + default: GGML_ABORT("unknown posnet layer"); + }; + } + } + + GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd); + + model.tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0); + model.tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0); + + // convnext + { + const int64_t n_embd = hparams.convnext.n_embd; + + for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) { + auto & layer = model.layers[i].convnext; + + layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0); + layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0); + + layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0); + layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0); + + layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0); + layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0); + + layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0); + layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0); + + layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0); + } + + // output + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); + } + + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0); + model.output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0); + } break; default: throw std::runtime_error("unknown architecture"); } @@ -9448,6 +9817,7 @@ enum llm_ffn_gate_type { enum llm_norm_type { LLM_NORM, LLM_NORM_RMS, + LLM_NORM_GROUP, }; static struct ggml_tensor * llm_build_inp_embd( @@ -9468,7 +9838,7 @@ static struct ggml_tensor * llm_build_inp_embd( inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens); } else { - lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens); + lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens); inpL = lctx.inp_embd; ggml_set_input(lctx.inp_embd); } @@ -9589,8 +9959,14 @@ static struct ggml_tensor * llm_build_norm( const llm_build_cb & cb, int il) { switch (type) { - case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break; - case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break; + case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break; + case LLM_NORM_RMS: cur = ggml_rms_norm (ctx, cur, hparams.f_norm_rms_eps); break; + case LLM_NORM_GROUP: + { + cur = ggml_reshape_3d(ctx, cur, cur->ne[0], 1, cur->ne[1]); + cur = ggml_group_norm(ctx, cur, hparams.n_norm_groups, hparams.f_norm_group_eps); + cur = ggml_reshape_2d(ctx, cur, cur->ne[0], cur->ne[2]); + } break; } if (mw || mb) { @@ -12557,12 +12933,8 @@ struct llm_build_context { return gf; } - struct ggml_cgraph * build_qwen2moe() { + struct ggml_cgraph * build_qwen2vl() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); - - // mutable variable, needed during the last layer of the computation to skip unused tokens - int32_t n_tokens = this->n_tokens; - const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); @@ -12573,10 +12945,15 @@ struct llm_build_context { inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); + lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens * 4); + cb(lctx.inp_pos, "inp_pos", -1); + ggml_set_input(lctx.inp_pos); + struct ggml_tensor * inp_pos = lctx.inp_pos; // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + int sections[4]; + std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -12587,7 +12964,7 @@ struct llm_build_context { LLM_NORM_RMS, cb, il); cb(cur, "attn_norm", il); - // self_attention + // self-attention { // compute Q and K and RoPE them struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur); @@ -12605,16 +12982,18 @@ struct llm_build_context { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + Qcur = ggml_rope_multi( + ctx0, + ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, + n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + Kcur = ggml_rope_multi( + ctx0, + ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, + n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -12627,7 +13006,6 @@ struct llm_build_context { if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - n_tokens = n_outputs; cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } @@ -12635,30 +13013,146 @@ struct llm_build_context { struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); - // MoE branch + // feed-forward network cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "ffn_norm", il); - ggml_tensor * moe_out = - llm_build_moe_ffn(ctx0, lctx, cur, - model.layers[il].ffn_gate_inp, - model.layers[il].ffn_up_exps, - model.layers[il].ffn_gate_exps, - model.layers[il].ffn_down_exps, - n_expert, n_expert_used, - LLM_FFN_SILU, false, - false, 0.0, - cb, il); - cb(cur, "ffn_moe_out", il); + cur = llm_build_ffn(ctx0, lctx, cur, + model.layers[il].ffn_up, NULL, NULL, + model.layers[il].ffn_gate, NULL, NULL, + model.layers[il].ffn_down, NULL, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); - // FFN shared expert - { - ggml_tensor * cur_gate_inp = llm_build_lora_mm(lctx, ctx0, model.layers[il].ffn_gate_inp_shexp, cur); - cb(cur_gate_inp, "ffn_shexp_gate_inp", il); + cur = ggml_add(ctx0, cur, ffn_inp); + cur = lctx.cvec.apply_to(ctx0, cur, il); + cb(cur, "l_out", il); - // sigmoid + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = llm_build_lora_mm(lctx, ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_qwen2moe() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); + + // mutable variable, needed during the last layer of the computation to skip unused tokens + int32_t n_tokens = this->n_tokens; + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self_attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + + struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + + struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, lctx, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + n_tokens = n_outputs; + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // MoE branch + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + ggml_tensor * moe_out = + llm_build_moe_ffn(ctx0, lctx, cur, + model.layers[il].ffn_gate_inp, + model.layers[il].ffn_up_exps, + model.layers[il].ffn_gate_exps, + model.layers[il].ffn_down_exps, + n_expert, n_expert_used, + LLM_FFN_SILU, false, + false, 0.0, + cb, il); + cb(cur, "ffn_moe_out", il); + + // FFN shared expert + { + ggml_tensor * cur_gate_inp = llm_build_lora_mm(lctx, ctx0, model.layers[il].ffn_gate_inp_shexp, cur); + cb(cur_gate_inp, "ffn_shexp_gate_inp", il); + + // sigmoid ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp); cb(cur_gate, "ffn_shexp_gate", il); @@ -15064,6 +15558,161 @@ struct llm_build_context { return gf; } + struct ggml_cgraph * build_deepseek() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); + + // mutable variable, needed during the last layer of the computation to skip unused tokens + int32_t n_tokens = this->n_tokens; + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale; + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // rope freq factors for llama3; may return nullptr for llama2 and other models + struct ggml_tensor * rope_factors = build_rope_factors(il); + + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, lctx, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + n_tokens = n_outputs; + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + if ((uint32_t) il < hparams.n_layer_dense_lead) { + cur = llm_build_ffn(ctx0, lctx, cur, + model.layers[il].ffn_up, NULL, NULL, + model.layers[il].ffn_gate, NULL, NULL, + model.layers[il].ffn_down, NULL, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } else { + // MoE branch + ggml_tensor * moe_out = + llm_build_moe_ffn(ctx0, lctx, cur, + model.layers[il].ffn_gate_inp, + model.layers[il].ffn_up_exps, + model.layers[il].ffn_gate_exps, + model.layers[il].ffn_down_exps, + n_expert, n_expert_used, + LLM_FFN_SILU, false, + false, hparams.expert_weights_scale, + cb, il); + cb(moe_out, "ffn_moe_out", il); + + // FFN shared expert + { + ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, lctx, cur, + model.layers[il].ffn_up_shexp, NULL, NULL, + model.layers[il].ffn_gate_shexp, NULL, NULL, + model.layers[il].ffn_down_shexp, NULL, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(ffn_shexp, "ffn_shexp", il); + + cur = ggml_add(ctx0, moe_out, ffn_shexp); + cb(cur, "ffn_out", il); + } + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cur = lctx.cvec.apply_to(ctx0, cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = llm_build_lora_mm(lctx, ctx0, model.output, cur); + + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + struct ggml_cgraph * build_deepseek2() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); @@ -15443,7 +16092,7 @@ struct llm_build_context { return gf; } - struct ggml_cgraph * build_t5_encoder() { + struct ggml_cgraph * build_t5_enc() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); // mutable variable, needed during the last layer of the computation to skip unused tokens @@ -15575,7 +16224,7 @@ struct llm_build_context { return gf; } - struct ggml_cgraph * build_t5_decoder() { + struct ggml_cgraph * build_t5_dec() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); // mutable variable, needed during the last layer of the computation to skip unused tokens @@ -16524,6 +17173,158 @@ struct llm_build_context { return gf; } + + struct ggml_cgraph * build_wavtokenizer_dec() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb); + + cur = ggml_cont(ctx0, ggml_transpose(ctx0, inpL)); + + cur = ggml_conv_1d_ph(ctx0, model.conv1d, cur, 1, 1); + cur = ggml_add(ctx0, cur, model.conv1d_b); + + // posnet + for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) { + const auto & layer = model.layers[il].posnet; + + inpL = cur; + + switch (il) { + case 0: + case 1: + case 3: + case 4: + { + cur = llm_build_norm(ctx0, cur, hparams, + layer.norm1, + layer.norm1_b, + LLM_NORM_GROUP, cb, 0); + + cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur); + + cur = ggml_conv_1d_ph(ctx0, layer.conv1, cur, 1, 1); + cur = ggml_add(ctx0, cur, layer.conv1_b); + + cur = llm_build_norm(ctx0, cur, hparams, + layer.norm2, + layer.norm2_b, + LLM_NORM_GROUP, cb, 0); + + cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur); + + cur = ggml_conv_1d_ph(ctx0, layer.conv2, cur, 1, 1); + cur = ggml_add(ctx0, cur, layer.conv2_b); + + cur = ggml_add(ctx0, cur, inpL); + } break; + case 2: + { + cur = llm_build_norm(ctx0, cur, hparams, + layer.attn_norm, + layer.attn_norm_b, + LLM_NORM_GROUP, cb, 0); + + struct ggml_tensor * q; + struct ggml_tensor * k; + struct ggml_tensor * v; + + q = ggml_conv_1d_ph(ctx0, layer.attn_q, cur, 1, 1); + k = ggml_conv_1d_ph(ctx0, layer.attn_k, cur, 1, 1); + v = ggml_conv_1d_ph(ctx0, layer.attn_v, cur, 1, 1); + + q = ggml_add(ctx0, q, layer.attn_q_b); + k = ggml_add(ctx0, k, layer.attn_k_b); + v = ggml_add(ctx0, v, layer.attn_v_b); + + q = ggml_cont(ctx0, ggml_transpose(ctx0, q)); + k = ggml_cont(ctx0, ggml_transpose(ctx0, k)); + + struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); + + kq = ggml_soft_max_ext(ctx0, kq, nullptr, 1.0f/sqrtf(float(hparams.posnet.n_embd)), 0.0f); + + cur = ggml_mul_mat(ctx0, kq, v); + + cur = ggml_conv_1d_ph(ctx0, layer.attn_o, cur, 1, 1); + cur = ggml_add(ctx0, cur, layer.attn_o_b); + + cur = ggml_add(ctx0, cur, inpL); + } break; + case 5: + { + cur = llm_build_norm(ctx0, cur, hparams, + layer.norm, + layer.norm_b, + LLM_NORM_GROUP, cb, 0); + } break; + default: GGML_ABORT("unknown posnet layer"); + }; + } + + cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur)); + + cur = llm_build_norm(ctx0, cur, hparams, + model.tok_norm, + model.tok_norm_b, + LLM_NORM, cb, -1); + + cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur)); + + inpL = cur; + + // convnext + for (uint32_t il = 0; il < hparams.convnext.n_layer; ++il) { + const auto & layer = model.layers[il].convnext; + + cur = inpL; + + cur = ggml_conv_1d_dw_ph(ctx0, layer.dw, cur, 1, 1); + cur = ggml_add(ctx0, cur, layer.dw_b); + + cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur)); + + cur = llm_build_norm(ctx0, cur, hparams, + layer.norm, + layer.norm_b, + LLM_NORM, cb, -1); + + cur = llm_build_ffn(ctx0, lctx, cur, + layer.pw1, layer.pw1_b, NULL, + NULL, NULL, NULL, + layer.pw2, layer.pw2_b, NULL, + NULL, + LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); + + cur = ggml_mul(ctx0, cur, layer.gamma); + + cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur)); + + inpL = ggml_add(ctx0, cur, inpL); + } + + cur = inpL; + + cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur)); + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, + model.output_norm_b, + LLM_NORM, cb, -1); + + // lm_head + cur = llm_build_lora_mm(lctx, ctx0, model.output, cur); + + cur = ggml_add(ctx0, cur, model.output_b); + cb(cur, "result_embd", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } }; static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector & ids) { @@ -16658,6 +17459,11 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_qwen2(); } break; + case LLM_ARCH_QWEN2VL: + { + lctx.n_pos_per_token = 4; + result = llm.build_qwen2vl(); + } break; case LLM_ARCH_QWEN2MOE: { result = llm.build_qwen2moe(); @@ -16746,6 +17552,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_arctic(); } break; + case LLM_ARCH_DEEPSEEK: + { + result = llm.build_deepseek(); + } break; case LLM_ARCH_DEEPSEEK2: { result = llm.build_deepseek2(); @@ -16761,14 +17571,14 @@ static struct ggml_cgraph * llama_build_graph( case LLM_ARCH_T5: { if (lctx.is_encoding) { - result = llm.build_t5_encoder(); + result = llm.build_t5_enc(); } else { - result = llm.build_t5_decoder(); + result = llm.build_t5_dec(); } } break; case LLM_ARCH_T5ENCODER: { - result = llm.build_t5_encoder(); + result = llm.build_t5_enc(); } break; case LLM_ARCH_JAIS: { @@ -16790,6 +17600,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_chameleon(); } break; + case LLM_ARCH_WAVTOKENIZER_DEC: + { + result = llm.build_wavtokenizer_dec(); + } break; default: GGML_ABORT("fatal error"); } @@ -16876,35 +17690,40 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & ubatch) if (ubatch.pos && lctx.inp_pos) { const int64_t n_tokens = ubatch.n_tokens; - - ggml_backend_tensor_set(lctx.inp_pos, ubatch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos)); + auto n_pos = lctx.n_pos_per_token; + ggml_backend_tensor_set(lctx.inp_pos, ubatch.pos, 0, n_tokens*n_pos*ggml_element_size(lctx.inp_pos)); } if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) { - GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs"); - const int64_t n_tokens = ubatch.n_tokens; + //GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs"); + + if (!lctx.inp_out_ids) { + LLAMA_LOG_WARN("%s: 'lctx.inp_out_ids' is not created\n", __func__); + } else { + const int64_t n_tokens = ubatch.n_tokens; - GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer)); - int32_t * data = (int32_t *) lctx.inp_out_ids->data; + GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer)); + int32_t * data = (int32_t *) lctx.inp_out_ids->data; - if (lctx.n_outputs == n_tokens) { - for (int i = 0; i < n_tokens; ++i) { - data[i] = i; - } - } else if (ubatch.output) { - int32_t n_outputs = 0; - for (int i = 0; i < n_tokens; ++i) { - if (ubatch.output[i]) { - data[n_outputs++] = i; + if (lctx.n_outputs == n_tokens) { + for (int i = 0; i < n_tokens; ++i) { + data[i] = i; + } + } else if (ubatch.output) { + int32_t n_outputs = 0; + for (int i = 0; i < n_tokens; ++i) { + if (ubatch.output[i]) { + data[n_outputs++] = i; + } } + // the graph needs to have been passed the correct number of outputs + GGML_ASSERT(lctx.n_outputs == n_outputs); + } else if (lctx.n_outputs == 1) { + // only keep last output + data[0] = n_tokens - 1; + } else { + GGML_ASSERT(lctx.n_outputs == 0); } - // the graph needs to have been passed the correct number of outputs - GGML_ASSERT(lctx.n_outputs == n_outputs); - } else if (lctx.n_outputs == 1) { - // only keep last output - data[0] = n_tokens - 1; - } else { - GGML_ASSERT(lctx.n_outputs == 0); } } @@ -17575,6 +18394,7 @@ static int llama_decode_internal( embd = nullptr; // do not extract embeddings when not needed GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor"); } + // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); ggml_backend_sched_alloc_graph(lctx.sched.get(), gf); @@ -19963,6 +20783,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_T5ENCODER: case LLM_ARCH_JAIS: case LLM_ARCH_RWKV6: + case LLM_ARCH_WAVTOKENIZER_DEC: return LLAMA_ROPE_TYPE_NONE; // use what we call a normal RoPE, operating on pairs of consecutive head values @@ -19977,6 +20798,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_COMMAND_R: case LLM_ARCH_OLMO: case LLM_ARCH_ARCTIC: + case LLM_ARCH_DEEPSEEK: case LLM_ARCH_DEEPSEEK2: case LLM_ARCH_CHATGLM: case LLM_ARCH_GRANITE: @@ -20010,6 +20832,9 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_MINICPM3: return LLAMA_ROPE_TYPE_NEOX; + case LLM_ARCH_QWEN2VL: + return LLAMA_ROPE_TYPE_MROPE; + // all model arches should be listed explicitly here case LLM_ARCH_UNKNOWN: GGML_ABORT("unknown architecture"); @@ -20076,17 +20901,6 @@ uint64_t llama_model_n_params(const struct llama_model * model) { return model->n_elements; } -struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) { - auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(), - [name](const std::pair & it) { - return it.first == name; - }); - if (it == model->tensors_by_name.end()) { - return nullptr; - } - return it->second; -} - bool llama_model_has_encoder(const struct llama_model * model) { switch (model->arch) { case LLM_ARCH_T5: return true; @@ -21839,6 +22653,8 @@ static llm_chat_template llama_chat_detect_template(const std::string & tmpl) { return LLM_CHAT_TEMPLATE_RWKV_WORLD; } else if (tmpl_contains("<|start_of_role|>")) { return LLM_CHAT_TEMPLATE_GRANITE; + } else if (tmpl_contains("message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1]")) { + return LLM_CHAT_TEMPLATE_GIGACHAT; } return LLM_CHAT_TEMPLATE_UNKNOWN; } @@ -22162,6 +22978,32 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "<|start_of_role|>assistant<|end_of_role|>\n"; } + } else if (tmpl == LLM_CHAT_TEMPLATE_GIGACHAT) { + // GigaChat template + bool has_system = !chat.empty() && std::string(chat[0]->role) == "system"; + + // Handle system message if present + if (has_system) { + ss << "" << chat[0]->content << "<|message_sep|>"; + } else { + ss << ""; + } + + // Process remaining messages + for (size_t i = has_system ? 1 : 0; i < chat.size(); i++) { + std::string role(chat[i]->role); + if (role == "user") { + ss << "user<|role_sep|>" << chat[i]->content << "<|message_sep|>" + << "available functions<|role_sep|>[]<|message_sep|>"; + } else if (role == "assistant") { + ss << "assistant<|role_sep|>" << chat[i]->content << "<|message_sep|>"; + } + } + + // Add generation prompt if needed + if (add_ass) { + ss << "assistant<|role_sep|>"; + } } else { // template not supported return -1; @@ -22181,15 +23023,15 @@ int32_t llama_chat_apply_template( std::string curr_tmpl(tmpl == nullptr ? "" : tmpl); if (tmpl == nullptr) { GGML_ASSERT(model != nullptr); - // load template from model - std::vector model_template(2048, 0); // longest known template is about 1200 bytes - std::string template_key = "tokenizer.chat_template"; - int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size()); - if (res < 0) { + + // load template from model, if available + const auto & it = model->gguf_kv.find("tokenizer.chat_template"); + if (it != model->gguf_kv.end() && it->second.size() > 0) { + curr_tmpl = it->second; + } + else { // worst case: there is no information about template, we will use chatml by default - curr_tmpl = "chatml"; // see llama_chat_apply_template_internal - } else { - curr_tmpl = std::string(model_template.data(), model_template.size()); + curr_tmpl = "chatml"; // see llama_chat_apply_template_internal } } diff --git a/src/unicode.cpp b/src/unicode.cpp index 3d459263525dc..8ed6b1a51c251 100644 --- a/src/unicode.cpp +++ b/src/unicode.cpp @@ -71,15 +71,15 @@ uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) { throw std::invalid_argument("failed to convert utf8 to codepoint"); } -//static std::vector unicode_cpt_to_utf16(uint32_t cp) { +//static std::vector unicode_cpt_to_utf16(uint32_t cpt) { // std::vector result; -// if (/* 0x0000 <= cp && */ cp <= 0xffff) { -// result.emplace_back(cp); +// if (/* 0x0000 <= cpt && */ cpt <= 0xffff) { +// result.emplace_back(cpt); // return result; // } -// if (0x10000 <= cp && cp <= 0x10ffff) { -// result.emplace_back(0xd800 | ((cp - 0x10000) >> 10)); -// result.emplace_back(0xdc00 | ((cp - 0x10000) & 0x03ff)); +// if (0x10000 <= cpt && cpt <= 0x10ffff) { +// result.emplace_back(0xd800 | ((cpt - 0x10000) >> 10)); +// result.emplace_back(0xdc00 | ((cpt - 0x10000) & 0x03ff)); // return result; // } // throw std::invalid_argument("failed to convert codepoint to utf16"); @@ -120,8 +120,8 @@ uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) { // return result; //} -static std::vector unicode_cpt_flags_array() { - std::vector cpt_flags(MAX_CODEPOINTS, codepoint_flags::UNDEFINED); +static std::vector unicode_cpt_flags_array() { + std::vector cpt_flags(MAX_CODEPOINTS, unicode_cpt_flags::UNDEFINED); assert (unicode_ranges_flags.begin()[0].first == 0); assert (unicode_ranges_flags.begin()[unicode_ranges_flags.size()-1].first == MAX_CODEPOINTS); @@ -253,8 +253,8 @@ static std::vector unicode_regex_split_custom_gpt2(const std::string & t return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE; }; - auto _get_flags = [&] (const size_t pos) -> codepoint_flags { - return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{}; + auto _get_flags = [&] (const size_t pos) -> unicode_cpt_flags { + return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags_from_cpt(cpts[pos]) : unicode_cpt_flags{}; }; size_t _prev_end = offset_ini; @@ -371,8 +371,8 @@ static std::vector unicode_regex_split_custom_llama3(const std::string & return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE; }; - auto _get_flags = [&] (const size_t pos) -> codepoint_flags { - return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{}; + auto _get_flags = [&] (const size_t pos) -> unicode_cpt_flags { + return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags_from_cpt(cpts[pos]) : unicode_cpt_flags{}; }; size_t _prev_end = offset_ini; @@ -572,29 +572,29 @@ static std::vector unicode_regex_split_custom(const std::string & text, // interface // -std::string unicode_cpt_to_utf8(uint32_t cp) { +std::string unicode_cpt_to_utf8(uint32_t cpt) { std::string result; - if (/* 0x00 <= cp && */ cp <= 0x7f) { - result.push_back(cp); + if (/* 0x00 <= cpt && */ cpt <= 0x7f) { + result.push_back(cpt); return result; } - if (0x80 <= cp && cp <= 0x7ff) { - result.push_back(0xc0 | ((cp >> 6) & 0x1f)); - result.push_back(0x80 | (cp & 0x3f)); + if (0x80 <= cpt && cpt <= 0x7ff) { + result.push_back(0xc0 | ((cpt >> 6) & 0x1f)); + result.push_back(0x80 | (cpt & 0x3f)); return result; } - if (0x800 <= cp && cp <= 0xffff) { - result.push_back(0xe0 | ((cp >> 12) & 0x0f)); - result.push_back(0x80 | ((cp >> 6) & 0x3f)); - result.push_back(0x80 | (cp & 0x3f)); + if (0x800 <= cpt && cpt <= 0xffff) { + result.push_back(0xe0 | ((cpt >> 12) & 0x0f)); + result.push_back(0x80 | ((cpt >> 6) & 0x3f)); + result.push_back(0x80 | (cpt & 0x3f)); return result; } - if (0x10000 <= cp && cp <= 0x10ffff) { - result.push_back(0xf0 | ((cp >> 18) & 0x07)); - result.push_back(0x80 | ((cp >> 12) & 0x3f)); - result.push_back(0x80 | ((cp >> 6) & 0x3f)); - result.push_back(0x80 | (cp & 0x3f)); + if (0x10000 <= cpt && cpt <= 0x10ffff) { + result.push_back(0xf0 | ((cpt >> 18) & 0x07)); + result.push_back(0x80 | ((cpt >> 12) & 0x3f)); + result.push_back(0x80 | ((cpt >> 6) & 0x3f)); + result.push_back(0x80 | (cpt & 0x3f)); return result; } @@ -624,19 +624,19 @@ std::vector unicode_cpts_from_utf8(const std::string & utf8) { return result; } -codepoint_flags unicode_cpt_flags(const uint32_t cp) { - static const codepoint_flags undef(codepoint_flags::UNDEFINED); +unicode_cpt_flags unicode_cpt_flags_from_cpt(const uint32_t cpt) { + static const unicode_cpt_flags undef(unicode_cpt_flags::UNDEFINED); static const auto cpt_flags = unicode_cpt_flags_array(); - return cp < cpt_flags.size() ? cpt_flags[cp] : undef; + return cpt < cpt_flags.size() ? cpt_flags[cpt] : undef; } -codepoint_flags unicode_cpt_flags(const std::string & utf8) { - static const codepoint_flags undef(codepoint_flags::UNDEFINED); +unicode_cpt_flags unicode_cpt_flags_from_utf8(const std::string & utf8) { + static const unicode_cpt_flags undef(unicode_cpt_flags::UNDEFINED); if (utf8.empty()) { return undef; // undefined } size_t offset = 0; - return unicode_cpt_flags(unicode_cpt_from_utf8(utf8, offset)); + return unicode_cpt_flags_from_cpt(unicode_cpt_from_utf8(utf8, offset)); } std::string unicode_byte_to_utf8(uint8_t byte) { @@ -649,41 +649,41 @@ uint8_t unicode_utf8_to_byte(const std::string & utf8) { return map.at(utf8); } -uint32_t unicode_tolower(uint32_t cp) { +uint32_t unicode_tolower(uint32_t cpt) { // binary search - auto it = std::lower_bound(unicode_map_lowercase.begin(), unicode_map_lowercase.end(), cp, + auto it = std::lower_bound(unicode_map_lowercase.begin(), unicode_map_lowercase.end(), cpt, [](const std::pair & pair, uint32_t value) { return pair.first < value; }); - if (it != unicode_map_lowercase.end() && it->first == cp) { + if (it != unicode_map_lowercase.end() && it->first == cpt) { return it->second; } - return cp; // Return the original code point if no lowercase mapping is found + return cpt; // Return the original code point if no lowercase mapping is found } std::vector unicode_regex_split(const std::string & text, const std::vector & regex_exprs) { // unicode categories static const std::map k_ucat_enum = { - { "\\p{N}", codepoint_flags::NUMBER }, - { "\\p{L}", codepoint_flags::LETTER }, - { "\\p{P}", codepoint_flags::PUNCTUATION }, + { "\\p{N}", unicode_cpt_flags::NUMBER }, + { "\\p{L}", unicode_cpt_flags::LETTER }, + { "\\p{P}", unicode_cpt_flags::PUNCTUATION }, }; static const std::map k_ucat_cpt = { - { codepoint_flags::NUMBER, 0xD1 }, - { codepoint_flags::LETTER, 0xD2 }, - { codepoint_flags::PUNCTUATION, 0xD3 }, + { unicode_cpt_flags::NUMBER, 0xD1 }, + { unicode_cpt_flags::LETTER, 0xD2 }, + { unicode_cpt_flags::PUNCTUATION, 0xD3 }, }; static const std::map k_ucat_map = { - { codepoint_flags::NUMBER, "\x30-\x39" }, // 0-9 - { codepoint_flags::LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z - { codepoint_flags::PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\} + { unicode_cpt_flags::NUMBER, "\x30-\x39" }, // 0-9 + { unicode_cpt_flags::LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z + { unicode_cpt_flags::PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\} }; // compute collapsed codepoints only if needed by at least one regex bool need_collapse = false; - for (auto & regex_expr : regex_exprs) { + for (const auto & regex_expr : regex_exprs) { // search for unicode categories for (const auto & ucat : k_ucat_enum) { if (std::string::npos != regex_expr.find(ucat.first)) { @@ -709,7 +709,7 @@ std::vector unicode_regex_split(const std::string & text, const std continue; } - const auto flags = unicode_cpt_flags(cpts[i]); + const auto flags = unicode_cpt_flags_from_cpt(cpts[i]); if (flags.is_whitespace) { //NOTE: C++ std::regex \s does not mach 0x85, Rust and Python regex does. @@ -725,7 +725,7 @@ std::vector unicode_regex_split(const std::string & text, const std std::vector bpe_offsets = { cpts.size() }; - for (auto & regex_expr : regex_exprs) { + for (const auto & regex_expr : regex_exprs) { // first, see if we have an efficient custom regex implementation auto tmp = unicode_regex_split_custom(text, regex_expr, bpe_offsets); @@ -739,7 +739,7 @@ std::vector unicode_regex_split(const std::string & text, const std // if a unicode category is used in the regex, we use the collapsed text and replace the unicode category // with the corresponding collapsed representation bool use_collapsed = false; - for (auto & ucat : k_ucat_enum) { + for (const auto & ucat : k_ucat_enum) { if (std::string::npos != regex_expr.find(ucat.first)) { use_collapsed = true; break; @@ -805,7 +805,7 @@ std::vector unicode_regex_split(const std::string & text, const std // std::wregex \s does not mach non-ASCII whitespaces, using 0x0B as fallback std::wstring wtext(cpts.begin(), cpts.end()); for (size_t i = 0; i < wtext.size(); ++i) { - if (wtext[i] > 0x7F && unicode_cpt_flags(wtext[i]).is_whitespace) { + if (wtext[i] > 0x7F && unicode_cpt_flags_from_cpt(wtext[i]).is_whitespace) { wtext[i] = 0x0B; } } diff --git a/src/unicode.h b/src/unicode.h index 008532a242ab8..c27098df7d4be 100644 --- a/src/unicode.h +++ b/src/unicode.h @@ -4,9 +4,7 @@ #include #include -// TODO: prefix all symbols with "llama_" - -struct codepoint_flags { +struct unicode_cpt_flags { enum { UNDEFINED = 0x0001, NUMBER = 0x0002, // regex: \p{N} @@ -35,7 +33,7 @@ struct codepoint_flags { uint16_t is_nfd : 1; // decode from uint16 - inline codepoint_flags(const uint16_t flags=0) { + inline unicode_cpt_flags(const uint16_t flags = 0) { *reinterpret_cast(this) = flags; } @@ -50,18 +48,19 @@ struct codepoint_flags { size_t unicode_len_utf8(char src); -std::string unicode_cpt_to_utf8(uint32_t cp); -uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset); +std::string unicode_cpt_to_utf8 (uint32_t cpt); +uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset); + std::vector unicode_cpts_from_utf8(const std::string & utf8); std::vector unicode_cpts_normalize_nfd(const std::vector & cpts); -codepoint_flags unicode_cpt_flags(const uint32_t cp); -codepoint_flags unicode_cpt_flags(const std::string & utf8); +unicode_cpt_flags unicode_cpt_flags_from_cpt (uint32_t cpt); +unicode_cpt_flags unicode_cpt_flags_from_utf8(const std::string & utf8); std::string unicode_byte_to_utf8(uint8_t byte); -uint8_t unicode_utf8_to_byte(const std::string & utf8); +uint8_t unicode_utf8_to_byte(const std::string & utf8); -uint32_t unicode_tolower(uint32_t cp); +uint32_t unicode_tolower(uint32_t cpt); std::vector unicode_regex_split(const std::string & text, const std::vector & regex_exprs); diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt index daeed4564c1d1..2b5e5fd4abe95 100644 --- a/tests/CMakeLists.txt +++ b/tests/CMakeLists.txt @@ -129,6 +129,7 @@ llama_target_and_test(test-arg-parser.cpp) llama_target_and_test(test-chat-template.cpp) # llama_target_and_test(test-opt.cpp) # SLOW +llama_target_and_test(test-gguf.cpp) llama_target_and_test(test-backend-ops.cpp) llama_target_and_test(test-model-load-cancel.cpp LABEL "model") diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 9dd41260a1f19..ccdd3fb57a504 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -2201,7 +2201,15 @@ struct test_rope : public test_case { ggml_set_name(a, "a"); } - ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]); + const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; + const bool is_vision = mode == GGML_ROPE_TYPE_VISION; + + ggml_tensor * pos; + if (is_mrope || is_vision) { + pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4); + } else { + pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]); + } ggml_set_name(pos, "pos"); ggml_tensor * freq = nullptr; @@ -2210,7 +2218,20 @@ struct test_rope : public test_case { ggml_set_name(freq, "freq"); } - ggml_tensor * out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f); + ggml_tensor * out; + if (is_mrope) { + if (is_vision) { + GGML_ASSERT(n_dims/4 > 0); + int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate + out = ggml_rope_multi(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f); + } else { + GGML_ASSERT(n_dims/3 > 0); + int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0}; + out = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f); + } + } else { + out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f); + } ggml_set_name(out, "out"); return out; @@ -2220,11 +2241,12 @@ struct test_rope : public test_case { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->type == GGML_TYPE_I32) { // pos - std::vector data(ne_a[2]); - for (int i = 0; i < ne_a[2]; i++) { + const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2]; + std::vector data(num_pos_ids); + for (int i = 0; i < num_pos_ids; i++) { data[i] = rand() % n_ctx; } - ggml_backend_tensor_set(t, data.data(), 0, ne_a[2] * sizeof(int)); + ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int)); } else { if (t->ne[0] == n_dims/2) { // frequency factors in the range [0.9f, 1.1f] @@ -3527,8 +3549,8 @@ static std::vector> make_test_cases_eval() { for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) { for (ggml_type type_dst : all_types) { - test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4})); - test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows + test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4})); + test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows } } for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) { @@ -3813,6 +3835,12 @@ static std::vector> make_test_cases_eval() { test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v)); // neox (phi-2) } + if (all) { + test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v)); // rope_multi,m-rope (qwen2vl 2B) + test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v)); // rope_multi,m-rope (qwen2vl 7B) + test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v)); // rope_multi,m-rope (qwen2vl ViT) + } + test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B) } } diff --git a/tests/test-chat-template.cpp b/tests/test-chat-template.cpp index aa140b5696f74..30a910ad5c55d 100644 --- a/tests/test-chat-template.cpp +++ b/tests/test-chat-template.cpp @@ -75,6 +75,8 @@ int main(void) { "{%- if messages[0][\"role\"] == \"system\" %}\n {%- set system_message = messages[0][\"content\"] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n{%- set user_messages = loop_messages | selectattr(\"role\", \"equalto\", \"user\") | list %}\n\n{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}\n{%- set ns = namespace() %}\n{%- set ns.index = 0 %}\n{%- for message in loop_messages %}\n {%- if not (message.role == \"tool\" or message.role == \"tool_results\" or (message.tool_calls is defined and message.tool_calls is not none)) %}\n {%- if (message[\"role\"] == \"user\") != (ns.index % 2 == 0) %}\n {{- raise_exception(\"After the optional system message, conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif %}\n {%- set ns.index = ns.index + 1 %}\n {%- endif %}\n{%- endfor %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n {%- if message[\"role\"] == \"user\" %}\n {%- if tools is not none and (message == user_messages[-1]) %}\n {{- \"[AVAILABLE_TOOLS][\" }}\n {%- for tool in tools %}\n {%- set tool = tool.function %}\n {{- '{\"type\": \"function\", \"function\": {' }}\n {%- for key, val in tool.items() if key != \"return\" %}\n {%- if val is string %}\n {{- '\"' + key + '\": \"' + val + '\"' }}\n {%- else %}\n {{- '\"' + key + '\": ' + val|tojson }}\n {%- endif %}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \"}}\" }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- else %}\n {{- \"]\" }}\n {%- endif %}\n {%- endfor %}\n {{- \"[/AVAILABLE_TOOLS]\" }}\n {%- endif %}\n {%- if loop.last and system_message is defined %}\n {{- \"[INST]\" + system_message + \"\\n\\n\" + message[\"content\"] + \"[/INST]\" }}\n {%- else %}\n {{- \"[INST]\" + message[\"content\"] + \"[/INST]\" }}\n {%- endif %}\n {%- elif (message.tool_calls is defined and message.tool_calls is not none) %}\n {{- \"[TOOL_CALLS][\" }}\n {%- for tool_call in message.tool_calls %}\n {%- set out = tool_call.function|tojson %}\n {{- out[:-1] }}\n {%- if not tool_call.id is defined or tool_call.id|length != 9 %}\n {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n {%- endif %}\n {{- ', \"id\": \"' + tool_call.id + '\"}' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- else %}\n {{- \"]\" + eos_token }}\n {%- endif %}\n {%- endfor %}\n {%- elif message[\"role\"] == \"assistant\" %}\n {{- message[\"content\"] + eos_token}}\n {%- elif message[\"role\"] == \"tool_results\" or message[\"role\"] == \"tool\" %}\n {%- if message.content is defined and message.content.content is defined %}\n {%- set content = message.content.content %}\n {%- else %}\n {%- set content = message.content %}\n {%- endif %}\n {{- '[TOOL_RESULTS]{\"content\": ' + content|string + \", \" }}\n {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}\n {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n {%- endif %}\n {{- '\"call_id\": \"' + message.tool_call_id + '\"}[/TOOL_RESULTS]' }}\n {%- else %}\n {{- raise_exception(\"Only user and assistant roles are supported, with the exception of an initial optional system message!\") }}\n {%- endif %}\n{%- endfor %}\n", // mistralai/Mistral-Large-Instruct-2411 (mistralai 'v7' template) "{{ bos_token }}{% for message in messages %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + '[/INST]' }}{% elif message['role'] == 'system' %}{{ '[SYSTEM_PROMPT] ' + message['content'] + '[/SYSTEM_PROMPT]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + message['content'] + eos_token }}{% else %}{{ raise_exception('Only user, system and assistant roles are supported!') }}{% endif %}{% endfor %}", + // ai-sage/GigaChat-20B-A3B-instruct + "{% if messages[0]['role'] == 'system' -%}\n {%- set loop_messages = messages[1:] -%}\n {%- set system_message = bos_token + messages[0]['content'] + additional_special_tokens[1] -%}\n{%- else -%}\n {%- set loop_messages = messages -%}\n {%- set system_message = bos_token + '' -%}\n{%- endif -%}\n{%- for message in loop_messages %}\n {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}\n {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}\n {% endif %}\n \n {%- if loop.index0 == 0 -%}\n {{ system_message -}}\n {%- endif -%}\n {%- if message['role'] == 'user' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {{ 'available functions' + additional_special_tokens[0] + additional_special_tokens[2] + additional_special_tokens[3] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if message['role'] == 'assistant' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if loop.last and add_generation_prompt -%}\n {{ 'assistant' + additional_special_tokens[0] -}}\n {%- endif -%}\n{%- endfor %}", }; std::vector expected_output = { // teknium/OpenHermes-2.5-Mistral-7B @@ -129,6 +131,8 @@ int main(void) { "[INST]You are a helpful assistant\n\nHello[/INST]Hi there[INST]Who are you[/INST] I am an assistant [INST]Another question[/INST]", // mistralai/Mistral-Large-Instruct-2411 (mistralai 'v7' template) "[SYSTEM_PROMPT] You are a helpful assistant[/SYSTEM_PROMPT][INST] Hello[/INST] Hi there[INST] Who are you[/INST] I am an assistant [INST] Another question[/INST]", + // ai-sage/GigaChat-20B-A3B-instruct + "You are a helpful assistant<|message_sep|>user<|role_sep|>Hello<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|>Hi there<|message_sep|>user<|role_sep|>Who are you<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|> I am an assistant <|message_sep|>user<|role_sep|>Another question<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|>", }; std::vector formatted_chat(1024); int32_t res; @@ -190,6 +194,7 @@ int main(void) { assert(fmt_sys("mistral") == "[INST] You are a helpful assistant\n"); // for old pre-v1 templates assert(fmt_sys("gemma") == ""); // for gemma, system message is merged with user message assert(fmt_sys("llama3") == "<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant<|eot_id|>"); + assert(fmt_sys("gigachat") == "You are a helpful assistant<|message_sep|>"); // test llama_chat_format_single for user message @@ -214,6 +219,7 @@ int main(void) { assert(fmt_single("mistral") == "[INST] How are you [/INST]"); // for old pre-v1 templates assert(fmt_single("gemma") == "\nuser\nHow are you\nmodel\n"); assert(fmt_single("llama3") == "<|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"); + assert(fmt_single("gigachat") == "user<|role_sep|>How are you<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|>"); printf("Test chat templates: OK\n"); diff --git a/tests/test-gguf.cpp b/tests/test-gguf.cpp new file mode 100644 index 0000000000000..e5b4cb7b8af1c --- /dev/null +++ b/tests/test-gguf.cpp @@ -0,0 +1,1303 @@ +#include "ggml.h" +#include "ggml-backend.h" +#include "../ggml/src/ggml-impl.h" + +#include +#include +#include +#include +#include +#include +#include + +constexpr int offset_has_kv = 1000; +constexpr int offset_has_tensors = 2000; +constexpr int offset_has_data = 3000; + +enum handcrafted_file_type { + HANDCRAFTED_HEADER_BAD_MAGIC = 10, + HANDCRAFTED_HEADER_BAD_VERSION_1 = 20, + HANDCRAFTED_HEADER_BAD_VERSION_FUTURE = 30, + HANDCRAFTED_HEADER_BAD_N_TENSORS = 40, + HANDCRAFTED_HEADER_BAD_N_KV = 50, + HANDCRAFTED_HEADER_EMPTY = 800, + + HANDCRAFTED_KV_BAD_KEY_SIZE = 10 + offset_has_kv, + HANDCRAFTED_KV_BAD_TYPE = 20 + offset_has_kv, + HANDCRAFTED_KV_BAD_VALUE_SIZE = 30 + offset_has_kv, + HANDCRAFTED_KV_DUPLICATE_KEY = 40 + offset_has_kv, + HANDCRAFTED_KV_SUCCESS = 800 + offset_has_kv, + + HANDCRAFTED_TENSORS_BAD_NAME_SIZE = 10 + offset_has_tensors, + HANDCRAFTED_TENSORS_BAD_N_DIMS = 20 + offset_has_tensors, + HANDCRAFTED_TENSORS_BAD_SHAPE = 30 + offset_has_tensors, + HANDCRAFTED_TENSORS_NE_TOO_BIG = 40 + offset_has_tensors, + HANDCRAFTED_TENSORS_BAD_TYPE = 50 + offset_has_tensors, + HANDCRAFTED_TENSORS_BAD_OFFSET = 60 + offset_has_tensors, + HANDCRAFTED_TENSORS_DUPLICATE_NAME = 70 + offset_has_tensors, + HANDCRAFTED_TENSORS_BAD_ALIGNMENT = 80 + offset_has_tensors, + HANDCRAFTED_TENSORS_SUCCESS = 800 + offset_has_tensors, + HANDCRAFTED_TENSORS_CUSTOM_ALIGN = 810 + offset_has_tensors, + + HANDCRAFTED_DATA_NOT_ENOUGH_DATA = 10 + offset_has_data, + HANDCRAFTED_DATA_BAD_ALIGNMENT = 20 + offset_has_data, + HANDCRAFTED_DATA_SUCCESS = 800 + offset_has_data, + HANDCRAFTED_DATA_CUSTOM_ALIGN = 810 + offset_has_data, +}; + +std::string handcrafted_file_type_name(const enum handcrafted_file_type hft) { + switch (hft) { + case HANDCRAFTED_HEADER_BAD_MAGIC: return "HEADER_BAD_MAGIC"; + case HANDCRAFTED_HEADER_BAD_VERSION_1: return "HEADER_BAD_VERSION_1"; + case HANDCRAFTED_HEADER_BAD_VERSION_FUTURE: return "HEADER_BAD_VERSION_FUTURE"; + case HANDCRAFTED_HEADER_BAD_N_KV: return "HEADER_BAD_N_KV"; + case HANDCRAFTED_HEADER_BAD_N_TENSORS: return "HEADER_BAD_N_TENSORS"; + case HANDCRAFTED_HEADER_EMPTY: return "HEADER_EMPTY"; + + case HANDCRAFTED_KV_BAD_KEY_SIZE: return "KV_BAD_KEY_SIZE"; + case HANDCRAFTED_KV_BAD_TYPE: return "KV_BAD_TYPE"; + case HANDCRAFTED_KV_BAD_VALUE_SIZE: return "KV_BAD_VALUE_SIZE"; + case HANDCRAFTED_KV_DUPLICATE_KEY: return "KV_DUPLICATE_KEY"; + case HANDCRAFTED_KV_SUCCESS: return "KV_RANDOM_KV"; + + case HANDCRAFTED_TENSORS_BAD_NAME_SIZE: return "TENSORS_BAD_NAME_SIZE"; + case HANDCRAFTED_TENSORS_BAD_N_DIMS: return "TENSORS_BAD_N_DIMS"; + case HANDCRAFTED_TENSORS_BAD_SHAPE: return "TENSORS_BAD_SHAPE"; + case HANDCRAFTED_TENSORS_NE_TOO_BIG: return "TENSORS_NE_TOO_BIG"; + case HANDCRAFTED_TENSORS_BAD_TYPE: return "TENSORS_BAD_TYPE"; + case HANDCRAFTED_TENSORS_BAD_OFFSET: return "TENSORS_BAD_OFFSET"; + case HANDCRAFTED_TENSORS_DUPLICATE_NAME: return "TENSORS_DUPLICATE_NAME"; + case HANDCRAFTED_TENSORS_BAD_ALIGNMENT: return "TENSORS_BAD_ALIGNMENT"; + case HANDCRAFTED_TENSORS_SUCCESS: return "TENSORS_SUCCESS"; + case HANDCRAFTED_TENSORS_CUSTOM_ALIGN: return "TENSORS_CUSTOM_ALIGN"; + + case HANDCRAFTED_DATA_NOT_ENOUGH_DATA: return "DATA_NOT_ENOUGH_DATA"; + case HANDCRAFTED_DATA_BAD_ALIGNMENT: return "DATA_BAD_ALIGNMENT"; + case HANDCRAFTED_DATA_SUCCESS: return "DATA_SUCCESS"; + case HANDCRAFTED_DATA_CUSTOM_ALIGN: return "DATA_CUSTOM_ALIGN"; + } + GGML_ABORT("fatal error"); +} + +static bool expect_context_not_null(const enum handcrafted_file_type hft) { + if (hft < offset_has_kv) { + return hft >= HANDCRAFTED_HEADER_EMPTY; + } + if (hft < offset_has_tensors) { + return hft >= HANDCRAFTED_KV_SUCCESS; + } + if (hft < offset_has_data) { + return hft >= HANDCRAFTED_TENSORS_SUCCESS; + } + return hft >= HANDCRAFTED_DATA_SUCCESS; +} + +typedef std::pair> tensor_config_t; + +std::vector get_tensor_configs(std::mt19937 & rng) { + std::vector tensor_configs; + tensor_configs.reserve(100); + + for (int i = 0; i < 100; ++i) { + const enum ggml_type type = ggml_type(rng() % GGML_TYPE_COUNT); + if (ggml_type_size(type) == 0) { + continue; + } + + std::array shape = {1, 1, 1, 1}; + shape[0] = (1 + rng() % 10) * ggml_blck_size(type); + const int n_dims = 1 + rng() % GGML_MAX_DIMS; + for (int i = 1; i < n_dims; ++i) { + shape[i] = 1 + rng() % 10; + } + + tensor_configs.push_back(std::make_pair(type, shape)); + } + + return tensor_configs; +} + +std::vector> get_kv_types(std::mt19937 rng) { + std::vector> kv_types; + kv_types.reserve(100); + + for (int i = 0; i < 100; ++i) { + const gguf_type type = gguf_type(rng() % GGUF_TYPE_COUNT); + + if (type == GGUF_TYPE_ARRAY) { + const gguf_type type_arr = gguf_type(rng() % GGUF_TYPE_COUNT); + if (type_arr == GGUF_TYPE_ARRAY) { + continue; + } + kv_types.push_back(std::make_pair(type, type_arr)); + continue; + } + + kv_types.push_back(std::make_pair(type, gguf_type(-1))); + } + std::shuffle(kv_types.begin(), kv_types.end(), rng); + + return kv_types; +} + +static void helper_write(const void * data, const size_t nbytes, FILE * file) { + GGML_ASSERT(fwrite(data, 1, nbytes, file) == nbytes); +} + +static FILE * get_handcrafted_file(const unsigned int seed, const enum handcrafted_file_type hft, const int extra_bytes = 0) { + FILE * file = tmpfile(); + + std::mt19937 rng(seed); + + if (hft == HANDCRAFTED_HEADER_BAD_MAGIC) { + const char bad_magic[4] = {'F', 'U', 'G', 'G'}; + helper_write(bad_magic, sizeof(bad_magic), file); + } else { + helper_write(GGUF_MAGIC, 4, file); + } + + if (hft == HANDCRAFTED_HEADER_BAD_VERSION_1) { + const uint32_t version = 1; + helper_write(&version, sizeof(version), file); + } else if (hft == HANDCRAFTED_HEADER_BAD_VERSION_FUTURE) { + const uint32_t version = GGUF_VERSION + 1; + helper_write(&version, sizeof(version), file); + } else { + const uint32_t version = GGUF_VERSION; + helper_write(&version, sizeof(version), file); + } + + std::vector tensor_configs; + if (hft >= offset_has_tensors) { + tensor_configs = get_tensor_configs(rng); + } + + if (hft == HANDCRAFTED_HEADER_BAD_N_TENSORS) { + const uint64_t n_tensors = -1; + helper_write(&n_tensors, sizeof(n_tensors), file); + } else { + const uint64_t n_tensors = tensor_configs.size(); + helper_write(&n_tensors, sizeof(n_tensors), file); + } + + std::vector> kv_types; + if (hft >= offset_has_kv) { + kv_types = get_kv_types(rng); + } + { + uint64_t n_kv = kv_types.size(); + if (hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) { + n_kv += 1; + } else if (hft == HANDCRAFTED_HEADER_BAD_N_KV) { + n_kv = -1; + } + helper_write(&n_kv, sizeof(n_kv), file); + } + + if (hft < offset_has_kv) { + for (int i = 0; i < extra_bytes; ++i) { + const char tmp = 0; + helper_write(&tmp, sizeof(tmp), file); + } + rewind(file); + return file; + } + + for (int i = 0; i < int(kv_types.size()); ++i) { + const enum gguf_type type = gguf_type(hft == HANDCRAFTED_KV_BAD_TYPE ? -1 : kv_types[i].first); + const enum gguf_type type_arr = gguf_type(hft == HANDCRAFTED_KV_BAD_TYPE ? -1 : kv_types[i].second); + + const std::string key = "my_key_" + std::to_string((hft == HANDCRAFTED_KV_DUPLICATE_KEY ? i/2 : i)); + + if (hft == HANDCRAFTED_KV_BAD_KEY_SIZE) { + const uint64_t n = -1; + helper_write(&n, sizeof(n), file); + } else { + const uint64_t n = key.length(); + helper_write(&n, sizeof(n), file); + } + helper_write(key.data(), key.length(), file); + + { + const int32_t type32 = int32_t(type); + helper_write(&type32, sizeof(type32), file); + } + + uint32_t data[16]; + for (int j = 0; j < 16; ++j) { + data[j] = rng(); + if (type == GGUF_TYPE_STRING || type_arr == GGUF_TYPE_STRING) { + data[j] |= 0x01010101; // avoid random null-termination of string + } + } + + if (type == GGUF_TYPE_STRING) { + const uint64_t n = rng() % sizeof(data); + helper_write(&n, sizeof(n), file); + helper_write(data, n, file); + continue; + } + + if (type == GGUF_TYPE_ARRAY) { + { + const int32_t type32 = int32_t(type_arr); + helper_write(&type32, sizeof(type32), file); + } + if (type_arr == GGUF_TYPE_STRING) { + const uint64_t nstr = rng() % (16 + 1); + helper_write(&nstr, sizeof(nstr), file); + for (uint64_t istr = 0; istr < nstr; ++istr) { + const uint64_t n = rng() % (sizeof(uint32_t) + 1); + helper_write(&n, sizeof(n), file); + helper_write(&data[istr], n, file); + } + continue; + } + const size_t type_size = gguf_type_size(type_arr); + const uint64_t n = (rng() % sizeof(data)) / type_size; + helper_write(&n, sizeof(n), file); + helper_write(&data, n*type_size, file); + continue; + } + + size_t type_size = hft == HANDCRAFTED_KV_BAD_TYPE ? 1 : gguf_type_size(type); + if (hft == HANDCRAFTED_KV_BAD_VALUE_SIZE) { + type_size += rng() % 3; + } + helper_write(data, type_size, file); + } + + if (hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) { + const std::string key = "general.alignment"; + { + const uint64_t n = key.length(); + helper_write(&n, sizeof(n), file); + } + helper_write(key.data(), key.length(), file); + + const int32_t type = gguf_type(GGUF_TYPE_UINT32); + helper_write(&type, sizeof(type), file); + + const uint32_t alignment = GGUF_DEFAULT_ALIGNMENT + 1; + helper_write(&alignment, sizeof(alignment), file); + } + + if (hft < offset_has_tensors) { + for (int i = 0; i < extra_bytes; ++i) { + const char tmp = 0; + helper_write(&tmp, sizeof(tmp), file); + } + rewind(file); + return file; + } + + uint32_t alignment = GGUF_DEFAULT_ALIGNMENT; + if (hft == HANDCRAFTED_TENSORS_BAD_ALIGNMENT || hft == HANDCRAFTED_DATA_BAD_ALIGNMENT) { + alignment -= 1; + } else if (hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) { + alignment += 1; + } + + uint64_t offset = 0; + for (int i = 0; i < int(tensor_configs.size()); ++i) { + const ggml_type type = tensor_configs[i].first; + const std::array shape = tensor_configs[i].second; + + std::string name = "my_tensor"; + if (hft != HANDCRAFTED_TENSORS_DUPLICATE_NAME) { + name += "_" + std::to_string(i); + } + if (hft == HANDCRAFTED_TENSORS_BAD_NAME_SIZE) { + name += "_with_a_very_long_name_which_is_longer_than_what_is_allowed_for_ggml_tensors"; + GGML_ASSERT(name.length() >= GGML_MAX_NAME); + } + { + const uint64_t n = name.length(); + helper_write(&n, sizeof(n), file); + } + helper_write(name.data(), name.length(), file); + + uint32_t n_dims = hft == HANDCRAFTED_TENSORS_NE_TOO_BIG ? 2 : 1; + for (int i = GGML_MAX_DIMS-1; i >= 1; --i) { + if (shape[i] != 1) { + n_dims = i + 1; + break; + } + } + if (hft == HANDCRAFTED_TENSORS_BAD_N_DIMS) { + const uint32_t n_dims_bad = GGML_MAX_DIMS + 1; + helper_write(&n_dims_bad, sizeof(n_dims_bad), file); + } else { + helper_write(&n_dims, sizeof(n_dims), file); + } + + if (hft == HANDCRAFTED_TENSORS_BAD_SHAPE) { + for (uint32_t j = 0; j < n_dims; ++j) { + const int64_t bad_dim = -1; + helper_write(&bad_dim, sizeof(bad_dim), file); + } + } else if (hft == HANDCRAFTED_TENSORS_NE_TOO_BIG){ + for (uint32_t j = 0; j < n_dims; ++j) { + const int64_t big_dim = 4*int64_t(INT32_MAX); + helper_write(&big_dim, sizeof(big_dim), file); + } + } else { + helper_write(shape.data(), n_dims*sizeof(int64_t), file); + } + + { + const int32_t type32 = hft == HANDCRAFTED_TENSORS_BAD_TYPE ? -1 : int32_t(type); + helper_write(&type32, sizeof(type32), file); + } + + if (hft == HANDCRAFTED_TENSORS_BAD_OFFSET) { + const uint64_t bad_offset = -1; + helper_write(&bad_offset, sizeof(bad_offset), file); + } else { + helper_write(&offset, sizeof(offset), file); + } + + int64_t ne = shape[0]; + for (uint32_t i = 1; i < n_dims; ++i) { + ne *= shape[i]; + } + offset += GGML_PAD(ggml_row_size(type, ne), alignment); + } + + const uint32_t alignment_overshoot = ftell(file) % alignment; + if (alignment_overshoot != 0) { + for (size_t i = alignment_overshoot; i < alignment; ++i) { + const char pad = 0; + helper_write(&pad, sizeof(pad), file); + } + } + + if (hft >= offset_has_data) { + rng.seed(seed + 1); + uint64_t nbytes = offset; + if (hft == HANDCRAFTED_DATA_NOT_ENOUGH_DATA) { + nbytes -= 1; + } + for (uint64_t i = 0; i < nbytes; ++i) { + const uint8_t random_byte = i % 256; + helper_write(&random_byte, sizeof(random_byte), file); + } + } + + for (int i = 0; i < extra_bytes; ++i) { + const char tmp = 0; + helper_write(&tmp, sizeof(tmp), file); + } + rewind(file); + return file; +} + +static bool handcrafted_check_header(const gguf_context * gguf_ctx, const unsigned int seed, const bool has_kv, const bool has_tensors, const bool alignment_defined) { + if (!gguf_ctx) { + return false; + } + + std::mt19937 rng(seed); + + std::vector tensor_configs; + if (has_tensors) { + tensor_configs = get_tensor_configs(rng); + } + std::vector> kv_types; + if (has_kv) { + kv_types = get_kv_types(rng); + } + + bool ok = true; + + if (gguf_get_version(gguf_ctx) != GGUF_VERSION) { + ok = false; + } + if (gguf_get_n_tensors(gguf_ctx) != int(tensor_configs.size())) { + ok = false; + } + if (gguf_get_n_kv(gguf_ctx) != int(alignment_defined ? kv_types.size() + 1 : kv_types.size())) { + ok = false; + } + + return ok; +} + +static bool handcrafted_check_kv(const gguf_context * gguf_ctx, const unsigned int seed, const bool has_tensors, const bool alignment_defined) { + if (!gguf_ctx) { + return false; + } + + std::mt19937 rng(seed); + + std::vector tensor_configs; + if (has_tensors) { + tensor_configs = get_tensor_configs(rng); + } + + std::vector> kv_types = get_kv_types(rng); + + bool ok = true; + + for (int i = 0; i < int(kv_types.size()); ++i) { + const enum gguf_type type = gguf_type(kv_types[i].first); + const enum gguf_type type_arr = gguf_type(kv_types[i].second); + + const std::string key = "my_key_" + std::to_string(i); + + uint32_t data[16]; + for (int j = 0; j < 16; ++j) { + data[j] = rng(); + if (type == GGUF_TYPE_STRING || type_arr == GGUF_TYPE_STRING) { + data[j] |= 0x01010101; // avoid random null-termination of string + } + } + + const char * data8 = reinterpret_cast(data); + const int id = gguf_find_key(gguf_ctx, key.c_str()); + + if (type == GGUF_TYPE_STRING) { + const char * str = gguf_get_val_str(gguf_ctx, id); + const uint64_t n = strlen(str); + const uint64_t n_expected = rng() % sizeof(data); + if (n != n_expected) { + ok = false; + continue; + } + if (!std::equal(str, str + n, data8)) { + ok = false; + } + continue; + } + + if (type == GGUF_TYPE_ARRAY) { + const size_t type_size = gguf_type_size(type_arr); + const uint64_t arr_n = gguf_get_arr_n(gguf_ctx, id); + + if (type_arr == GGUF_TYPE_STRING) { + const uint64_t nstr_expected = rng() % (16 + 1); + if (arr_n != nstr_expected) { + ok = false; + continue; + } + for (uint64_t istr = 0; istr < nstr_expected; ++istr) { + const char * str = gguf_get_arr_str(gguf_ctx, id, istr); + const uint64_t n = strlen(str); + const uint64_t n_expected = rng() % (sizeof(uint32_t) + 1); + + if (n != n_expected) { + ok = false; + continue; + } + const char * str_expected = reinterpret_cast(&data[istr]); + if (strncmp(str, str_expected, n) != 0) { + ok = false; + continue; + } + } + continue; + } + + const uint64_t arr_n_expected = (rng() % sizeof(data)) / type_size; + if (arr_n != arr_n_expected) { + ok = false; + continue; + } + + const char * data_gguf = reinterpret_cast(gguf_get_arr_data(gguf_ctx, id)); + if (!std::equal(data8, data8 + arr_n*type_size, data_gguf)) { + ok = false; + } + continue; + } + + const char * data_gguf = reinterpret_cast(gguf_get_val_data(gguf_ctx, id)); + if (!std::equal(data8, data8 + gguf_type_size(type), data_gguf)) { + ok = false; + } + } + + const uint32_t expected_alignment = alignment_defined ? GGUF_DEFAULT_ALIGNMENT + 1 : GGUF_DEFAULT_ALIGNMENT; + if (gguf_get_alignment(gguf_ctx) != expected_alignment) { + ok = false; + } + + return ok; +} + +static bool handcrafted_check_tensors(const gguf_context * gguf_ctx, const unsigned int seed) { + if (!gguf_ctx) { + return false; + } + + std::mt19937 rng(seed); + + std::vector tensor_configs = get_tensor_configs(rng); + + // Call get_kv_types to get the same RNG state: + get_kv_types(rng); + + bool ok = true; + + const int id_alignment = gguf_find_key(gguf_ctx, "general.alignment"); + const uint32_t alignment = id_alignment >= 0 ? gguf_get_val_u32(gguf_ctx, id_alignment) : GGUF_DEFAULT_ALIGNMENT; + + uint64_t expected_offset = 0; + for (int i = 0; i < int(tensor_configs.size()); ++i) { + const ggml_type type = tensor_configs[i].first; + const std::array shape = tensor_configs[i].second; + + const std::string name = "my_tensor_" + std::to_string(i); + const int id = gguf_find_tensor(gguf_ctx, name.c_str()); + + if (id >= 0) { + if (std::string(gguf_get_tensor_name(gguf_ctx, id)) != name) { + ok = false; + } + + if (gguf_get_tensor_type(gguf_ctx, id) != type) { + ok = false; + } + } else { + ok = false; + continue; + } + + const size_t offset = gguf_get_tensor_offset(gguf_ctx, id); + + if (offset != expected_offset) { + ok = false; + } + + int64_t ne = shape[0]; + for (size_t j = 1; j < GGML_MAX_DIMS; ++j) { + ne *= shape[j]; + } + expected_offset += GGML_PAD(ggml_row_size(type, ne), alignment); + } + + return ok; +} + +static bool handcrafted_check_tensor_data(const gguf_context * gguf_ctx, const unsigned int seed, FILE * file) { + if (!gguf_ctx) { + return false; + } + + std::mt19937 rng(seed); + + std::vector tensor_configs = get_tensor_configs(rng); + + bool ok = true; + + const uint32_t alignment = GGUF_DEFAULT_ALIGNMENT; + + for (int i = 0; i < int(tensor_configs.size()); ++i) { + const ggml_type type = tensor_configs[i].first; + const std::array shape = tensor_configs[i].second; + + int64_t ne = shape[0]; + for (size_t j = 1; j < GGML_MAX_DIMS; ++j) { + ne *= shape[j]; + } + const size_t size = ggml_row_size(type, ne); + + const std::string name = "my_tensor_" + std::to_string(i); + const size_t offset = gguf_get_tensor_offset(gguf_ctx, gguf_find_tensor(gguf_ctx, name.c_str())); + + std::vector data(size); + GGML_ASSERT(fseek(file, gguf_get_data_offset(gguf_ctx) + offset, SEEK_SET) == 0); + GGML_ASSERT(fread(data.data(), 1, size, file) == size); + + for (size_t j = 0; j < size; ++j) { + const uint8_t expected_byte = (j + offset) % 256; + if (data[j] != expected_byte) { + ok = false; + } + } + } + + return ok; +} + +static std::pair test_handcrafted_file(const unsigned int seed) { + int npass = 0; + int ntest = 0; + + const std::vector hfts = { + HANDCRAFTED_HEADER_BAD_MAGIC, + HANDCRAFTED_HEADER_BAD_VERSION_1, + // HANDCRAFTED_FILE_TYPE_BAD_VERSION_FUTURE, // FIXME + HANDCRAFTED_HEADER_BAD_N_KV, + HANDCRAFTED_HEADER_BAD_N_TENSORS, + HANDCRAFTED_HEADER_EMPTY, + + HANDCRAFTED_KV_BAD_KEY_SIZE, + HANDCRAFTED_KV_BAD_TYPE, + HANDCRAFTED_KV_BAD_VALUE_SIZE, + // HANDCRAFTED_FILE_TYPE_DUPLICATE_KEY, // FIXME + HANDCRAFTED_KV_SUCCESS, + + HANDCRAFTED_TENSORS_BAD_NAME_SIZE, + HANDCRAFTED_TENSORS_BAD_N_DIMS, + HANDCRAFTED_TENSORS_BAD_SHAPE, + HANDCRAFTED_TENSORS_NE_TOO_BIG, + HANDCRAFTED_TENSORS_BAD_TYPE, + // HANDCRAFTED_TENSORS_BAD_OFFSET, // FIXME + HANDCRAFTED_TENSORS_DUPLICATE_NAME, + // HANDCRAFTED_TENSORS_BAD_ALIGNMENT, // FIXME + HANDCRAFTED_TENSORS_SUCCESS, + HANDCRAFTED_TENSORS_CUSTOM_ALIGN, + + HANDCRAFTED_DATA_NOT_ENOUGH_DATA, + // HANDCRAFTED_DATA_BAD_ALIGNMENT, // FIXME + HANDCRAFTED_DATA_SUCCESS, + HANDCRAFTED_DATA_CUSTOM_ALIGN, + }; + + for (enum handcrafted_file_type hft : hfts) { + printf("%s: handcrafted_file_type=%s\n", __func__, handcrafted_file_type_name(hft).c_str()); + FILE * file = get_handcrafted_file(seed, hft); + +#ifdef _WIN32 + if (!file) { + printf("%s: failed to create tmpfile(), needs elevated privileges on Windows"); + printf("%s: skipping tests"); + continue; + } +#else + GGML_ASSERT(file); +#endif // _WIN32 + + struct ggml_context * ctx = nullptr; + struct gguf_init_params gguf_params = { + /*no_alloc =*/ false, + /*ctx =*/ hft >= offset_has_data ? &ctx : nullptr, + }; + struct gguf_context * gguf_ctx = gguf_init_from_file_impl(file, gguf_params); + + if (expect_context_not_null(hft)) { + printf("%s: - context_not_null: ", __func__); + } else { + printf("%s: - context_null: ", __func__); + } + if (bool(gguf_ctx) == expect_context_not_null(hft)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + + if (false && hft >= offset_has_data && !expect_context_not_null(hft)) { // FIXME + printf("%s: - no_dangling_ggml_context_pointer: ", __func__); + if (ctx) { + printf("\033[1;31mFAIL\033[0m\n"); + } else { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } + ntest++; + } + + if (false && expect_context_not_null(hft)) { // FIXME + FILE * file_eb = get_handcrafted_file(seed, hft, /*extra_bytes =*/ 1); + struct gguf_context * gguf_ctx_eb = gguf_init_from_file_impl(file_eb, gguf_params); + + printf("%s: - context_null_with_extra_bytes: ", __func__); + if (gguf_ctx_eb) { + printf("\033[1;31mFAIL\033[0m\n"); + } else { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } + ntest++; + + gguf_free(gguf_ctx_eb); + fclose(file_eb); + } + + const bool alignment_defined = hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN; + + if (expect_context_not_null(hft)) { + printf("%s: - check_header: ", __func__); + if (handcrafted_check_header(gguf_ctx, seed, hft >= offset_has_kv, hft >= offset_has_tensors, alignment_defined)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + } + + if (expect_context_not_null(hft) && hft >= offset_has_kv) { + printf("%s: - check_kv: ", __func__); + if (handcrafted_check_kv(gguf_ctx, seed, hft >= offset_has_tensors, alignment_defined)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + } + + if (expect_context_not_null(hft) && hft >= offset_has_tensors) { + printf("%s: - check_tensors: ", __func__); + if (handcrafted_check_tensors(gguf_ctx, seed)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + } + + if (expect_context_not_null(hft) && hft >= offset_has_data) { + printf("%s: - check_tensor_data: ", __func__); + if (handcrafted_check_tensor_data(gguf_ctx, seed, file)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + } + + if (gguf_ctx) { + ggml_free(ctx); + gguf_free(gguf_ctx); + } + fclose(file); + printf("\n"); + } + + return std::make_pair(npass, ntest); +} + +struct random_gguf_context_result { + struct gguf_context * gguf_ctx; + struct ggml_context * ctx; + ggml_backend_buffer_t buffer; +}; + +static struct random_gguf_context_result get_random_gguf_context(ggml_backend_t backend, const unsigned int seed) { + std::mt19937 rng(seed); + + struct gguf_context * gguf_ctx = gguf_init_empty(); + + for (int i = 0; i < 256; ++i) { + const std::string key = "my_key_" + std::to_string(rng() % 1024); + const enum gguf_type type = gguf_type(rng() % GGUF_TYPE_COUNT); + + if (type == GGUF_TYPE_STRING || type == GGUF_TYPE_ARRAY) { + continue; // FIXME memory leak + } + + switch (type) { + case GGUF_TYPE_UINT8: gguf_set_val_u8 (gguf_ctx, key.c_str(), rng() % (1 << 7)); break; + case GGUF_TYPE_INT8: gguf_set_val_i8 (gguf_ctx, key.c_str(), rng() % (1 << 7) - (1 << 6)); break; + case GGUF_TYPE_UINT16: gguf_set_val_u16 (gguf_ctx, key.c_str(), rng() % (1 << 15)); break; + case GGUF_TYPE_INT16: gguf_set_val_i16 (gguf_ctx, key.c_str(), rng() % (1 << 15) - (1 << 14)); break; + case GGUF_TYPE_UINT32: gguf_set_val_u32 (gguf_ctx, key.c_str(), rng()); break; + case GGUF_TYPE_INT32: gguf_set_val_i32 (gguf_ctx, key.c_str(), rng() - (1 << 30)); break; + case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (gguf_ctx, key.c_str(), rng() % 1024 - 512); break; + case GGUF_TYPE_BOOL: gguf_set_val_bool(gguf_ctx, key.c_str(), rng() % 2 == 0); break; + case GGUF_TYPE_STRING: gguf_set_val_str (gguf_ctx, key.c_str(), std::to_string(rng()).c_str()); break; + case GGUF_TYPE_UINT64: gguf_set_val_u64 (gguf_ctx, key.c_str(), rng()); break; + case GGUF_TYPE_INT64: gguf_set_val_i64 (gguf_ctx, key.c_str(), rng() - (1 << 30)); break; + case GGUF_TYPE_FLOAT64: gguf_set_val_f32 (gguf_ctx, key.c_str(), rng() % 1024 - 512); break; + case GGUF_TYPE_ARRAY: { + const enum gguf_type type_arr = gguf_type(rng() % GGUF_TYPE_COUNT); + const uint64_t ne = rng() % 1024; + + switch (type_arr) { + case GGUF_TYPE_UINT8: + case GGUF_TYPE_INT8: + case GGUF_TYPE_UINT16: + case GGUF_TYPE_INT16: + case GGUF_TYPE_UINT32: + case GGUF_TYPE_INT32: + case GGUF_TYPE_FLOAT32: + case GGUF_TYPE_BOOL: + case GGUF_TYPE_UINT64: + case GGUF_TYPE_INT64: + case GGUF_TYPE_FLOAT64: { + const size_t nbytes = ne*gguf_type_size(type_arr); + std::vector random_data((nbytes + sizeof(uint32_t) - 1) / sizeof(uint32_t)); + for (size_t j = 0; j < random_data.size(); ++j) { + random_data[j] = rng(); + } + gguf_set_arr_data(gguf_ctx, key.c_str(), type_arr, random_data.data(), ne); + } break; + case GGUF_TYPE_STRING: { + std::vector data_cpp(ne); + std::vector data_c(ne); + for (size_t j = 0; j < data_cpp.size(); ++j) { + data_cpp[j] = std::to_string(rng()); + data_c[j] = data_cpp[j].c_str(); + } + gguf_set_arr_str(gguf_ctx, key.c_str(), data_c.data(), ne); + } break; + case GGUF_TYPE_ARRAY: { + break; // not supported + } + case GGUF_TYPE_COUNT: + default: { + GGML_ABORT("fatal error"); + } break; + } + } break; + case GGUF_TYPE_COUNT: + default: { + GGML_ABORT("fatal error"); + } break; + } + } + + struct ggml_init_params ggml_params = { + /*.mem_size =*/ 256*ggml_tensor_overhead(), + /*.mem_buffer =*/ nullptr, + /*.no_alloc =*/ true, + }; + struct ggml_context * ctx = ggml_init(ggml_params); + + for (int i = 0; i < 256; ++i) { + const std::string name = "my_tensor_" + std::to_string(i); + const enum ggml_type type = ggml_type(rng() % GGML_TYPE_COUNT); + const size_t type_size = ggml_type_size(type); + + if (type_size == 0) { + continue; + } + + const int n_dims = 1 + rng() % GGML_MAX_DIMS; + int64_t ne[GGML_MAX_DIMS]; + ne[0] = (1 + rng() % 10) * ggml_blck_size(type); + for (int j = 1; j < n_dims; ++j) { + ne[j] = 1 + rng() % 10; + } + + struct ggml_tensor * tensor = ggml_new_tensor(ctx, type, n_dims, ne); + ggml_set_name(tensor, name.c_str()); + } + + ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend); + for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) { + const size_t nbytes = ggml_nbytes(t); + std::vector random_data((nbytes + sizeof(uint32_t) - 1) / sizeof(uint32_t)); + for (size_t j = 0; j < random_data.size(); ++j) { + random_data[j] = rng(); + } + ggml_backend_tensor_set(t, random_data.data(), 0, nbytes); + + gguf_add_tensor(gguf_ctx, t); + } + + return {gguf_ctx, ctx, buf}; +} + +static bool all_kv_in_other(const gguf_context * ctx, const gguf_context * other) { + bool ok = true; + + const int n_kv = gguf_get_n_kv(ctx); + for (int id = 0; id < n_kv; ++id) { + const char * name = gguf_get_key(ctx, id); + + const int idx_other = gguf_find_key(other, name); + if (idx_other < 0) { + ok = false; + continue; + } + + const gguf_type type = gguf_get_kv_type(ctx, id); + if (type != gguf_get_kv_type(other, idx_other)) { + ok = false; + continue; + } + + if (type == GGUF_TYPE_ARRAY) { + const int arr_n = gguf_get_arr_n(ctx, id); + if (arr_n != gguf_get_arr_n(other, idx_other)) { + ok = false; + continue; + } + + const gguf_type type_arr = gguf_get_arr_type(ctx, id); + if (type_arr != gguf_get_arr_type(other, idx_other)) { + ok = false; + continue; + } + + if (type_arr == GGUF_TYPE_STRING) { + for (int arr_i = 0; arr_i < arr_n; ++arr_i) { + const std::string str = gguf_get_arr_str(ctx, id, arr_i); + const std::string str_other = gguf_get_arr_str(other, idx_other, arr_i); + if (str != str_other) { + ok = false; + } + } + continue; + } + + const char * data = reinterpret_cast(gguf_get_arr_data(ctx, id)); + const char * data_other = reinterpret_cast(gguf_get_arr_data(other, idx_other)); + if (!std::equal(data, data + arr_n*gguf_type_size(type_arr), data_other)) { + ok = false; + } + continue; + } + + if (type == GGUF_TYPE_STRING) { + const std::string str = gguf_get_val_str(ctx, id); + const std::string str_other = gguf_get_val_str(other, idx_other); + if (str != str_other) { + ok = false; + } + continue; + } + + const char * data = reinterpret_cast(gguf_get_val_data(ctx, id)); + const char * data_other = reinterpret_cast(gguf_get_val_data(other, idx_other)); + if (!std::equal(data, data + gguf_type_size(type), data_other)) { + ok = false; + } + } + + return ok; +} + +static bool all_tensors_in_other(const gguf_context * ctx, const gguf_context * other) { + bool ok = true; + + const int n_tensors = gguf_get_n_tensors(ctx); + for (int id = 0; id < n_tensors; ++id) { + const std::string name = gguf_get_tensor_name(ctx, id); + + const int idx_other = gguf_find_tensor(other, name.c_str()); + if (id != idx_other) { + ok = false; + if (idx_other < 0) { + continue; + } + } + + const ggml_type type = gguf_get_tensor_type(ctx, id); + if (type != gguf_get_tensor_type(other, id)) { + ok = false; + } + + const size_t offset = gguf_get_tensor_offset(ctx, id); + if (offset != gguf_get_tensor_offset(other, id)) { + ok = false; + } + } + + return ok; +} + +static bool same_tensor_data(const struct ggml_context * orig, const struct ggml_context * read) { + bool ok = true; + + struct ggml_tensor * t_orig = ggml_get_first_tensor(orig); + struct ggml_tensor * t_read = ggml_get_first_tensor(read); + while (t_orig) { + if (!t_read) { + ok = false; + break; + } + + const size_t nbytes = ggml_nbytes(t_orig); + if (ggml_nbytes(t_read) != nbytes) { + ok = false; + break; + } + std::vector data_orig(nbytes); + ggml_backend_tensor_get(t_orig, data_orig.data(), 0, nbytes); + if (!std::equal(data_orig.data(), data_orig.data() + nbytes, reinterpret_cast(t_read->data))) { + ok = false; + } + + t_orig = ggml_get_next_tensor(orig, t_orig); + t_read = ggml_get_next_tensor(orig, t_read); + } + if (t_read) { + ok = false; + } + + return true; +} + +static std::pair test_roundtrip(ggml_backend_dev_t dev, const unsigned int seed, const bool only_meta) { + FILE * file = tmpfile(); +#ifdef _WIN32 + if (!file) { + printf("%s: failed to create tmpfile(), needs elevated privileges on Windows"); + printf("%s: skipping tests"); + return std::make_pair(0, 0); + } +#else + GGML_ASSERT(file); +#endif // _WIN32 + + if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU) { + return std::make_pair(0, 0); // FIXME + } + + ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); + printf("%s: device=%s, backend=%s, only_meta=%s\n", + __func__, ggml_backend_dev_description(dev), ggml_backend_name(backend), only_meta ? "yes" : "no"); + + int npass = 0; + int ntest = 0; + + struct gguf_context * gguf_ctx_0; + struct ggml_context * ctx_0; + ggml_backend_buffer_t bbuf; + { + struct random_gguf_context_result result = get_random_gguf_context(backend, seed); + gguf_ctx_0 = result.gguf_ctx; + ctx_0 = result.ctx; + bbuf = result.buffer; + } + + struct gguf_buf gbuf = gguf_buf_init(16 * 1024); + gguf_write_to_buf(gguf_ctx_0, &gbuf, only_meta); + helper_write(gbuf.data, gbuf.offset, file); + rewind(file); + + struct ggml_context * ctx_1 = nullptr; + struct gguf_init_params gguf_params = { + /*no_alloc =*/ false, + /*ctx =*/ only_meta ? nullptr : &ctx_1, + }; + struct gguf_context * gguf_ctx_1 = gguf_init_from_file_impl(file, gguf_params); + + printf("%s: same_version: ", __func__); + if (gguf_get_version(gguf_ctx_0) == gguf_get_version(gguf_ctx_1)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + + printf("%s: same_n_kv: ", __func__); + if (gguf_get_n_kv(gguf_ctx_0) == gguf_get_n_kv(gguf_ctx_1)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + + printf("%s: same_n_tensors: ", __func__); + if (gguf_get_n_tensors(gguf_ctx_0) == gguf_get_n_tensors(gguf_ctx_1)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + + printf("%s: all_orig_kv_in_read: ", __func__); + if (all_kv_in_other(gguf_ctx_0, gguf_ctx_1)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + + printf("%s: all_read_kv_in_orig: ", __func__); + if (all_kv_in_other(gguf_ctx_1, gguf_ctx_0)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + + printf("%s: all_orig_tensors_in_read: ", __func__); + if (all_tensors_in_other(gguf_ctx_0, gguf_ctx_1)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + + printf("%s: all_read_tensors_in_orig: ", __func__); + if (all_tensors_in_other(gguf_ctx_1, gguf_ctx_0)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + + if (!only_meta) { + printf("%s: same_tensor_data: ", __func__); + if (same_tensor_data(ctx_0, ctx_1)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + } + + ggml_backend_buffer_free(bbuf); + ggml_free(ctx_0); + ggml_free(ctx_1); + gguf_free(gguf_ctx_0); + gguf_free(gguf_ctx_1); + gguf_buf_free(gbuf); + ggml_backend_free(backend); + GGML_ASSERT(fclose(file) == 0); + + printf("\n"); + return std::make_pair(npass, ntest); +} + +static std::pair test_gguf_set_kv(ggml_backend_dev_t dev, const unsigned int seed) { + ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); + printf("%s: device=%s, backend=%s\n", __func__, ggml_backend_dev_description(dev), ggml_backend_name(backend)); + + int npass = 0; + int ntest = 0; + + struct gguf_context * gguf_ctx_0; + struct ggml_context * ctx_0; + ggml_backend_buffer_t bbuf_0; + { + struct random_gguf_context_result result = get_random_gguf_context(backend, seed); + gguf_ctx_0 = result.gguf_ctx; + ctx_0 = result.ctx; + bbuf_0 = result.buffer; + } + + struct gguf_context * gguf_ctx_1; + struct ggml_context * ctx_1; + ggml_backend_buffer_t bbuf_1; + { + struct random_gguf_context_result result = get_random_gguf_context(backend, seed + 1); + gguf_ctx_1 = result.gguf_ctx; + ctx_1 = result.ctx; + bbuf_1 = result.buffer; + } + + struct gguf_context * gguf_ctx_2 = gguf_init_empty(); + + gguf_set_kv(gguf_ctx_1, gguf_ctx_0); + gguf_set_kv(gguf_ctx_2, gguf_ctx_0); + + printf("%s: same_n_kv: ", __func__); + if (gguf_get_n_kv(gguf_ctx_0) == gguf_get_n_kv(gguf_ctx_2)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + + printf("%s: all_kv_0_in_1: ", __func__); + if (all_kv_in_other(gguf_ctx_0, gguf_ctx_1)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + + printf("%s: all_kv_0_in_2: ", __func__); + if (all_kv_in_other(gguf_ctx_0, gguf_ctx_2)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + + gguf_set_kv(gguf_ctx_0, gguf_ctx_1); + + printf("%s: same_n_kv_after_double_copy: ", __func__); + if (gguf_get_n_kv(gguf_ctx_0) == gguf_get_n_kv(gguf_ctx_1)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + + printf("%s: all_kv_1_in_0_after_double_copy: ", __func__); + if (all_kv_in_other(gguf_ctx_1, gguf_ctx_0)) { + printf("\033[1;32mOK\033[0m\n"); + npass++; + } else { + printf("\033[1;31mFAIL\033[0m\n"); + } + ntest++; + + ggml_backend_buffer_free(bbuf_0); + ggml_backend_buffer_free(bbuf_1); + ggml_free(ctx_0); + ggml_free(ctx_1); + gguf_free(gguf_ctx_0); + gguf_free(gguf_ctx_1); + gguf_free(gguf_ctx_2); + ggml_backend_free(backend); + + printf("\n"); + return std::make_pair(npass, ntest); +} + +static void print_usage() { + printf("usage: test-gguf [seed]\n"); + printf(" if no seed is unspecified then a random seed is used\n"); +} + +int main(int argc, char ** argv) { + if (argc > 2) { + print_usage(); + return 1; + } + + std::random_device rd; + const unsigned int seed = argc < 2 ? rd() : std::stoi(argv[1]); + + // Initialize ggml backends early so the prints aren't interleaved with the test results: + ggml_backend_dev_count(); + fprintf(stderr, "\n"); + + int npass = 0; + int ntest = 0; + { + std::pair result = test_handcrafted_file(seed); + npass += result.first; + ntest += result.second; + } + + for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { + ggml_backend_dev_t dev = ggml_backend_dev_get(i); + + for (bool only_meta : {true, false}) { + std::pair result = test_roundtrip(dev, seed, only_meta); + npass += result.first; + ntest += result.second; + } + + { + std::pair result = test_gguf_set_kv(dev, seed); + npass += result.first; + ntest += result.second; + } + } + + printf("%d/%d tests passed\n", npass, ntest); + if (npass != ntest) { + printf("\033[1;31mFAIL\033[0m\n"); + return 1; + } + printf("\033[1;32mOK\033[0m\n"); + return 0; +} diff --git a/tests/test-rope.cpp b/tests/test-rope.cpp index 4656b30f09cbd..322b8bb99ec6c 100644 --- a/tests/test-rope.cpp +++ b/tests/test-rope.cpp @@ -138,7 +138,7 @@ int main(int /*argc*/, const char ** /*argv*/) { struct ggml_tensor * x; // rope f32 - for (int m = 0; m < 3; ++m) { + for (int m = 0; m < 5; ++m) { const int ndims = 4; const int64_t n_rot = 128; @@ -147,28 +147,69 @@ int main(int /*argc*/, const char ** /*argv*/) { const int n_past_0 = 100; const int n_past_2 = 33; - struct ggml_tensor * p0 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]); - struct ggml_tensor * p1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]); - struct ggml_tensor * p2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]); - - for (int i = 0; i < ne[2]; ++i) { - ((int32_t *) p0->data)[i] = n_past_0 + i; - ((int32_t *) p1->data)[i] = n_past_2 - n_past_0; - ((int32_t *) p2->data)[i] = n_past_2 + i; - } - - // test mode 0, 2, 4 (standard, GPT-NeoX, GLM) - const int mode = m == 0 ? 0 : m == 1 ? 2 : 4; - + struct ggml_tensor * r0; + struct ggml_tensor * r1; + struct ggml_tensor * r2; x = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); + int mode = -1; - // 100, 101, 102, ..., 172 - struct ggml_tensor * r0 = ggml_rope(ctx0, x, p0, n_rot, mode); - // -67, -67, -67, ..., -67 - struct ggml_tensor * r1 = ggml_rope(ctx0, r0, p1, n_rot, mode); // "context swap", i.e. forget n_past_0 - n_past_2 tokens + if (m < 3) { + struct ggml_tensor * p0 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]); + struct ggml_tensor * p1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]); + struct ggml_tensor * p2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]); - // 33, 34, 35, ..., 105 - struct ggml_tensor * r2 = ggml_rope(ctx0, x, p2, n_rot, mode); + for (int i = 0; i < ne[2]; ++i) { + ((int32_t *) p0->data)[i] = n_past_0 + i; + ((int32_t *) p1->data)[i] = n_past_2 - n_past_0; + ((int32_t *) p2->data)[i] = n_past_2 + i; + } + // test mode 0, 2, 4 (standard, GPT-NeoX, GLM) + mode = m == 0 ? 0 : m == 1 ? 2 : 4; + + // 100, 101, 102, ..., 172 + r0 = ggml_rope(ctx0, x, p0, n_rot, mode); + // -67, -67, -67, ..., -67 + r1 = ggml_rope(ctx0, r0, p1, n_rot, mode); // "context swap", i.e. forget n_past_0 - n_past_2 tokens + + // 33, 34, 35, ..., 105 + r2 = ggml_rope(ctx0, x, p2, n_rot, mode); + } else { + // testing multi-dimension rope position embedding mode + struct ggml_tensor * p0 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2] * 4); + struct ggml_tensor * p1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2] * 4); + struct ggml_tensor * p2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2] * 4); + + int sections[4] = {16, 24, 24, 0}; + mode = (m == 3) ? GGML_ROPE_TYPE_MROPE : GGML_ROPE_TYPE_VISION; + + for (int i = 0; i < ne[2]; ++i) { + for (int j = 0; j < 4; ++j) { + ((int32_t *) p0->data)[i + ne[2] * j] = n_past_0 + i + j; + ((int32_t *) p1->data)[i + ne[2] * j] = n_past_2 - n_past_0; + ((int32_t *) p2->data)[i + ne[2] * j] = n_past_2 + i + j; + } + } + + // [[100, 101, 102, ..., 172], + // [101, 102, 103, ..., 173], + // [102, 103, 104, ..., 174]] + r0 = ggml_rope_multi( + ctx0, x, p0, nullptr, + n_rot, sections, mode, 32768, 1000000, 1, 0, 1, 32, 1); + // [[-67, -67, -67, ..., -67] + // [-67, -67, -67, ..., -67] + // [-67, -67, -67, ..., -67]] + r1 = ggml_rope_multi( + ctx0, r0, p1, nullptr, + n_rot, sections, mode, 32768, 1000000, 1, 0, 1, 32, 1); + + // [[33, 34, 35, ..., 105] + // [34, 35, 36, ..., 106] + // [35, 36, 37, ..., 107]] + r2 = ggml_rope_multi( + ctx0, x, p2, nullptr, + n_rot, sections, mode, 32768, 1000000, 1, 0, 1, 32, 1); + } ggml_cgraph * gf = ggml_new_graph(ctx0); diff --git a/tests/test-sampling.cpp b/tests/test-sampling.cpp index e5c9e75e4185f..c0dcb4848b403 100644 --- a/tests/test-sampling.cpp +++ b/tests/test-sampling.cpp @@ -145,7 +145,7 @@ static void test_penalties( sampler_tester tester(probs, probs_expected); const size_t n_vocab = probs.size(); - auto * sampler = llama_sampler_init_penalties(n_vocab, LLAMA_TOKEN_NULL, LLAMA_TOKEN_NULL, last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence, false, false); + auto * sampler = llama_sampler_init_penalties(last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence); for (size_t i = 0; i < last_tokens.size(); i++) { llama_sampler_accept(sampler, last_tokens[i]);