-
Notifications
You must be signed in to change notification settings - Fork 1
/
LSR3_animal_analysis.Rmd
2058 lines (1467 loc) · 173 KB
/
LSR3_animal_analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "LSR3 analysis: effects of TAAR1 agonists in animal models of psychosis"
author: "Francesca Tinsdeall, Fiona Ramage, Virginia Chiocchia and Malcolm Macleod"
date: "`r format(Sys.time(), '%d %B %Y')`"
output:
html_document:
toc: true
df_print: paged
fig_width: 9
bibliography: grateful-refs.bib
editor_options:
chunk_output_type: console
---
```{r setup, message=F, echo=F, include=F}
### libraries
library(ggplot2)
library(devtools)
library(dosresmeta)
library(dplyr)
library(grid)
library(gtools)
library(kableExtra)
library(graphics)
library(patchwork)
library(forcats)
library(knitr)
library(ggplot2)
library(Matrix)
library(meta)
library(metafor)
library(orchaRd)
library(readxl)
library(readr)
library(rje)
library(rms)
library(stringr)
library(tibble)
library(tidyr)
library(tools)
library(rlang)
#devtools::install_github("mcguinlu/robvis")
#install_github("mcguinlu/robvis")
library(robvis)
library(PRISMA2020)
library(grateful)
library(xtable)
#define LSR
LSR <- 'LSR3'
# define date of processing
DoP <- Sys.Date()
# All function needed to run this notebook (analyses, etc.) should be in a util.R file
source("util/util.R")
# obtain the data and prepare them for analysis - all data cleaning routines should be in this .R script
source("wrangling/wrangling_functions.R", local = TRUE)
source("wrangling/data_wrangle_script.R")
#Round off results to two digits
options(scipen=100, digits=3)
# Import data
file2load <- paste0(LSR,'_clean_data_',DoP,'.csv')
df <- read_csv(file2load)
```
# 1. Flow of study selection and descriptives
```{r article metadata, eval = TRUE, echo = FALSE}
# Retrieve article metadata omitted from 'clean_data.csv' and join
article_metadata <- df %>%
select(StudyId, Title, Year) %>%
distinct()
```
The flow of study selection is shown in Figure 1. Studies included were published between `r min(article_metadata$Year)` and `r max(article_metadata$Year)`. Overall, this analysis includes `r length(table(df$StudyId))` studies containing `r nrow(df)` comparisons.
**Figure 1 - PRISMA flowchart**
```{r PRISMA flowchart, eval = TRUE, echo = FALSE, warning=FALSE, message=FALSE}
prisma_data <- read_csv("data/LSR3_prisma_211223.csv")
dfp <- PRISMA_data(prisma_data)
PRISMA_flowdiagram(dfp, interactive=FALSE, previous=FALSE, other=FALSE,
detail_databases=FALSE, detail_registers=FALSE, fontsize=12, font="Helvetica",
title_colour="Goldenrod1", greybox_colour="Gainsboro", main_colour="Black",
arrow_colour="Black", arrow_head="normal", arrow_tail="none", side_boxes=TRUE )
```
The table below gives a summary of the included studies, the model and species used, the intervention tested, and the outcome measured. N represents an aggregate of animals contributing to outcomes reported from control and treatment groups, and if the same control group has contributed to more than one experiment, it will be counted twice.
```{r results="asis", echo = FALSE, warning=FALSE, message=FALSE}
tab2 <- read_csv("data/tab2.csv")
tab2$N <- as.numeric(tab2$N)
original_data <- tab2[1:45, 1:6]
# Rows to have bold lines beneath
rows_with_bold_lines <- c(2, 3, 7, 8, 9, 11, 12, 13, 19, 23, 26, 27, 36, 38)
# Generate HTML table with adjusted styles
cat('<div style="text-align: center;">')
cat('<table style="width: 100%; border-collapse: collapse;">')
# Table header
cat('<tr style="border-bottom: 2px solid black;">')
for (col_name in names(original_data)) {
cat(paste('<th style="padding: 8px; text-align: center;">', col_name, '</th>', sep = ''))
}
cat('</tr>')
# Table rows
for (i in seq_len(nrow(original_data))) {
cat('<tr>')
for (j in seq_len(ncol(original_data))) {
cell_content <- original_data[i, j]
cell_style <- ifelse(i %in% rows_with_bold_lines, 'border-bottom: 2px solid black; padding: 8px; text-align: center;', 'border-bottom: 1px solid black; padding: 8px; text-align: center;')
if (j == 1) {
cell_style <- gsub('text-align: center;', 'text-align: left;', cell_style)
}
cat(paste('<td style="', cell_style, '">', cell_content, '</td>', sep = ''))
}
cat('</tr>')
}
# Bottom border for the last row
cat('<tr style="border-top: 1px solid black;">')
for (j in seq_len(ncol(original_data))) {
cell_content <- original_data[nrow(original_data), j]
cell_style <- ifelse(nrow(original_data) %in% rows_with_bold_lines, 'border-bottom: 2px solid black; padding: 8px; text-align: center;', 'border-bottom: 2px solid black; padding: 8px; text-align: center;')
if (j == 1) {
cell_style <- gsub('text-align: center;', 'text-align: left;', cell_style)
}
cat(paste('<td style="', cell_style, '">', cell_content, '</td>', sep = ''))
}
cat('</tr>')
cat('</table>')
cat('</div>')
```
References of included studies are located in the appendix. Included studies used `r length(table(df$ModelID))` unique disease model induction procedures.
## 1.1 Description of experiment types and methodological approach
Within the literature we identified distinct categories of experiments and the data presented would allow several meta-analytical contrasts to be drawn:
1. **TAAR1 agonist vs control**. These were experiments investigating the effect of administering a TAAR1 agonist alone, reported in `r nrow(df %>% filter(SortLabel == "TvC"))` experiments from `r nrow(df %>% filter(SortLabel == "TvC") %>% distinct(StudyId))` publications.
2. **TAAR1 agonist vs 'known' antipsychotic drug**. These were experiments investigating the effect of administering a TAAR1 agonist alongside a currently licensed anti-psychotic reported in `r nrow(df %>% filter(SortLabel == "TvA"))` experiments from `r nrow(df %>% filter(SortLabel == "TvA") %>% distinct(StudyId))` publications.
3. **Co-treatment with TAAR1 agonist plus know antipsychotic drug v known antipsychotic drug alone**, reported in `r nrow(df %>% filter(SortLabel == "TAvA"))` experiments from `r nrow(df %>% filter(SortLabel == "TAvA") %>% distinct(StudyId))` publications.
4. **Effect of TAAR1 antagonism on the effect of TAAR1 agonist v control.** These were experiments investigating whether any effect of TAAR1 agonism was inhibited by TAAR1 antagonism. In this iteration of the review, all experiments within this category used genetic approaches to TAAR1 antogonism (that is, they knocked out the gene for the TAAR1 receptor, so any observed drug effect could not be due to actions mediated through the TAAR1 receptor, and therefore could not be considered specific drug effects mediated through the TAAR1 receptor.
Each experiment type is analysed separately. This is because each experiment type uses different control conditions.
In these studies the:
- **Control group** is a group of animals that is (1) subjected to a psychosis model induction paradigm and (2) administered a control treatment (vehicle) or no treatment
- **Intervention group** is a group of animals that is (1) subjected to a psychosis model induction paradigm and (2) administered a TAAR1 agonist treatment
- **Sham group** is a group of animals that is (1) not subjected to a psychosis model induction paradigm and (2) administered a control treatment (vehicle) or no treatment. These data are required to allow a 'normalised mean difference' (NMD) effect size to be calculated, given by
$$
\frac{(\text{$\bar{\mu}_C - \bar{\mu}_T$})}
{(\text{$\bar{\mu}_C - \bar{\mu}_S$)}} \text{ x 100}
$$
where $\bar{\mu}_C$, $\bar{\mu}_T$, $\bar{\mu}_S$ are the mean reported scores in the control, treatment, and sham groups respectively.
Outcomes with ≥2 independent effect sizes were considered for meta-analysis. In this iteration of the review, this includes `r df %>% group_by(outcome_type) %>% filter(n_distinct(StudyId) > 1) %>% summarise(n = n_distinct(StudyId)) %>% arrange(desc(n)) %>% pull(outcome_type) %>% unique() %>% tolower() %>% { if (length(.) > 1) paste(paste(head(., -1), collapse = ", "), "and", tail(., 1)) else .}`.
All analyses were conducted allowing for the following hierarchical levels in a random effects model, which accounts for features common to experimental contrasts such as a shared control group:
- **Level 1: Rodent strain** - effect sizes measured across experiments using the same rodent strain
- **Level 2: Study** - effect sizes measured from different experiments presented in the same publication
- **Level 3: Experiment** - effect sizes measured in the same experiment within a study, where often a control group contributes to several effect sizes
The hierarchical grouping may therefore be considered thus: **Strains** of laboratory animals are included in several **Studies**, each of which can report one or more **Experiments**, and each Experiment is comprised of at least two **Cohorts** which are considered identical except for differing in the experimental manipulation (the **Intervention**) or not being exposed to the disease modelling procedures (a **Sham** cohort, these only being used to provide a baseline for outcome measures to allow Normalised Mean Difference meta-analysis). An **Experiment** can include several **experimental contrasts**, for instance where different doses of drugs are compared to the same control group.
For some experimental contrasts, more than one locomotor or cognitive outcome - for instance both horizontal and vertical climbing activity - was measured in the same cohort of animals. Further, some publications used the same drug doses with the same outcome measures in different experiments. For these reasons, some of the forest plots may appear to include 'duplicate' Study - Drug - Dose combinations with different outcomes. For the former there were insufficient levels of the different locomotor or cognitive outcome measures to allow for hierachical analysis and so this was not performed; and for the later, these are accounted for in the heirarchical analysis.
# 2 TAAR1 Agonists v Control
```{r # Split df by experiment and outcome type into dataframes to simply inline code below - TAAR1 Agonist v Control, eval = TRUE, echo = FALSE}
df_S <- filter(df, SortLabel == "TvC")
df_S_LMA <- filter_experiment_outcome_type(df, "TvC", "Locomotor activity")
df_S_PPI <- filter_experiment_outcome_type(df, "TvC", "Prepulse inhibition")
df_S_cog <- filter_experiment_outcome_type(df, "TvC", "Cognition")
df_S_social <- filter_experiment_outcome_type(df, "TvC", "Social interaction")
df_S_stereo <- filter_experiment_outcome_type(df, "TvC", "Stereotypy")
```
`r length(table(df_S$StudyId))` studies (`r nrow(df%>%filter(SortLabel == "TvC"))` comparisons) investigated the effects of TAAR1 Agonist versus Control. The number of studies and individual effect sizes for each outcome were:
- Locomotor activity\*: `r length(table(df_S_LMA$StudyId))` studies and `r nrow(df_S_LMA)` comparisons in `r {strains <- unique(df_S_LMA$Strain); if (length(strains) > 1) paste(length(strains), "strains") else paste(length(strains), "strain")}`
- Prepulse inhibition\*: `r length(table(df_S_PPI$StudyId))` studies and `r nrow(df_S_PPI)` comparisons in `r {strains <- unique(df_S_PPI$Strain); if (length(strains) > 1) paste(length(strains), "strains") else paste(length(strains), "strain")}`
- Cognitive function: `r length(table(df_S_cog$StudyId))` studies and `r nrow(df_S_cog)` comparisons in `r {strains <- unique(df_S_cog$Strain); if (length(strains) > 1) paste(length(strains), "strains") else paste(length(strains), "strain")}`
- Social interaction: `r length(table(df_S_social$StudyId))` studies and `r nrow(df_S_social)` comparisons in `r {strains <- unique(df_S_social$Strain); if (length(strains) > 1) paste(length(strains), "strains") else paste(length(strains), "strain")}`
- Stereotypy: `r length(table(df_S_stereo$StudyId))` studies and `r nrow(df_S_stereo)` comparisons in `r {strains <- unique(df_S_stereo$Strain); if (length(strains) > 1) paste(length(strains), "strains") else paste(length(strains), "strain")}`
\* These outcomes were identified in the study protocol as primary outcomes of interest.
Only one publication reported each of prepulse inhibition (a primary outcome), social interaction, and stereotypy, and so these outcomes are not analysed further.
## 2.1 Outcome 1: Locomotor Activity
### 2.1.1 Risks of bias
Figure 2.1.1 shows the risk of bias summary for studies investigating the effect of administering a TAAR1 agonist on locomotor activity in animals. The risk of bias assessment was performed using the SyRCLE's RoB tool.
**Figure 2.1.1 - Traffic light plot of the risk of bias for locomotor activity**
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE}
SyRCLE_RoB_traffic(df, "TvC", "Locomotor activity")
```
### 2.1.2 Reporting completeness
Figure 2.1.2 shows the reporting completeness summary for studies investigating the effect of administering a TAAR1 agonist on locomotor activity in animals. The reporting completeness assessment was performed using the ARRIVE guidelines. Studies which did not report are labelled 'High', those which did report are labelled 'Low'.
**Figure 2.1.2 - Traffic light plot of the reporting completeness for locomotor activity**
```{r message = FALSE, warning=FALSE, eval = TRUE, echo = FALSE, fig.height = 8}
ARRIVE_traffic(df, "TvC", "Locomotor activity")
```
### 2.1.3 Meta-analysis
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA <- run_ML_SMD(df, "TvC", "Locomotor activity", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
if (any(class(SMD_S_LMA) == "rma.mv")) {
output_text1 <- "The effect of administering a TAAR1 agonist on locomotor activity in animals using SMD as the effect size is shown in Figure 2.1.3. The pooled estimate for SMD across all individual comparisons is displayed as a diamond shape at the bottom of the plot. Dotted lines indicate the prediction interval of the pooled estimate."
output_text2 <- "Figure 2.1.3 - Forest plot of locomotor activity for TAAR1 Agonist vs control"
} else {
output_text1 <- "Analysis is only performed if outcomes have been reported in more than one publication. There are not sufficient data for this outcome"
}
```
`r output_text1`
**`r output_text2`**
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, fig.height=22, fig.width=12}
forest_metafor(SMD_S_LMA, "TvC", "Locomotor activity")
```
```{r echo=FALSE}
if (any(class(SMD_S_LMA) == "rma.mv")) {
output_text3 <- paste0("For TAAR1 Agonist v Control, TAAR1 interventions had a pooled effect on locomotor activity of SMD = ", round(SMD_S_LMA[['beta']], 3), " (95% CI: ", round(SMD_S_LMA[['ci.lb']], 3), " to ", round(SMD_S_LMA[['ci.ub']], 3), ", with a prediction interval of ", round(predict(SMD_S_LMA)$pi.lb, 3), " to ", round(predict(SMD_S_LMA)$pi.ub, 3),").")
} else {
output_text3 <- ""
}
```
`r output_text3`
`r SMD_S_LMA[["k"]]` experimental comparisons were reported in `r length(unique(SMD_S_LMA$data$ExperimentID_I))` experiments reported from `r length(unique(SMD_S_LMA$data$StudyId))` publications and involving `r length(unique(SMD_S_LMA$data$Strain))` different animal strains.
The following table structure is used throughout this report and is used to show the different levels contributing to that analysis, the number of unique categories in those levels, and the variance contributed by that level of analysis. Because levels are only included in the analysis where there are five or more unique categories, for some analyses the number of categories is 0, and the variance attributed to those levels in not applicable. Because the model is hierarchical, where for instance there are Studies which include different Strains, the number of categories for Study x Strain will exceed the number of Studies (or publications) referred to in the text.
| Level | Number of categories for that level included in this analysis | Attributable variance |
|:----------------------:|:----------------------:|:----------------------:|
| Strain | `r ifelse('Strain' %in% SMD_S_LMA$s.names, SMD_S_LMA$s.nlevels[[which(SMD_S_LMA$s.names == 'Strain')]], 0)` | `r ifelse('Strain' %in% SMD_S_LMA$s.names, SMD_S_LMA$sigma2[[which(SMD_S_LMA$s.names == 'Strain')]], NA)` |
| Study x Strain | `r ifelse('Strain/StudyId' %in% SMD_S_LMA$s.names, SMD_S_LMA$s.nlevels[[which(SMD_S_LMA$s.names == 'Strain/StudyId')]], 0)` | `r ifelse('Strain/StudyId' %in% SMD_S_LMA$s.names, SMD_S_LMA$sigma2[[which(SMD_S_LMA$s.names == 'Strain/StudyId')]], NA)` |
| Study x Strain x Experiment | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA$s.names, SMD_S_LMA$s.nlevels[[which(SMD_S_LMA$s.names == 'Strain/StudyId/ExperimentID_I')]], 0)` | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA$s.names, SMD_S_LMA$sigma2[[which(SMD_S_LMA$s.names == 'Strain/StudyId/ExperimentID_I')]], 'NA')` |
### 2.1.4 Subgroup analyses and meta-regressions
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
options(scipen=100, digits=3)
```
For each outcome, the covariates of interest for subgroup analyses and meta-regressions were:
- **Sex**
- **Method of disease induction**
- **Route of intervention administration**
- **Whether the intervention was prophylactic or therapeutic (i.e. administered before or after disease model induction)**
- **Duration of treatment period**
- **The intervention administered**
- **The efficacy of the drug (i.e. whether the drug is a partial or full agonist)**
- **The selectivity of the drug**
- **Potency of the intervention**
- **Dose of intervention**
We also conducted subgroup analyses using **(1) SyRCLE Risk of Bias** and **(2) ARRIVE reporting completeness** assessment scores as covariates to evaluate their influence on effect size estimates. These were not specified in the study protocol, but evaluation of risk of bias is required for the Summary of Evidence table, and no studies were considered at low risk of bias or high reporting completeness to allow such a sensitivity analysis
Only 21% of studies overall reported either a mean age, or an age range, of the experimental animals, so this was not analysed further.
The significance (p value) reported is that for a test of whether the moderators are significantly different one from another, rather than whether the effect is significantly different from 0.
#### Sex
Figure 2.1.4.1 displays the estimates for the pooled SMD's when comparisons are stratified by sex of the animal. Whiskers indicate the 95% confidence interval of each estimate. The overall pooled SMD is displayed as a diamond shape at the bottom of the plot.
**Figure 2.1.4.1 - Subgroup analysis of TAAR1 agonist vs control on locomotor activity by sex**
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_sex <- subgroup_analysis(df, "TvC", "Locomotor activity", "Sex", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
forest_subgroup(SMD_S_LMA_sex$plotdata, "Sex", "Locomotor Activity","Sex")
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_sex_noI <- subgroup_SMD(df, "TvC", "Locomotor activity", "Sex", 0.5)
```
The p-value for the association between the sex of animal groups used and outcome reported was `r round(SMD_S_LMA_sex_noI$QMp,3)`.
| Level | Number of categories for that level included in this analysis | Attributable variance |
|:----------------------:|:----------------------:|:----------------------:|
| Strain | `r ifelse('Strain' %in% SMD_S_LMA_sex$analysis$s.names, SMD_S_LMA_sex$analysis$s.nlevels[[which(SMD_S_LMA_sex$analysis$s.names == 'Strain')]], 0)` | `r ifelse('Strain' %in% SMD_S_LMA_sex$analysis$s.names, SMD_S_LMA_sex$analysis$sigma2[[which(SMD_S_LMA_sex$analysis$s.names == 'Strain')]], NA)` |
| Study x Strain | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_sex$analysis$s.names, SMD_S_LMA_sex$analysis$s.nlevels[[which(SMD_S_LMA_sex$analysis$s.names == 'Strain/StudyId')]], 0)` | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_sex$analysis$s.names, SMD_S_LMA_sex$analysis$sigma2[[which(SMD_S_LMA_sex$analysis$s.names == 'Strain/StudyId')]], NA)` |
| Study x Strain x Experiment | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_sex$analysis$s.names, SMD_S_LMA_sex$analysis$s.nlevels[[which(SMD_S_LMA_sex$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 0)` | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_sex$analysis$s.names, SMD_S_LMA_sex$analysis$sigma2[[which(SMD_S_LMA_sex$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 'NA')` |
#### Category of disease induction
Figure 2.1.4.2 displays the estimates for the pooled SMD's when comparisons are stratified by the category of disease induction. Whiskers indicate the 95% confidence interval of each estimate. The overall pooled SMD is displayed as a diamond shape at the bottom of the plot.
**Figure 2.1.4.2 - Subgroup analysis of TAAR1 agonist vs control on locomotor activity by category of disease induction**
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide', fig.width=20, fig.height=4}
SMD_S_LMA_CatDisInd <- subgroup_analysis(df, "TvC", "Locomotor activity", "CategoryDiseaseInduction", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
forest_subgroup(SMD_S_LMA_CatDisInd$plotdata, "CategoryDiseaseInduction", "Locomotor Activity","Category of \nDisease Induction")
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_CatDisInd_noI <- subgroup_SMD(df, "TvC", "Locomotor activity", "CategoryDiseaseInduction", 0.5)
```
The p-value for the association between whether genetic or pharmacological models were used and outcome reported was `r round(SMD_S_LMA_CatDisInd_noI$QMp,3)`.
| Level | Number of categories for that level included in this analysis | Attributable variance |
|:----------------------:|:----------------------:|:----------------------:|
| Strain | `r ifelse('Strain' %in% SMD_S_LMA_CatDisInd$analysis$s.names, SMD_S_LMA_CatDisInd$analysis$s.nlevels[[which(SMD_S_LMA_CatDisInd$analysis$s.names == 'Strain')]], 0)` | `r ifelse('Strain' %in% SMD_S_LMA_CatDisInd$analysis$s.names, SMD_S_LMA_CatDisInd$analysis$sigma2[[which(SMD_S_LMA_CatDisInd$analysis$s.names == 'Strain')]], NA)` |
| Study x Strain | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_CatDisInd$analysis$s.names, SMD_S_LMA_CatDisInd$analysis$s.nlevels[[which(SMD_S_LMA_CatDisInd$analysis$s.names == 'Strain/StudyId')]], 0)` | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_CatDisInd$analysis$s.names, SMD_S_LMA_CatDisInd$analysis$sigma2[[which(SMD_S_LMA_CatDisInd$analysis$s.names == 'Strain/StudyId')]], NA)` |
| Study x Strain x Experiment | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_CatDisInd$analysis$s.names, SMD_S_LMA_CatDisInd$analysis$s.nlevels[[which(SMD_S_LMA_CatDisInd$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 0)` | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_CatDisInd$analysis$s.names, SMD_S_LMA_CatDisInd$analysis$sigma2[[which(SMD_S_LMA_CatDisInd$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 'NA')` |
#### Route of intervention administration
Figure 2.1.4.3 displays the estimates for the pooled SMD's when comparisons are stratified by the route of intervention administration. Whiskers indicate the 95% confidence interval of each estimate. The overall pooled SMD is displayed as a diamond shape at the bottom of the plot.
**Figure 2.1.4.3 - Subgroup analysis of TAAR1 agonist vs control on locomotor activity by route of intervention administration**
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_AdminRoute <- subgroup_analysis(df, "TvC", "Locomotor activity", "InterventionAdministrationRoute", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
forest_subgroup(SMD_S_LMA_AdminRoute$plotdata, "InterventionAdministrationRoute", "Locomotor Activity","Route of \nAdministration")
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_AdminRoute_noI <- subgroup_SMD(df, "TvC", "Locomotor activity", "InterventionAdministrationRoute", 0.5)
```
The p-value for the association between the route of intervention administration and outcome reported was `r round(SMD_S_LMA_AdminRoute_noI$QMp,3)`.
| Level | Number of categories for that level included in this analysis | Attributable variance |
|:----------------------:|:----------------------:|:----------------------:|
| Strain | `r ifelse('Strain' %in% SMD_S_LMA_AdminRoute$analysis$s.names, SMD_S_LMA_AdminRoute$analysis$s.nlevels[[which(SMD_S_LMA_AdminRoute$analysis$s.names == 'Strain')]], 0)` | `r ifelse('Strain' %in% SMD_S_LMA_AdminRoute$analysis$s.names, SMD_S_LMA_AdminRoute$analysis$sigma2[[which(SMD_S_LMA_AdminRoute$analysis$s.names == 'Strain')]], NA)` |
| Study x Strain | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_AdminRoute$analysis$s.names, SMD_S_LMA_AdminRoute$analysis$s.nlevels[[which(SMD_S_LMA_AdminRoute$analysis$s.names == 'Strain/StudyId')]], 0)` | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_AdminRoute$analysis$s.names, SMD_S_LMA_AdminRoute$analysis$sigma2[[which(SMD_S_LMA_AdminRoute$analysis$s.names == 'Strain/StudyId')]], NA)` |
| Study x Strain x Experiment | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_AdminRoute$analysis$s.names, SMD_S_LMA_AdminRoute$analysis$s.nlevels[[which(SMD_S_LMA_AdminRoute$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 0)` | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_AdminRoute$analysis$s.names, SMD_S_LMA_AdminRoute$analysis$sigma2[[which(SMD_S_LMA_AdminRoute$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 'NA')` |
#### Prophylactic or therapeutic intervention
Figure 2.1.4.4 displays the estimates for the pooled SMD's when comparisons are stratified by whether the intervention was administered prophylactically or therapeutically. Whiskers indicate the 95% confidence interval of each estimate. The overall pooled SMD is displayed as a diamond shape at the bottom of the plot. This categorisation is co-linear with that for route of administration - all treatments given after the induction of locomotor activity were given intraperitoneally.
**Figure 2.1.4.4 - Subgroup analysis of TAAR1 agonist vs control on locomotor activity by intervention type**
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_ProphThera <- subgroup_analysis(df, "TvC", "Locomotor activity", "ProphylacticOrTherapeutic", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
forest_subgroup(SMD_S_LMA_ProphThera$plotdata, "ProphylacticOrTherapeutic", "Locomotor Activity","Treatment before \nor after model induction")
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_ProphThera_noI <- subgroup_SMD(df, "TvC", "Locomotor activity", "ProphylacticOrTherapeutic", 0.5)
```
The p-value for the association between whether the intervention was administered prophylactically or therapeutically and outcome reported was `r round(SMD_S_LMA_ProphThera_noI$QMp,3)`.
| Level | Number of categories for that level included in this analysis | Attributable variance |
|:----------------------:|:----------------------:|:----------------------:|
| Strain | `r ifelse('Strain' %in% SMD_S_LMA_ProphThera$analysis$s.names, SMD_S_LMA_ProphThera$analysis$s.nlevels[[which(SMD_S_LMA_ProphThera$analysis$s.names == 'Strain')]], 0)` | `r ifelse('Strain' %in% SMD_S_LMA_ProphThera$analysis$s.names, SMD_S_LMA_ProphThera$analysis$sigma2[[which(SMD_S_LMA_ProphThera$analysis$s.names == 'Strain')]], NA)` |
| Study x Strain | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_ProphThera$analysis$s.names, SMD_S_LMA_ProphThera$analysis$s.nlevels[[which(SMD_S_LMA_ProphThera$analysis$s.names == 'Strain/StudyId')]], 0)` | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_ProphThera$analysis$s.names, SMD_S_LMA_ProphThera$analysis$sigma2[[which(SMD_S_LMA_ProphThera$analysis$s.names == 'Strain/StudyId')]], NA)` |
| Study x Strain x Experiment | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_ProphThera$analysis$s.names, SMD_S_LMA_ProphThera$analysis$s.nlevels[[which(SMD_S_LMA_ProphThera$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 0)` | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_ProphThera$analysis$s.names, SMD_S_LMA_ProphThera$analysis$sigma2[[which(SMD_S_LMA_ProphThera$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 'NA')` |
#### Duration of treatment period
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide', fig.width=9, fig.height=3}
SMD_S_LMA_DurRx <- subgroup_analysis(df, "TvC", "Locomotor activity", "TreatmentDurationCategory", 0.5)
```
```{r echo=FALSE}
if (any(class(SMD_S_LMA_DurRx) == "rma.mv")) {
output_text1 <- "Figure 2.1.4.5 displays the estimates for the pooled SMD's when comparisons are stratified by duration of treatment. Whiskers indicate the 95% confidence interval of each estimate. The overall pooled SMD, not stratified by whether the intervention was administered prophylactically or therapeutically, is displayed as a diamond shape at the bottom of the plot."
output_text2 <- "Figure 2.1.4.5 - Subgroup analysis of TAAR1 agonist vs control on locomotor activity by duration of treatment"
} else {
output_text1 <- "In this iteration of the review, all relevant comparisons administered the TAAR1 agonist for < 1 week. Therefore, no subgroup analyses were conducted for this variable."
output_text2 <- ""
}
```
`r output_text1`
**`r output_text2`**
```{r echo = FALSE}
if (any(class(class(SMD_S_LMA_DurRx)) == "rma.mv")) {
output_text3 <- paste0(`r SMD_S_LMA_DurRx[SMD_S_LMA_DurRx$TreatmentDurationCategory == "Less than 1 week", "k"]`,"comparisons administered the TAAR1 agonist for less than one week, ", `r SMD_S_LMA_DurRx[SMD_S_LMA_DurRx$TreatmentDurationCategory == "Between 1-4 weeks", "k"]`," for between 1 and 4 weeks, and ",`r SMD_S_LMA_DurRx[SMD_S_LMA_DurRx$TreatmentDurationCategory == "More than 4 weeks", "k"]`," for more than 4 weeks.")
output_text4 <- paste0("The pooled SMD estimate for experiments administering the TAAR1 agonist for less than 1 week was ",`r SMD_S_LMA_DurRx[SMD_S_LMA_DurRx$TreatmentDurationCategory == "Less than 1 week", "SMD"]`," for 1 to 4 weeks was ",`r SMD_S_LMA_DurRx[SMD_S_LMA_DurRx$TreatmentDurationCategory == "Between 1-4 weeks", "SMD"]`," and for experiments administering the TAAR1 agonist for more than 4 weeks was ",`r SMD_S_LMA_DurRx[SMD_S_LMA_DurRx$TreatmentDurationCategory == "More than 4 weeks", "SMD"]`,".")
} else {
output_text3 <- ""
output_text4 <- ""
}
```
#### The intervention administered
Figure 2.1.4.6 displays the estimates for the pooled SMD's when comparisons are stratified by the intervention administered. Whiskers indicate the 95% confidence interval of each estimate. The overall pooled SMD is displayed as a diamond shape at the bottom of the plot.
**Figure 2.1.4.6 - Subgroup analysis of TAAR1 agonist vs control on locomotor activity by intervention administered**
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_Drug <- subgroup_analysis(df, "TvC", "Locomotor activity", "DrugName", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
forest_subgroup(SMD_S_LMA_Drug$plotdata, "DrugName", "Locomotor Activity","Drug")
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_Drug_noI <- subgroup_SMD(df, "TvC", "Locomotor activity", "DrugName", 0.5)
```
The p-value for the association between the intervention and outcome reported was `r round(SMD_S_LMA_Drug_noI$QMp,3)`.
| Level | Number of categories for that level included in this analysis | Attributable variance |
|:----------------------:|:----------------------:|:----------------------:|
| Strain | `r ifelse('Strain' %in% SMD_S_LMA_Drug$analysis$s.names, SMD_S_LMA_Drug$analysis$s.nlevels[[which(SMD_S_LMA_Drug$analysis$s.names == 'Strain')]], 0)` | `r ifelse('Strain' %in% SMD_S_LMA_Drug$analysis$s.names, SMD_S_LMA_Drug$analysis$sigma2[[which(SMD_S_LMA_Drug$analysis$s.names == 'Strain')]], NA)` |
| Study x Strain | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_Drug$analysis$s.names, SMD_S_LMA_Drug$analysis$s.nlevels[[which(SMD_S_LMA_Drug$analysis$s.names == 'Strain/StudyId')]], 0)` | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_Drug$analysis$s.names, SMD_S_LMA_Drug$analysis$sigma2[[which(SMD_S_LMA_Drug$analysis$s.names == 'Strain/StudyId')]], NA)` |
| Study x Strain x Experiment | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_Drug$analysis$s.names, SMD_S_LMA_Drug$analysis$s.nlevels[[which(SMD_S_LMA_Drug$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 0)` | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_Drug$analysis$s.names, SMD_S_LMA_Drug$analysis$sigma2[[which(SMD_S_LMA_Drug$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 'NA')` |
#### The efficacy of the drug (i.e. whether the drug is a partial or full agonist)
Figure 2.1.4.7 displays the estimates for the pooled SMD's when comparisons are stratified by the action/efficacy of the intervention administered. Whiskers indicate the 95% confidence interval of each estimate. The overall pooled SMD is displayed as a diamond shape at the bottom of the plot.
**Figure 2.1.4.7 - Subgroup analysis of TAAR1 agonist vs control on locomotor activity by efficacy of the drug**
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_DrugEfficacy <- subgroup_analysis(df, "TvC", "Locomotor activity", "Efficacy", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
forest_subgroup(SMD_S_LMA_DrugEfficacy$plotdata, "Efficacy", "Locomotor Activity","Full or\n Partial Agonist")
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_DrugEfficacy_noI <- subgroup_SMD(df, "TvC", "Locomotor activity", "Efficacy", 0.5)
```
The p-value for the association between whether the drug was a full or partial agonist and outcome reported was `r round(SMD_S_LMA_DrugEfficacy_noI$QMp,3)`.
| Level | Number of categories for that level included in this analysis | Attributable variance |
|:----------------------:|:----------------------:|:----------------------:|
| Strain | `r ifelse('Strain' %in% SMD_S_LMA_DrugEfficacy$analysis$s.names, SMD_S_LMA_DrugEfficacy$analysis$s.nlevels[[which(SMD_S_LMA_DrugEfficacy$analysis$s.names == 'Strain')]], 0)` | `r ifelse('Strain' %in% SMD_S_LMA_DrugEfficacy$analysis$s.names, SMD_S_LMA_DrugEfficacy$analysis$sigma2[[which(SMD_S_LMA_DrugEfficacy$analysis$s.names == 'Strain')]], NA)` |
| Study x Strain | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_DrugEfficacy$analysis$s.names, SMD_S_LMA_DrugEfficacy$analysis$s.nlevels[[which(SMD_S_LMA_DrugEfficacy$analysis$s.names == 'Strain/StudyId')]], 0)` | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_DrugEfficacy$analysis$s.names, SMD_S_LMA_DrugEfficacy$analysis$sigma2[[which(SMD_S_LMA_DrugEfficacy$analysis$s.names == 'Strain/StudyId')]], NA)` |
| Study x Strain x Experiment | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_DrugEfficacy$analysis$s.names, SMD_S_LMA_DrugEfficacy$analysis$s.nlevels[[which(SMD_S_LMA_DrugEfficacy$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 0)` | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_DrugEfficacy$analysis$s.names, SMD_S_LMA_DrugEfficacy$analysis$sigma2[[which(SMD_S_LMA_DrugEfficacy$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 'NA')` |
#### The selectivity of the drug
Figure 2.1.4.8 displays the estimates for the pooled SMD's when comparisons are stratified by the selectivity of the intervention administered. Whiskers indicate the 95% confidence interval of each estimate. The overall pooled SMD is displayed as a diamond shape at the bottom of the plot.
**Figure 2.1.4.8 - Subgroup analysis of TAAR1 agonist vs control on locomotor activity by selectivity of the drug**
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_DrugSelectivity <- subgroup_analysis(df, "TvC", "Locomotor activity", "Selectivity", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
forest_subgroup(SMD_S_LMA_DrugSelectivity$plotdata, "Selectivity", "Locomotor Activity","High or\nLow Selectivity")
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_DrugSelectivity_noI <- subgroup_SMD(df, "TvC", "Locomotor activity", "Selectivity", 0.5)
```
The p-value for the association between whether the drug was highly selective, or also manifests 5-HT1A effects, and outcome reported was `r round(SMD_S_LMA_DrugSelectivity_noI$QMp,3)`.
| Level | Number of categories for that level included in this analysis | Attributable variance |
|:----------------------:|:----------------------:|:----------------------:|
| Strain | `r ifelse('Strain' %in% SMD_S_LMA_DrugSelectivity$analysis$s.names, SMD_S_LMA_DrugSelectivity$analysis$s.nlevels[[which(SMD_S_LMA_DrugSelectivity$analysis$s.names == 'Strain')]], 0)` | `r ifelse('Strain' %in% SMD_S_LMA_DrugSelectivity$analysis$s.names, SMD_S_LMA_DrugSelectivity$analysis$sigma2[[which(SMD_S_LMA_DrugSelectivity$analysis$s.names == 'Strain')]], NA)` |
| Study x Strain | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_DrugSelectivity$analysis$s.names, SMD_S_LMA_DrugSelectivity$analysis$s.nlevels[[which(SMD_S_LMA_DrugSelectivity$analysis$s.names == 'Strain/StudyId')]], 0)` | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_DrugSelectivity$analysis$s.names, SMD_S_LMA_DrugSelectivity$analysis$sigma2[[which(SMD_S_LMA_DrugSelectivity$analysis$s.names == 'Strain/StudyId')]], NA)` |
| Study x Strain x Experiment | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_DrugSelectivity$analysis$s.names, SMD_S_LMA_DrugSelectivity$analysis$s.nlevels[[which(SMD_S_LMA_DrugSelectivity$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 0)` | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_DrugSelectivity$analysis$s.names, SMD_S_LMA_DrugSelectivity$analysis$sigma2[[which(SMD_S_LMA_DrugSelectivity$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 'NA')` |
#### Potency of intervention
The pEC50 value of each drug was used to measure potency. The pEC50 value is the negative logarithm (to base 10) of the EC50 value. Higher pEC50 values indicate higher potency (as they indicate a lower EC50). Figure 2.1.4.9 displays a visualisation of the meta-regression using the pEC50 value as an explanatory variable. Dashed lines represent the 95% confidence interval of the regression line. The dotted lines represent the 95% prediction interval. Raw data are plotted with 'bubble' size adjusted according to effect size precision.
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_potency <- metaregression_analysis(df, "TvC", "Locomotor activity", "pE50", 0.5)
```
**Figure 2.1.4.9 - Meta-regression of TAAR1 agonist vs control on locomotor activity by potency of intervention**
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE,}
SMD_S_LMA_potency$regression_plot
```
The estimate for $\beta$ was `r SMD_S_LMA_potency$metaregression_summary$beta[2]` (p = `r round(SMD_S_LMA_potency$metaregression_summary$pval[2],3)`).
| Level | Number of categories for that level included in this analysis | Attributable variance |
|:----------------------:|:----------------------:|:----------------------:|
| Strain | `r ifelse('Strain' %in% SMD_S_LMA_potency$metaregression_summary$s.names, SMD_S_LMA_potency$metaregression_summary$s.nlevels[[which(SMD_S_LMA_potency$metaregression_summary$s.names == 'Strain')]], 0)` | `r ifelse('Strain' %in% SMD_S_LMA_potency$metaregression_summary$s.names, SMD_S_LMA_potency$metaregression_summary$sigma2[[which(SMD_S_LMA_potency$metaregression_summary$s.names == 'Strain')]], NA)` |
| Study x Strain | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_potency$metaregression_summary$s.names, SMD_S_LMA_potency$metaregression_summary$s.nlevels[[which(SMD_S_LMA_potency$metaregression_summary$s.names == 'Strain/StudyId')]], 0)` | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_potency$metaregression_summary$s.names, SMD_S_LMA_potency$metaregression_summary$sigma2[[which(SMD_S_LMA_potency$metaregression_summary$s.names == 'Strain/StudyId')]], NA)` |
| Study x Strain x Experiment | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_potency$metaregression_summary$s.names, SMD_S_LMA_potency$metaregression_summary$s.nlevels[[which(SMD_S_LMA_potency$metaregression_summary$s.names == 'Strain/StudyId/ExperimentID_I')]], 0)` | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_potency$metaregression_summary$s.names, SMD_S_LMA_potency$metaregression_summary$sigma2[[which(SMD_S_LMA_potency$metaregression_summary$s.names == 'Strain/StudyId/ExperimentID_I')]], 'NA')` |
#### Dose of intervention
In this iteration of the review, the TAAR1 agonists tested against control for their effect on locomotor activity were: **`r drugs <- df %>% filter(SortLabel == "TvC") %>% filter(outcome_type == "Locomotor activity") %>% group_by(DrugName) %>% summarise(count = n()) %>% arrange(desc(count)) %>% pull(DrugName); if (length(drugs) > 1) {paste(paste(head(drugs, -1), collapse = ", "), "and", tail(drugs, 1))} else {drugs}`**. Meta-analysis was conducted where data were available from more than nine experiments in more than two publications. The dashed lines in the plot represent the 95% confidence interval of the regression line and the dotted lines represent the 95% prediction interval. Raw data are plotted with point size adjusted according to effect size precision.
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_RO5203648_dose <- metaregression_analysis_by_drug(df, "TvC", "Locomotor activity", "RO5203648", "DoseOfIntervention_mgkg", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
diag1 <- df %>%
filter(SortLabel == "TvC") %>%
filter(outcome_type == "Locomotor activity") %>%
filter(DrugName == "RO5203648") %>%
filter(!is.na(SMDv)) %>%
filter(!is.na(!!sym("DoseOfIntervention_mgkg")))
diag2 <- n_distinct(diag1$StudyId)
diag3 <- nrow(diag1)
output_text0 <- paste0("RO5203648: There were ", diag3, " comparisons from ", diag2, " publication(s).")
```
`r output_text0`
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
metaregression_plot_by_drug(SMD_S_LMA_RO5203648_dose, df, "TvC", "Locomotor activity","DoseOfIntervention_mgkg", "RO5203648")
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_RO5263397_dose <- metaregression_analysis_by_drug(df, "TvC", "Locomotor activity", "RO5263397", "DoseOfIntervention_mgkg", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
diag1 <- df %>%
filter(SortLabel == "TvC") %>%
filter(outcome_type == "Locomotor activity") %>%
filter(DrugName == "RO5263397") %>%
filter(!is.na(SMDv)) %>%
filter(!is.na(!!sym("DoseOfIntervention_mgkg")))
diag2 <- n_distinct(diag1$StudyId)
diag3 <- nrow(diag1)
output_text0 <- paste0("RO5263397: There were ", diag3, " comparisons from ", diag2, " publication(s).")
```
`r output_text0`
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
metaregression_plot_by_drug(SMD_S_LMA_RO5263397_dose, df, "TvC", "Locomotor activity","DoseOfIntervention_mgkg", "RO5263397")
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_SEP363856_dose <- metaregression_analysis_by_drug(df, "TvC", "Locomotor activity", "SEP-363856", "DoseOfIntervention_mgkg", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
diag1 <- df %>%
filter(SortLabel == "TvC") %>%
filter(outcome_type == "Locomotor activity") %>%
filter(DrugName == "SEP-363856") %>%
filter(!is.na(SMDv)) %>%
filter(!is.na(!!sym("DoseOfIntervention_mgkg")))
diag2 <- n_distinct(diag1$StudyId)
diag3 <- nrow(diag1)
output_text0 <- paste0("SEP-363856 (Ultaront): There were ", diag3, " comparisons from ", diag2, " publication(s).")
```
`r output_text0`
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
metaregression_plot_by_drug(SMD_S_LMA_SEP363856_dose, df, "TvC", "Locomotor activity","DoseOfIntervention_mgkg", "SEP-363856")
```
The estimate for $\beta$ was `r SMD_S_LMA_SEP363856_dose$beta[2]` (p = `r round(SMD_S_LMA_SEP363856_dose$pval[2],3)`).
| Level | Number of categories for that level included in this analysis | Attributable variance |
|:----------------------:|:----------------------:|:----------------------:|
| Strain | `r ifelse('Strain' %in% SMD_S_LMA_SEP363856_dose$s.names, SMD_S_LMA_SEP363856_dose$s.nlevels[[which(SMD_S_LMA_SEP363856_dose$s.names == 'Strain')]], 0)` | `r ifelse('Strain' %in% SMD_S_LMA_SEP363856_dose$s.names, SMD_S_LMA_SEP363856_dose$sigma2[[which(SMD_S_LMA_SEP363856_dose$s.names == 'Strain')]], NA)` |
| Study x Strain | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_SEP363856_dose$s.names, SMD_S_LMA_SEP363856_dose$s.nlevels[[which(SMD_S_LMA_SEP363856_dose$s.names == 'Strain/StudyId')]], 0)` | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_SEP363856_dose$s.names, SMD_S_LMA_SEP363856_dose$sigma2[[which(SMD_S_LMA_SEP363856_dose$s.names == 'Strain/StudyId')]], NA)` |
| Study x Strain x Experiment | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_SEP363856_dose$s.names, SMD_S_LMA_SEP363856_dose$s.nlevels[[which(SMD_S_LMA_SEP363856_dose$s.names == 'Strain/StudyId/ExperimentID_I')]], 0)` | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_SEP363856_dose$s.names, SMD_S_LMA_SEP363856_dose$sigma2[[which(SMD_S_LMA_SEP363856_dose$s.names == 'Strain/StudyId/ExperimentID_I')]], 'NA')` |
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_RO5166017_dose <- metaregression_analysis_by_drug(df, "TvC", "Locomotor activity", "RO5166017", "DoseOfIntervention_mgkg", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
diag1 <- df %>%
filter(SortLabel == "TvC") %>%
filter(outcome_type == "Locomotor activity") %>%
filter(DrugName == "RO5166017") %>%
filter(!is.na(SMDv)) %>%
filter(!is.na(!!sym("DoseOfIntervention_mgkg")))
diag2 <- n_distinct(diag1$StudyId)
diag3 <- nrow(diag1)
output_text0 <- paste0("RO5166017: There were ", diag3, " comparisons from ", diag2, " publication(s).")
```
`r output_text0`
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
metaregression_plot_by_drug(SMD_S_LMA_RO5166017_dose, df, "TvC", "Locomotor activity","DoseOfIntervention_mgkg", "RO5166017")
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_LK000764_dose <- metaregression_analysis_by_drug(df, "TvC", "Locomotor activity", "LK000764", "DoseOfIntervention_mgkg", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
diag1 <- df %>%
filter(SortLabel == "TvC") %>%
filter(outcome_type == "Locomotor activity") %>%
filter(DrugName == "LK000764") %>%
filter(!is.na(SMDv)) %>%
filter(!is.na(!!sym("DoseOfIntervention_mgkg")))
diag2 <- n_distinct(diag1$StudyId)
diag3 <- nrow(diag1)
output_text0 <- paste0("LK000764: There were ", diag3 <- nrow(diag1), " comparisons from ", diag2, " publication(s).")
```
`r output_text0`
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
metaregression_plot_by_drug(SMD_S_LMA_LK000764_dose, df, "TvC", "Locomotor activity","DoseOfIntervention_mgkg", "LK000764")
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_RO5256390_dose <- metaregression_analysis_by_drug(df, "TvC", "Locomotor activity", "RO5256390", "DoseOfIntervention_mgkg", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
diag1 <- df %>%
filter(SortLabel == "TvC") %>%
filter(outcome_type == "Locomotor activity") %>%
filter(DrugName == "RO5256390") %>%
filter(!is.na(SMDv)) %>%
filter(!is.na(!!sym("DoseOfIntervention_mgkg")))
diag2 <- n_distinct(diag1$StudyId)
diag3 <- nrow(diag1)
output_text0 <- paste0("RO5256390: There were ", diag3 <- nrow(diag1), " comparisons from ", diag2, " publication(s).")
```
`r output_text0`
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
metaregression_plot_by_drug(SMD_S_LMA_RO5256390_dose, df, "TvC", "Locomotor activity","DoseOfIntervention_mgkg", "RO5256390")
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_Compound50B_dose <- metaregression_analysis_by_drug(df, "TvC", "Locomotor activity", "Compound 50B", "DoseOfIntervention_mgkg", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
diag1 <- df %>%
filter(SortLabel == "TvC") %>%
filter(outcome_type == "Locomotor activity") %>%
filter(DrugName == "Compound 50B") %>%
filter(!is.na(SMDv)) %>%
filter(!is.na(!!sym("DoseOfIntervention_mgkg")))
diag2 <- n_distinct(diag1$StudyId)
diag3 <- nrow(diag1)
output_text0 <- paste0("Compound 50B: There were ", diag3, " comparisons from ", diag2, " publication(s).")
```
`r output_text0`
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
metaregression_plot_by_drug(SMD_S_LMA_Compound50B_dose, df, "TvC", "Locomotor activity","DoseOfIntervention_mgkg", "Compound 50B")
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_Compound50A_dose <- metaregression_analysis_by_drug(df, "TvC", "Locomotor activity", "Compound 50A", "DoseOfIntervention_mgkg", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
diag1 <- df %>%
filter(SortLabel == "TvC") %>%
filter(outcome_type == "Locomotor activity") %>%
filter(DrugName == "Compound 50A") %>%
filter(!is.na(SMDv)) %>%
filter(!is.na(!!sym("DoseOfIntervention_mgkg")))
diag2 <- n_distinct(diag1$StudyId)
diag3 <- nrow(diag1)
output_text0 <- paste0("Compound 50A: There were ", diag3, " comparisons from ", diag2, " publication(s).")
```
`r output_text0`
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
metaregression_plot_by_drug(SMD_S_LMA_Compound50A_dose, df, "TvC", "Locomotor activity","DoseOfIntervention_mgkg", "Compound 50A")
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_RO5073012_dose <- metaregression_analysis_by_drug(df, "TvC", "Locomotor activity", "RO5073012", "DoseOfIntervention_mgkg", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
diag1 <- df %>%
filter(SortLabel == "TvC") %>%
filter(outcome_type == "Locomotor activity") %>%
filter(DrugName == "RO5073012") %>%
filter(!is.na(SMDv)) %>%
filter(!is.na(!!sym("DoseOfIntervention_mgkg")))
diag2 <- n_distinct(diag1$StudyId)
diag3 <- nrow(diag1)
output_text0 <- paste0("RO5073012: There were ", diag3, " comparisons from ", diag2, " publication(s).")
```
`r output_text0`
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
metaregression_plot_by_drug(SMD_S_LMA_RO5073012_dose, df, "TvC", "Locomotor activity","DoseOfIntervention_mgkg", "RO5073012")
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_AP163_dose <- metaregression_analysis_by_drug(df, "TvC", "Locomotor activity", "AP163", "DoseOfIntervention_mgkg", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
diag1 <- df %>%
filter(SortLabel == "TvC") %>%
filter(outcome_type == "Locomotor activity") %>%
filter(DrugName == "AP163") %>%
filter(!is.na(SMDv)) %>%
filter(!is.na(!!sym("DoseOfIntervention_mgkg")))
diag2 <- n_distinct(diag1$StudyId)
diag3 <- nrow(diag1)
output_text0 <- paste0("AP163: There were ", diag3, " comparisons from ", diag2, " publication(s).")
```
`r output_text0`
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
metaregression_plot_by_drug(SMD_S_LMA_AP163_dose, df, "TvC", "Locomotor activity","DoseOfIntervention_mgkg", "AP163")
```
##### Standardised dose
We then sought evidence of a dose response relationship across all drugs. To do this, we conducted meta-regression using a constructed variable, the 'standardised dose'. The EC50 of a drug is the molar concentration at which 50% of the maximal response occurs. While the drug concentrations achieved at the receptor are unknown, we can approximate this from the dose given (expressed as g/kg), and the molar mass of the drug (g/mol). This relies on an approximation that the drug is equally distributed throughout the animal, and so does not take into account for example first pass metabolism for orally administered drugs, blood brain barrier solubility or differential accumulation in fatty tissues. As such, it should be interpreted with extreme caution; but does provide allow some imputation of whether, across all drugs, there is a dose-response effect. On this measure, a standardised dose of 0 would reflect 50% of maximum effect and a standardised dose of 1 would reflect around 80% of maximum effect
The standardised dose was calculated as the logarithm of the dose of the intervention (in g/kg) divided by the product of the intervention's EC50 (in moles) and the Molar mass of the drug (in g/mol):
$$
\log\frac{(\text{Dose of Intervention (g/kg)})}{(\text{Molar Mass (g/mol)}) \times ({\text{EC50 (mol/l)}})}
$$
**This is a simplified approximation based on the reasoning that if drug actions are mediated through the TAAR1 receptor, and drug efficacy is reflected in the respective EC50 values, then in principal drugs should exhibit similar effects when acting at their respective EC50.**
The actual concentration of a drug at the receptor site is influenced by several variables, including dosage, administration route, elimination half-life, and first-pass metabolism (in case of oral administration). Incorporating all these factors accurately would necessitate a detailed pharmacokinetic model, which falls outside the scope of this review. Here, we assume uniformity across experiments in terms of (i) volume of distribution, (ii) first-pass metabolism, (iii) blood-brain barrier permeability, and (iv) experimental design, especially regarding the timing of peak drug concentration (where we assume that experiments were designed to be done at a time when the drug was near peak concentration). We recognise the limitations of this approach, the findings of which should be interpreted with caution.
Figure 2.1.4.10 provides a visualisation of the meta-regression analysis relationship between standardised doses of TAAR1 agonists and the Standardized Mean Difference (SMD) change in Locomotor activity. As before, dashed lines represent the 95% confidence interval of the regression line and dotted lines represent the 95% prediction interval. Raw data are plotted with point size adjusted according to effect size precision.
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_StandardDose <- metaregression_analysis(df, "TvC", "Locomotor activity", "StandardisedDose", 0.5)
```
**Figure 2.1.4.10 - Meta regression of standardised dose for TAAR1 agonist vs control on locomotor activity**
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE,}
SMD_S_LMA_StandardDose$regression_plot
```
The estimate for the change in effect per log unit change in standardised dose was `r round(SMD_S_LMA_StandardDose$metaregression_summary$beta[2],3)` (p `r if(round(SMD_S_LMA_StandardDose[["metaregression"]][["pval"]][2],3)>0.001){paste0('= ',round(SMD_S_LMA_StandardDose[["metaregression"]][["pval"]][2],3))}else{'< 0.001'}`).
| Level | Number of categories for that level included in this analysis | Attributable variance |
|:----------------------:|:----------------------:|:----------------------:|
| Strain | `r ifelse('Strain' %in% SMD_S_LMA_StandardDose$metaregression_summary$s.names, SMD_S_LMA_StandardDose$metaregression_summary$s.nlevels[[which(SMD_S_LMA_StandardDose$metaregression_summary$s.names == 'Strain')]], 0)` | `r ifelse('Strain' %in% SMD_S_LMA_StandardDose$metaregression_summary$s.names, SMD_S_LMA_StandardDose$metaregression_summary$sigma2[[which(SMD_S_LMA_StandardDose$metaregression_summary$s.names == 'Strain')]], NA)` |
| Study x Strain | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_StandardDose$metaregression_summary$s.names, SMD_S_LMA_StandardDose$metaregression_summary$s.nlevels[[which(SMD_S_LMA_StandardDose$metaregression_summary$s.names == 'Strain/StudyId')]], 0)` | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_StandardDose$metaregression_summary$s.names, SMD_S_LMA_StandardDose$metaregression_summary$sigma2[[which(SMD_S_LMA_StandardDose$metaregression_summary$s.names == 'Strain/StudyId')]], NA)` |
| Study x Strain x Experiment | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_StandardDose$metaregression_summary$s.names, SMD_S_LMA_StandardDose$metaregression_summary$s.nlevels[[which(SMD_S_LMA_StandardDose$metaregression_summary$s.names == 'Strain/StudyId/ExperimentID_I')]], 0)` | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_StandardDose$metaregression_summary$s.names, SMD_S_LMA_StandardDose$metaregression_summary$sigma2[[which(SMD_S_LMA_StandardDose$metaregression_summary$s.names == 'Strain/StudyId/ExperimentID_I')]], 'NA')` |
#### SyRCLE RoB assessment considered as a categorical variable
Figure 2.1.4.11 displays the estimates for the pooled SMD's when comparisons are stratified by how many of the SyRCLE risk of bias assessment criteria (of which there are 10) that the experiment met. Whiskers indicate the 95% confidence interval of each estimate. The overall pooled SMD is displayed as a diamond shape at the bottom of the plot.
**Figure 2.1.4.11 - Subgroup analysis of TAAR1 agonist vs control on locomotor activity by SyRCLE RoB criteria met**
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide', out.width = "100%"}
SMD_S_LMA_SyRCLERoB <- subgroup_analysis(df, "TvC", "Locomotor activity", "RoBScore", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
forest_subgroup(SMD_S_LMA_SyRCLERoB$plotdata, "RoBScore", "Locomotor Activity","SyRCLE RoB score")
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_SyRCLERoB_noI <- subgroup_SMD(df, "TvC", "Locomotor activity", "RoBScore", 0.5)
```
The p-value for the association between SyRCLE Risks of Bias reporting and outcome reported was `r round(SMD_S_LMA_SyRCLERoB_noI$QMp,3)`.
| Level | Number of categories for that level included in this analysis | Attributable variance |
|:----------------------:|:----------------------:|:----------------------:|
| Strain | `r ifelse('Strain' %in% SMD_S_LMA_SyRCLERoB$analysis$s.names, SMD_S_LMA_SyRCLERoB$analysis$s.nlevels[[which(SMD_S_LMA_SyRCLERoB$analysis$s.names == 'Strain')]], 0)` | `r ifelse('Strain' %in% SMD_S_LMA_SyRCLERoB$analysis$s.names, SMD_S_LMA_SyRCLERoB$analysis$sigma2[[which(SMD_S_LMA_SyRCLERoB$analysis$s.names == 'Strain')]], NA)` |
| Study x Strain | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_SyRCLERoB$analysis$s.names, SMD_S_LMA_SyRCLERoB$analysis$s.nlevels[[which(SMD_S_LMA_SyRCLERoB$analysis$s.names == 'Strain/StudyId')]], 0)` | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_SyRCLERoB$analysis$s.names, SMD_S_LMA_SyRCLERoB$analysis$sigma2[[which(SMD_S_LMA_SyRCLERoB$analysis$s.names == 'Strain/StudyId')]], NA)` |
| Study x Strain x Experiment | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_SyRCLERoB$analysis$s.names, SMD_S_LMA_SyRCLERoB$analysis$s.nlevels[[which(SMD_S_LMA_SyRCLERoB$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 0)` | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_SyRCLERoB$analysis$s.names, SMD_S_LMA_SyRCLERoB$analysis$sigma2[[which(SMD_S_LMA_SyRCLERoB$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 'NA')` |
#### SyRCLE RoB assessment considering those studies where any item is at low risk of bias
Figure 2.1.4.12 displays the estimates for the pooled SMD's when comparisons are stratified by whether of not any of the SyRCLE Risk of bias domains were rated as low risk of bias. Whiskers indicate the 95% confidence interval of each estimate. The overall pooled SMD is displayed as a diamond shape at the bottom of the plot.
**Figure 2.1.4.12 - Subgroup analysis of TAAR1 agonist vs control on locomotor activity by alternative SyRCLE RoB assessment**
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide', out.width = "100%"}
SMD_S_LMA_SyRCLERoBTF <- subgroup_analysis(df, "TvC", "Locomotor activity", "RoBTF", 0.5)
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
forest_subgroup(SMD_S_LMA_SyRCLERoBTF$plotdata, "RoBTF", "Locomotor Activity","RoB score")
```
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_SyRCLERoBTF_noI <- subgroup_SMD(df, "TvC", "Locomotor activity", "RoBTF", 0.5)
```
The p-value for the association between low SyRCLE Risks of Bias reporting and outcome reported was `r round(SMD_S_LMA_SyRCLERoBTF_noI$QMp,3)`.
| Level | Number of categories for that level included in this analysis | Attributable variance |
|:----------------------:|:----------------------:|:----------------------:|
| Strain | `r ifelse('Strain' %in% SMD_S_LMA_SyRCLERoBTF$analysis$s.names, SMD_S_LMA_SyRCLERoBTF$analysis$s.nlevels[[which(SMD_S_LMA_SyRCLERoBTF$analysis$s.names == 'Strain')]], 0)` | `r ifelse('Strain' %in% SMD_S_LMA_SyRCLERoBTF$analysis$s.names, SMD_S_LMA_SyRCLERoBTF$analysis$sigma2[[which(SMD_S_LMA_SyRCLERoBTF$analysis$s.names == 'Strain')]], NA)` |
| Study x Strain | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_SyRCLERoBTF$analysis$s.names, SMD_S_LMA_SyRCLERoBTF$analysis$s.nlevels[[which(SMD_S_LMA_SyRCLERoBTF$analysis$s.names == 'Strain/StudyId')]], 0)` | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_SyRCLERoBTF$analysis$s.names, SMD_S_LMA_SyRCLERoBTF$analysis$sigma2[[which(SMD_S_LMA_SyRCLERoBTF$analysis$s.names == 'Strain/StudyId')]], NA)` |
| Study x Strain x Experiment | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_SyRCLERoBTF$analysis$s.names, SMD_S_LMA_SyRCLERoBTF$analysis$s.nlevels[[which(SMD_S_LMA_SyRCLERoBTF$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 0)` | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_SyRCLERoBTF$analysis$s.names, SMD_S_LMA_SyRCLERoBTF$analysis$sigma2[[which(SMD_S_LMA_SyRCLERoBTF$analysis$s.names == 'Strain/StudyId/ExperimentID_I')]], 'NA')` |
#### ARRIVE reporting completeness guidelines
Figure 2.1.4.13 displays a visualisation of the meta-regression using the number of ARRIVE items met (from a possible total of 22) as an explanatory variable. Dashed lines represent the 95% confidence interval of the regression line. The dotted lines represent the 95% prediction interval. Raw data are plotted with 'bubble' size adjusted according to effect size precision.
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
SMD_S_LMA_ARR2 <- metaregression_analysis(df, "TvC", "Locomotor activity", "ARRIVEScore", 0.5)
```
**Figure 2.1.4.13 - Meta-regression of number of ARRIVE items met for TAAR1 agonist vs control on locomotor activity**
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE,}
SMD_S_LMA_ARR2$regression_plot
```
The estimate for $\beta$ was `r SMD_S_LMA_ARR2$metaregression_summary$beta[2]` (p = `r round(SMD_S_LMA_ARR2$metaregression_summary$pval[2],3)`).
| Level | Number of categories for that level included in this analysis | Attributable variance |
|:----------------------:|:----------------------:|:----------------------:|
| Strain | `r ifelse('Strain' %in% SMD_S_LMA_ARR2$metaregression_summary$s.names, SMD_S_LMA_ARR2$metaregression_summary$s.nlevels[[which(SMD_S_LMA_ARR2$metaregression_summary$s.names == 'Strain')]], 0)` | `r ifelse('Strain' %in% SMD_S_LMA_ARR2$metaregression_summary$s.names, SMD_S_LMA_ARR2$metaregression_summary$sigma2[[which(SMD_S_LMA_ARR2$metaregression_summary$s.names == 'Strain')]], NA)` |
| Study x Strain | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_ARR2$metaregression_summary$s.names, SMD_S_LMA_ARR2$metaregression_summary$s.nlevels[[which(SMD_S_LMA_ARR2$metaregression_summary$s.names == 'Strain/StudyId')]], 0)` | `r ifelse('Strain/StudyId' %in% SMD_S_LMA_ARR2$metaregression_summary$s.names, SMD_S_LMA_ARR2$metaregression_summary$sigma2[[which(SMD_S_LMA_ARR2$metaregression_summary$s.names == 'Strain/StudyId')]], NA)` |
| Study x Strain x Experiment | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_ARR2$metaregression_summary$s.names, SMD_S_LMA_ARR2$metaregression_summary$s.nlevels[[which(SMD_S_LMA_ARR2$metaregression_summary$s.names == 'Strain/StudyId/ExperimentID_I')]], 0)` | `r ifelse('Strain/StudyId/ExperimentID_I' %in% SMD_S_LMA_ARR2$metaregression_summary$s.names, SMD_S_LMA_ARR2$metaregression_summary$sigma2[[which(SMD_S_LMA_ARR2$metaregression_summary$s.names == 'Strain/StudyId/ExperimentID_I')]], 'NA')` |
#### Heterogeneity explained by covariates (TAAR1 Agonist vs Control on locomotor activity)
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide', out.width = "100%"}
SMD_S_LMA_sexI <- subgroup_SMDI(df, "TvC", "Locomotor activity", "Sex", 0.5)
SMD_S_LMA_CatDisIndI <- subgroup_SMDI(df, "TvC", "Locomotor activity", "CategoryDiseaseInduction", 0.5)
SMD_S_LMA_AdminRouteI <- subgroup_SMDI(df, "TvC", "Locomotor activity", "InterventionAdministrationRoute", 0.5)
SMD_S_LMA_ProphTheraI <- subgroup_SMDI(df, "TvC", "Locomotor activity", "ProphylacticOrTherapeutic", 0.5)
SMD_S_LMA_DurRxI <- subgroup_SMDI(df, "TvC", "Locomotor activity", "TreatmentDurationCategory", 0.5)
SMD_S_LMA_DrugI <- subgroup_SMDI(df, "TvC", "Locomotor activity", "DrugName", 0.5)
SMD_S_LMA_SyRCLERoBI <- subgroup_SMDI(df, "TvC", "Locomotor activity", "RoBScore", 0.5)
SMD_S_LMA_ARRIVEI <- subgroup_SMDI(df, "TvC", "Locomotor activity", "ARRIVEScoreCat", 0.5)
SMD_S_LMA_DrugI <- subgroup_SMDI(df, "TvC", "Locomotor activity", "DrugName", 0.5)
SMD_S_LMA_DrugEfficacyI <- subgroup_SMDI(df, "TvC", "Locomotor activity", "Efficacy", 0.5)
SMD_S_LMA_DrugSelectivityI <- subgroup_SMDI(df, "TvC", "Locomotor activity", "Selectivity", 0.5)
```
The table below summarises the heterogeneity observed for each covariate in the effect sizes of the effect of TAAR1 agonists on locomotor activity. We present marginal R^2^ (the % change in the between-studies variance when the covariate is included in the model), which measures the proportion of variance explained by including moderators in the model . The coefficients are derived from an rma model fitted with an intercept (and so represent, for each category, the point estimate and 95% CIs of the effect in that category).
| Moderator | Category | $\beta$ | 95% CI | Marginal R^2^ (%) |
|:-------------:|:-------------:|:-------------:|:-------------:|:-------------:|
| Overall effect | \- | `r SMD_S_LMA$beta[1]` | `r SMD_S_LMA$ci.lb` to `r SMD_S_LMA$ci.ub` | \- |
| Sex | \- | \- | \- | `r round((r2_ml(SMD_S_LMA_sexI)[1]*100),1)`% |
| \- | *Female* | `r SMD_S_LMA_sexI$beta[1]` | `r SMD_S_LMA_sexI$ci.lb[1]` to `r SMD_S_LMA_sexI$ci.ub[1]` | \- |
| \- | *Male* | `r SMD_S_LMA_sexI$beta[2]` | `r SMD_S_LMA_sexI$ci.lb[2]` to `r SMD_S_LMA_sexI$ci.ub[2]` | \- |
| \- | *Mixed* | `r SMD_S_LMA_sexI$beta[3]` | `r SMD_S_LMA_sexI$ci.lb[3]` to `r SMD_S_LMA_sexI$ci.ub[3]` | \- |
| \- | *Not reported* | `r SMD_S_LMA_sexI$beta[4]` | `r SMD_S_LMA_sexI$ci.lb[4]` to `r SMD_S_LMA_sexI$ci.ub[4]` | \- |
| Category of disease model induction | \- | \- | \- | `r round((r2_ml(SMD_S_LMA_CatDisIndI)[1]*100),1)`% |
| \- | *Genetic* | `r SMD_S_LMA_CatDisIndI$beta[1]` | `r SMD_S_LMA_CatDisIndI$ci.lb[1]` to `r SMD_S_LMA_CatDisInd$analysis$ci.ub[1]` | \- |
| \- | *Pharmacological* | `r SMD_S_LMA_CatDisIndI$beta[2]` | `r SMD_S_LMA_CatDisIndI$ci.lb[2]` to `r SMD_S_LMA_CatDisIndI$ci.ub[2]` | \- |
| Administration route | \- | \- | \- | `r round((r2_ml(SMD_S_LMA_AdminRouteI)[1]*100),1)`% |
| \- | *Intraperitoneal* | `r SMD_S_LMA_AdminRouteI$beta[1]` | `r SMD_S_LMA_AdminRouteI$ci.lb[1]` to `r SMD_S_LMA_AdminRouteI$ci.ub[1]` | \- |
| \- | *Oral* | `r SMD_S_LMA_AdminRouteI$beta[2]` | `r SMD_S_LMA_AdminRouteI$ci.lb[2]` to `r SMD_S_LMA_AdminRouteI$ci.ub[2]` | \- |
| Prophylactic or therapeutic intervention | \- | \- | \- | `r round((r2_ml(SMD_S_LMA_ProphTheraI)[1]*100),1)`% |
| \- | *Prophylactic* | `r SMD_S_LMA_ProphTheraI$beta[1]` | `r SMD_S_LMA_ProphTheraI$ci.lb[1]` to `r SMD_S_LMA_ProphTheraI$ci.ub[1]` | \- |
| \- | *Therapeutic* | `r SMD_S_LMA_ProphTheraI$beta[2]` | `r SMD_S_LMA_ProphTheraI$ci.lb[2]` to `r SMD_S_LMA_ProphTheraI$ci.ub[2]` | \- |
| Intervention administered | \- | \- | \- | `r round((r2_ml(SMD_S_LMA_DrugI)[1]*100),1)`% |
| \- | *AP163* | `r SMD_S_LMA_DrugI$beta[1]` | `r SMD_S_LMA_DrugI$ci.lb[1]` to `r SMD_S_LMA_DrugI$ci.ub[1]` | \- |
| \- | *Compound 50A* | `r SMD_S_LMA_DrugI$beta[2]` | `r SMD_S_LMA_DrugI$ci.lb[2]` to `r SMD_S_LMA_DrugI$ci.ub[2]` | \- |
| \- | *Compound 50B* | `r SMD_S_LMA_DrugI$beta[3]` | `r SMD_S_LMA_Drug$analysis$ci.lb[3]` to `r SMD_S_LMA_Drug$analysis$ci.ub[3]` | \- |
| \- | *LK000764* | `r SMD_S_LMA_DrugI$beta[4]` | `r SMD_S_LMA_DrugI$ci.lb[4]` to `r SMD_S_LMA_DrugI$ci.ub[4]` | \- |
| \- | *RO5073012* | `r SMD_S_LMA_DrugI$beta[5]` | `r SMD_S_LMA_DrugI$ci.lb[5]` to `r SMD_S_LMA_DrugI$ci.ub[5]` | \- |
| \- | *RO5166017* | `r SMD_S_LMA_DrugI$beta[6]` | `r SMD_S_LMA_DrugI$ci.lb[6]` to `r SMD_S_LMA_DrugI$ci.ub[6]` | \- |
| \- | *RO5203648* | `r SMD_S_LMA_DrugI$beta[7]` | `r SMD_S_LMA_DrugI$ci.lb[7]` to `r SMD_S_LMA_DrugI$ci.ub[7]` | \- |
| \- | *RO5256390* | `r SMD_S_LMA_DrugI$beta[8]` | `r SMD_S_LMA_DrugI$ci.lb[8]` to `r SMD_S_LMA_DrugI$ci.ub[8]` | \- |
| \- | *RO5263397* | `r SMD_S_LMA_DrugI$beta[9]` | `r SMD_S_LMA_DrugI$ci.lb[9]` to `r SMD_S_LMA_DrugI$ci.ub[9]` | \- |
| \- | *SEP-363856 (Ultaront)* | `r SMD_S_LMA_DrugI$beta[10]` | `r SMD_S_LMA_DrugI$ci.lb[10]` to `r SMD_S_LMA_DrugI$ci.ub[10]` | \- |
| Drug efficacy | \- | \- | \- | `r round((r2_ml(SMD_S_LMA_DrugEfficacyI)[1]*100),1)`% |
| \- | *Full agonist* | `r SMD_S_LMA_DrugEfficacyI$beta[1]` | `r SMD_S_LMA_DrugEfficacyI$ci.lb[1]` to `r SMD_S_LMA_DrugEfficacyI$ci.ub[1]` | \- |
| \- | *Partial agonist* | `r SMD_S_LMA_DrugEfficacyI$beta[2]` | `r SMD_S_LMA_DrugEfficacyI$ci.lb[2]` to `r SMD_S_LMA_DrugEfficacyI$ci.ub[2]` | \- |
| Drug selectivity | \- | \- | \- | `r round((r2_ml(SMD_S_LMA_DrugSelectivityI)[1]*100),1)`% |
| \- | *High* | `r SMD_S_LMA_DrugSelectivityI$beta[1]` | `r SMD_S_LMA_DrugSelectivityI$ci.lb[1]` to `r SMD_S_LMA_DrugSelectivityI$ci.ub[1]` | \- |
| \- | *Low* | `r SMD_S_LMA_DrugSelectivityI$beta[2]` | `r SMD_S_LMA_DrugSelectivityI$ci.lb[2]` to `r SMD_S_LMA_DrugSelectivityI$ci.ub[2]` | \- |
| \- | *Unclear* | `r SMD_S_LMA_DrugSelectivityI$beta[3]` | `r SMD_S_LMA_DrugSelectivityI$ci.lb[3]` to `r SMD_S_LMA_DrugSelectivityI$ci.ub[3]` | \- |
| Drug potency | per log unit | `r SMD_S_LMA_potency$metaregression$beta[2]` | `r SMD_S_LMA_potency$metaregression$ci.lb[2]` to `r SMD_S_LMA_potency$metaregression$ci.ub[2]` | `r round((r2_ml(SMD_S_LMA_potency$metaregression)[1]*100),1)`% |
| Standardised drug dose | per log unit | `r SMD_S_LMA_StandardDose$metaregression$beta[2]` | `r SMD_S_LMA_StandardDose$metaregression$ci.lb[2]` to `r SMD_S_LMA_StandardDose$metaregression$ci.ub[2]` | `r round((r2_ml(SMD_S_LMA_StandardDose$metaregression)[1]*100),1)`% |
| Risk of Bias | \- | \- | \- | `r round((r2_ml(SMD_S_LMA_SyRCLERoBI)[1]*100),1)`% |
| \- | *0 criteria met* | `r SMD_S_LMA_SyRCLERoBI$beta[1]` | `r SMD_S_LMA_SyRCLERoBI$ci.lb[1]` to `r SMD_S_LMA_SyRCLERoBI$ci.ub[1]` | \- |
| \- | *1 criteria met* | `r SMD_S_LMA_SyRCLERoBI$beta[2]` | `r SMD_S_LMA_SyRCLERoBI$ci.lb[2]` to `r SMD_S_LMA_SyRCLERoBI$ci.ub[2]` | \- |
| \- | *2 criteria met* | `r SMD_S_LMA_SyRCLERoBI$beta[3]` | `r SMD_S_LMA_SyRCLERoBI$ci.lb[3]` to `r SMD_S_LMA_SyRCLERoBI$ci.ub[3]` | \- |
| Reporting completeness | per log unit | `r SMD_S_LMA_ARR2$metaregression$beta[2]` | `r SMD_S_LMA_ARR2$metaregression$ci.lb[2]` to `r SMD_S_LMA_ARR2$metaregression$ci.ub[2]` | `r round((r2_ml(SMD_S_LMA_ARR2$metaregression)[1]*100),1)`% |
### 2.1.5 Sensitivity Analyses
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}
options(scipen = 100, digits = 2)
```
We examine the robustness of the findings for the primary outcome by performing the following sensitivity analyses
#### Imputed 𝞺 values of 0.2 and 0.8
In the previous analyses for the effect of TAAR1 agonists on locomotor activity, we imputed a $\rho$ value - the imputed within-study correlation between observed effect sizes - of 0.5. Here, we examine the effect of imputing $\rho$ values of 0.2 and 0.8.
```{r message=FALSE, warning=FALSE, eval = TRUE, echo = FALSE, results='hide'}