forked from wisconsinspaceprogram/aero-analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWIP8-2-15-24.tex
134 lines (133 loc) · 9.24 KB
/
WIP8-2-15-24.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
\documentclass{article}
\title{Fin Flutter Analysis}
\author{Gabe Bohlmann}
\date{\today}
\usepackage[group-separator={,}, group-digits=true]{siunitx}
\usepackage[margin=1in]{geometry}
\usepackage{amsmath}
\allowdisplaybreaks
\begin{document}
\begin{align*}
% Fin Geometry Calculations Block
\textbf{Fin Geometry Calculations} \\
\text{Root Chord Length:}& &c_{r} &=\SI{9.0}{in} \\
\text{Tip Chord Length:}& &c_{t} &= \SI{3.0}{in} \\
\text{Fin Thickness:}& &FT &= \SI{0.37}{in} \\
\text{Fin semi-span root to tip:}& &b &= \SI{4.75}{in} \\
\text{Shear modulus of fin material (fiberglass):}& &G &= \SI{400000.0}{psi} \\
\text{Fin surface area:}& &S &= \frac{1}{2} \left( c_{r} + c_{t} \right) \cdot b \tag{eqn. 1} \\
&& &= \frac{1}{2} \left( 9.0 + 3.0 \right) \cdot4.0\\
&& &= \SI{24.0}{in^2} \\ \\
\text{Fin Aspect Ratio:}& &AR &= \frac{b^2}{S} \tag{eqn. 2} \\
&& &= \frac{\left(4.0\right)^2}{\SI{24.0}{in^2}} \\
&& &= 0.667\\ \\
\text{Fin taper ratio:}& &\lambda &= \frac{c_{t}}{c_{r}} \tag{eqn. 3} \\
&& &= \frac{3.0}{9.0} \\
&& &= 0.33\\
\\ \\
% Atmospheric Conditions Calculations Block
\textbf{Atmospheric Conditions Calculations} \\
\text{Sea level atmospheric pressure:}& &P_{0} &= \SI{14.69}{psi} \\
\text{Altitude at launchpad:}& &h_{g} &= \SI{4595.0}{ft} \\
\text{Altitude of max velocity relative to launchpad:}& &h_{relVmax} &= \SI{1947.94}{ft} \\
\text{Altitude of max velocity:}& &h_{Vmax} &= h_{g} + h_{relVmax} \\ \tag{eqn.4}
&& &= 4595.0 + 1947.94 \\
&& &= \SI{6542.94}{ft} \\ \\
\text{Temperature at h\_Vmax:}& &T &= 59 - 0.00356 \cdot h_{Vmax} \tag{eqn. 5}\\
&& &= 59 - 0.00356 \cdot 6542.94\\
&& &= \SI{35.71}{\degree F} \\ \\
\text{Pressure at h\_Vmax:}& &P &= P_{0} \cdot \left(\frac{T + 459.7}{ 518.6 }\right)^{5.256} \tag{eqn.6} \\
&& &= 14.69\cdot \left(\frac{35.71 + 459.7 }{ 518.6 }\right)^{5.256} \\
&& &= \SI{11.55}{psi} \\ \\
\text{Speed of sound at h\_Vmax: }& &a &= \sqrt { 1.4 \cdot 1716.59 \cdot \left(T + 459.7 \right) } \tag{eqn. 7}\\&& &= \sqrt { 1.4 \cdot 1716.59 \cdot \left(35.71 + 459.7 \right) } \\
&& &= \SI{1091.47}{ft/s} \\ \\
\\
% Fin Flutter Velocity Calculations
\textbf{Fin Velocity Calculations} \\
\text{Max velocity of rocket:}& &V_{max} &= \SI{979.86}{ft/s} \\ \\
\text{Fin flutter velocity:}& &v_{fl} &= \sqrt {\frac{ G }{\left( \frac{ 39.3 \cdot \left( AR \right) ^{ 3 } }{ \left( \frac{ FT }{ c_{r} } \right) ^{ 3 } \cdot \left( AR + 2 \right) } \right) \left( \frac{ \lambda + 1 }{ 2 } \right) \left( \frac{ P }{ P_{0} } \right) } } \cdot a \tag{eqn. 8} \\&& &= \sqrt { \frac{400000.0}{ \left( \frac{ 39.3 \cdot \left(0.667 \right) ^{ 3 } }{ \left( \frac{0.37}{9.0} \right) ^{3} \cdot \left(0.667 + 2 \right) } \right) \left( \frac{0.33+ 1 }{ 2 } \right) \left( \frac{11.55}{14.69} \right) } } \cdot 1091.47\\&& &= \SI{3880.72}{ft/s} \\ \\
\text{Fin flutter safety margin:}& &SM &= \frac{V_{max}}{v_{fl}} \tag{eqn. 9} \\&& &= \frac{979.86}{3880.72} \\
&& &= 3.96\\
\\
% Parachute Descent Velocity Equation Proof
\textbf{Parachute Descent Velocity Equation Proof} \\
\text{Drag force equation:}& &F_{d} &= \frac{1}{2} \cdot \rho \cdot V^{2} \cdot c_{d} \cdot A \tag{eqn. 10} \\
\text{Parachute area:}& &A &= \pi \cdot \left( \frac{D^{2}}{4} \right) \\
\text{Drag force equation with D:}& &F_{d} &= \frac{1}{2} \cdot \rho \cdot V^{2} \cdot c_{d} \cdot \pi \cdot \left( \frac{D^{2}}{4} \right) \\
& &\implies F_{d} &= \frac{1}{8} \cdot \rho \cdot V^{2} \cdot c_{d} \cdot \pi \cdot D^{2} \\ \\
\text{Weight force equation:}& &F_{w} &= m \cdot g \\
\text{Force balance of drag and weight:}& &F_{w} &= F_{d} \\
&& \implies m \cdot g&= \frac{1}{8} \cdot \rho \cdot V^{2} \cdot c_{d} \cdot \pi \cdot D^{2} \tag{eqn. 11} \\ \\
\text{Re-arrange force balance equation for solution:}& & V_{chute} &= \sqrt{\frac{8 \cdot m \cdot g}{\rho \cdot c_{d} \cdot \pi \cdot D^{2}}} \tag{eqn. 12} \\ \\
% Descent Velocity Calculations
\textbf{Descent Velocity Calculations} \\
\text{Parachute Descent Velocity Equation:}& & V_{chute} &= \sqrt{\frac{8 \cdot m \cdot g}{\rho \cdot C_{d} \cdot \pi \cdot D^{2}}} \tag{eqn. 12} \\ \\
% Parchute Parameters
\text{Drogue Chute Diameter:}& &D_{d} &= \SI{2.5}{ft} \\
\text{Drogue Chute Drag Coefficient:}& &Cd_{d} &= \SI{1.55}{} \\
\text{Air density under drogue chute descent:}& &\rho_{d} &= \SI{0.06}{lbs/ft^3} \\ \\
\text{Main Chute Diameter:}& &D_{m} &= \SI{12.0}{ft} \\
\text{Main Chute Drag Coefficient:}& &Cd_{m} &= \SI{2.2}{} \\
\text{Air density under main chute descent:}& &\rho_{m} &= \SI{0.07}{lbs/ft^3} \\ \\
\text{Rocket mass after motor burnout:}& &m &= \SI{63.3}{lbs} \\ \\
\text{Gravity:}& &g &= \SI{32.17}{ft/s^2} \\ \\
\text{Drogue chute descent velocity:}& &V_{drogue} &= \sqrt{\frac{8 \cdot 63.3 \cdot 32.2}{\pi \cdot 0.06 \cdot 1.55 \cdot 2.5^{2}}} \\
&& &= \SI{91.6}{ft/s} \\ \\
\text{Main chute descent velocity:}& &V_{main} &= \sqrt{\frac{8 \cdot 63.3 \cdot 32.2}{\pi \cdot 0.07 \cdot 2.2 \cdot 12.0^{2}}} \\
&& &= \SI{15.87}{ft/s} \\ \\
% Ejection Charge Size Calculations
\textbf{Ejection Charge Size Calculations} \\
\text{Airframe Diameter:}& &D_{a} &= \SI{3.9}{in} \\ \\
\text{Bulkhead area:}& & A_{bh} &= \frac{D_{a} \cdot pi}{4} \tag{eqn. 13} \\
&& &= \SI{11.95}{in^2} \\ \\
\text{Force applied to bulkheads by P\_{e}:}& &F_{e} &= P_{e} \cdot A_{bh} \\
&& &= \SI{179.19}{lbs} \\ \\
\text{Airframe Section Volume Equation:}& &Vol_{s} &= \frac{ \pi \cdot D^{2} \cdot L}{4} \tag{eqn. 14} \\ \\
\text{Volume of Drogue Chute Bay:}&&Vol_{d} &= \frac{\pi \cdot 3.9^{2} \cdot10.0}{4} \\
&& &= \SI{119.46}{in^3} \\ \\
\text{Volume of Main Chute Bay:}&&Vol_{m} &= \frac{\pi \cdot 3.9^{2} \cdot21.0}{4} \\
&& &= \SI{250.86}{in^3} \\ \\
\text{Combustion gas constant of black powder:}& &R &= 265.92 \frac{in \cdot lbf}{lbm \cdot \SI{}{\degree R}} \\ \\
\text{Combustion gas temperature of black powder:}& &T_{c} &= 3307 \: \SI{}{\degree R} \\ \\
\text{Black powder charge mass equation:}& &m_{bp} &= \frac{454 g}{1 lbf} \cdot \frac{P_{e} \cdot Vol_{s}}{265.92 \frac{in \cdot lbf}{lbm \cdot \SI{}{\degree R}} \cdot 3307 \cdot \SI{}{\degree R}} \tag{eqn. 15} \\ \\
\text{Black powder charge mass for drogue chute bay:}& &m_{bp,d} &= \frac{454 g}{1 lbf} \cdot \frac{15.0 \cdot 119.46}{265.92 \cdot 3307 \cdot} \\
&& &= \SI{0.93}{g} \\ \\
\text{Black powder charge mass for main chute bay: }& &m_{bp,m} &= \frac{454 g}{1 lbf} \cdot \frac{15.0 \cdot 250.86}{265.92 \cdot 3307} \\
&& &= \SI{1.94}{g} \\ \\
% Ejection Charge Size Calculations Reversed
\textbf{Ejection Charge Size Calculations Reversed } \\
\text{Airframe Diameter:}& &D_{a} &= \SI{3.9}{in} \\ \\
\text{Bulkhead area:}& & A_{bh} &= \frac{D_{a} \cdot \pi}{4} \tag{eqn. 13} \\
&& &= \SI{11.95}{in^2} \\ \\
\text{Length of Drogue Chute Bay:}&&L_{d,bay} &= \SI{10.0}{in} \\
\text{Length of Main Chute Bay:}&&L_{m,bay} &= \SI{21.0}{in} \\
\text{Airframe Section Volume Equation:}& &Vol_{s} &= \frac{ \pi \cdot D^{2} \cdot L}{4} \tag{eqn. 14} \\ \\
\text{Volume of Drogue Chute Bay:}&&Vol_{d} &= \frac{\pi \cdot 3.9^{2} \cdot10.0}{4} \\
&& &= \SI{119.46}{in^3} \\ \\
\text{Volume of Main Chute Bay:}&&Vol_{m} &= \frac{\pi \cdot 3.9^{2} \cdot21.0}{4} \\
&& &= \SI{250.86}{in^3} \\ \\
\text{Combustion gas constant of black powder:}& &R &= 265.92 \frac{in \cdot lbf}{lbm \cdot \SI{}{\degree R}} \\ \\
\text{Combustion gas temperature of black powder:}& &T_{c} &= 3307 \: \SI{}{\degree R} \\ \\
\text{Ejection pressure equation: }& &P_{e} &= \left( m_{bp} \cdot \frac{\SI{1}{lbf}}{\SI{454}{g}} \right) \cdot \frac{R \cdot T_{c}}{Vol_{S}} \tag{eqn. 15} \\ \\
\text{Force applied to bulkheads equaton:}& &F_{e} &= P_{e} \cdot A_{bh} \tag{eqn. 16} \\ \\
\text{Black powder charge mass for drogue chute bay:}& &m_{bp,d} &= \SI{2.5}{g} \\
\text{Ejection pressure for drogue chute:}& &P_{e,d} &= \left(\SI{2.5}{g} \cdot \frac{1 lbf}{454 g} \right) \cdot \frac{265.92 \frac{in \cdot lbf}{lbm \cdot \SI{}{\degree R}} \cdot 3307 \SI{}{\degree R}}{119.46} \\ \\
&& &= \SI{40.54}{psi} \\ \\
\text{Force applied to drogue chute bay bulkheads:}& &F_{e,d } &= P_{e} \cdot A_{bh} \\
&& &= 40.54\cdot 11.95\\
&& &= \SI{484.25}{lbs} \\ \\
\text{Black powder charge mass for main chute bay:}& &m_{bp,m} &= \SI{5}{g} \\
\text{Ejection pressure for main chute:}& &P_{e,m} &= \left(\SI{5}{g} \cdot \frac{1 lbf}{454 g} \right) \cdot \frac{265.92 \frac{in \cdot lbf}{lbm \cdot \SI{}{\degree R}} \cdot 3307 \SI{}{\degree R}}{250.86} \\ \\
&& &= \SI{38.61}{psi} \\ \\
\text{Force applied to main chute bay bulkheads:}& &F_{e,d } &= P_{e} \cdot A_{bh} \\
&& &= 38.61\cdot 11.95\\
&& &= \SI{461.19}{lbs} \\ \\
% Main Chute Opening Force Calculation
\textbf{Main Chute Opening Force Calculation} \\
\text{Descent velocity before main chute opening:}& &V_{i} &= \SI{82.37}{ft/s} \\ \\
\text{Descent velocity after main chute opening:}& &V_{f} &= \SI{15.69}{ft/s} \\ \\
\text{Main chute opening time:}& &t_{infl} &= \SI{0.51}{s} \\ \\
\text{Main Chute Opening Force Equation:}& &F_{max} &= \left( \frac{2 \cdot m \cdot v_{i}}{g \cdot t_{infl}} \right) \left( 1 - \frac{v_f}{v_i} \right) + 2 \cdot m \tag{eqn. 16} \\
&& &= \left( \frac{2 \cdot 63.3 \cdot 82.37}{32.17\cdot 0.51} \right) \left( 1 - \frac{15.69}{82.37} \right) + 2 \cdot63.3\\&& &= \SI{183.34}{lbf} \\
\end{align*}
\end{document}