forked from hiranumn/DeepAccNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
extractBert.py
156 lines (132 loc) · 5.43 KB
/
extractBert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from os import listdir
from os.path import join, isdir, isfile
import numpy as np
import argparse
import os
import torch
import torch.nn as nn
from transformers import BertModel, BertTokenizer, BertForMaskedLM
import glob
import time
import re
def parsePDB(filename, atom="CA"):
file = open(filename, "r")
lines = file.readlines()
coords = []
aas = []
cur_resdex = -1
aa = ""
for line in lines:
if "ATOM" in line:
if cur_resdex != int(line[22:26]):
cur_resdex = int(line[22:26])
new_res = True
aa = line[17:20]
aas.append(aa)
if atom == "CA" and " CA " == line[12:16]:
xyz = [float(line[30:38]), float(line[38:46]), float(line[46:54])]
coords.append(xyz)
elif atom == "CB":
if aa == "GLY" and " CA " == line[12:16]:
xyz = [float(line[30:38]), float(line[38:46]), float(line[46:54])]
coords.append(xyz)
elif " CB " == line[12:16]:
xyz = [float(line[30:38]), float(line[38:46]), float(line[46:54])]
coords.append(xyz)
return np.array(coords), aas
####################
# INDEXERS/MAPPERS
####################
# Assigning numbers to 3 letter amino acids.
residues= ['ALA', 'ARG', 'ASN', 'ASP', 'CYS', 'GLN', 'GLU',\
'GLY', 'HIS', 'ILE', 'LEU', 'LYS', 'MET', 'PHE',\
'PRO', 'SER', 'THR', 'TRP', 'TYR', 'VAL']
residuemap = dict([(residues[i], i) for i in range(len(residues))])
# Mapping 3 letter AA to 1 letter AA (e.g. ALA to A)
oneletter = ["A", "R", "N", "D", "C", \
"Q", "E", "G", "H", "I", \
"L", "K", "M", "F", "P", \
"S", "T", "W", "Y", "V"]
aanamemap = dict([(residues[i], oneletter[i]) for i in range(len(residues))])
def parse_fasta(filename,limit=-1):
'''function to parse fasta'''
header = []
sequence = []
lines = open(filename, "r")
for line in lines:
line = line.rstrip()
if line[0] == ">":
if len(header) == limit:
break
header.append(line[1:])
sequence.append([])
else:
sequence[-1].append(line)
lines.close()
sequence = [''.join(seq) for seq in sequence]
return np.array(header), np.array(sequence)
def main():
#####################
# Parsing arguments
#####################
parser = argparse.ArgumentParser(description="ProtBert embedding generator",
epilog="v0.0.1")
parser.add_argument("input",
action="store",
help="path to input folder")
parser.add_argument("output",
action="store",
help="path to output folder")
parser.add_argument("--modelpath",
"-modelpath",
action="store",
default='/home/justas/Desktop/my_projects/python_runs/models/ProtBert-BFD/',
help="modelpath (default: /home/justas/Desktop/my_projects/python_runs/models/ProtBert-BFD/")
args = parser.parse_args()
if not isdir(args.output):
os.mkdir(args.output)
pdbfiles = [i for i in listdir(args.input) if i.endswith(".pdb")]
for pdbfile in pdbfiles:
try:
coords, aas = parsePDB(join(args.input, pdbfile))
output = ">"+pdbfile[:-4]+"\n"
output += "".join([aanamemap[i] for i in aas])+"\n"
f = open(join(args.output, pdbfile[:-4]+".fa"), "w")
f.write(output)
f.close()
except:
print(pdbfile)
downloadFolderPath = args.modelpath
modelFolderPath = downloadFolderPath
modelFilePath = os.path.join(modelFolderPath, 'pytorch_model.bin')
configFilePath = os.path.join(modelFolderPath, 'config.json')
vocabFilePath = os.path.join(modelFolderPath, 'vocab.txt')
tokenizer = BertTokenizer(vocabFilePath, do_lower_case=False )
model = BertForMaskedLM.from_pretrained(modelFolderPath, output_attentions=True)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
model = model.eval()
INPUT_PATH = args.input
OUTPUT_PATH = args.output
file_list = glob.glob(join(OUTPUT_PATH, "*.fa"))
protein_names = []
for i in file_list:
name_1 = i.split("/")[-1]
protein_names.append(name_1[:-3])
start = time.time()
for i in range(len(protein_names)):
if i%100==0:
print(100*(i+1)/len(protein_names))
a, b = parse_fasta(join(OUTPUT_PATH, f"{protein_names[i]}.fa"))
sequences_Example = [b[0].replace("", " ")[1: -1]]
sequences_Example = [re.sub(r"[UZOB]", "X", sequence) for sequence in sequences_Example]
ids = tokenizer.batch_encode_plus(sequences_Example, add_special_tokens=True, pad_to_max_length=True)
input_ids = torch.tensor(ids['input_ids']).to(device)
attention_mask = torch.tensor(ids['attention_mask']).to(device)
with torch.no_grad():
Z_out= model(input_ids=input_ids, attention_mask=attention_mask)
last_layer_attn = np.array((Z_out[1][-1].cpu().detach().numpy())[0,:,1:-1,1:-1], np.float32)
np.save(join(OUTPUT_PATH, f'bert_{protein_names[i]}.npy'), last_layer_attn)
print(f'total runtime: {time.time()-start} seconds')
if __name__== "__main__":
main()