-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathlightcurve_1d.py
137 lines (109 loc) · 4.03 KB
/
lightcurve_1d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import time
from pathlib import Path
import astropy.units as u
import numpy as np
import yaml
from astropy.coordinates import Angle, SkyCoord
from astropy.time import Time
from regions import CircleSkyRegion
from gammapy.data import Observation, FixedPointingInfo
from gammapy.datasets import SpectrumDataset
from gammapy.estimators import LightCurveEstimator
from gammapy.irf import load_irf_dict_from_file
from gammapy.makers import SpectrumDatasetMaker
from gammapy.maps import MapAxis, RegionGeom
from gammapy.modeling import Fit
from gammapy.modeling.models import (ExpDecayTemporalModel,
PowerLawSpectralModel, SkyModel, FoVBackgroundModel)
N_OBS = int(os.environ.get("GAMMAPY_BENCH_N_OBS", 10))
gti_t0 = Time("2020-03-01")
def simulate():
irfs = load_irf_dict_from_file(
"$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits"
)
# Reconstructed and true energy axis
center = SkyCoord(0.0, 0.0, unit="deg", frame="galactic")
energy_axis = MapAxis.from_edges(
np.logspace(-0.5, 1.0, 10), unit="TeV", name="energy", interp="log",
)
energy_axis_true = MapAxis.from_edges(
np.logspace(-1.2, 2.0, 31), unit="TeV", name="energy_true", interp="log",
)
on_region_radius = Angle("0.11 deg")
on_region = CircleSkyRegion(center=center, radius=on_region_radius)
geom = RegionGeom(on_region, axes=[energy_axis])
pointing_pos = SkyCoord(0.5, 0.5, unit="deg", frame="galactic")
pointing = FixedPointingInfo(fixed_icrs=pointing_pos.icrs)
spectral_model = PowerLawSpectralModel(
index=3, amplitude="1e-11 cm-2 s-1 TeV-1", reference="1 TeV"
)
temporal_model = ExpDecayTemporalModel(t0="6 h", t_ref=gti_t0.mjd * u.d)
model_simu = SkyModel(
spectral_model=spectral_model, temporal_model=temporal_model, name="model-simu",
)
lvtm = np.ones(N_OBS) * 1.0 * u.hr
tstart = 1.0 * u.hr
datasets = []
for i in range(N_OBS):
obs = Observation.create(
pointing=pointing,
livetime=lvtm[i],
tstart=tstart,
irfs=irfs,
reference_time=gti_t0,
)
empty = SpectrumDataset.create(
geom=geom,
energy_axis_true=energy_axis_true,
name=f"dataset_{i}",
)
maker = SpectrumDatasetMaker(selection=["exposure", "background", "edisp"])
dataset = maker.run(empty, obs)
dataset.models = [model_simu, FoVBackgroundModel(dataset_name=dataset.name)]
dataset.fake()
datasets.append(dataset)
tstart = tstart + 2.0 * u.hr
return datasets
def get_lc(datasets):
spectral_model = PowerLawSpectralModel(
index=3, amplitude="1e-11 cm-2 s-1 TeV-1", reference="1 TeV"
)
model_fit = SkyModel(spectral_model=spectral_model, name="model-fit",)
for dataset in datasets:
dataset.models = [model_fit]
lc_maker_1d = LightCurveEstimator(
energy_edges=[1.0, 10.0] * u.TeV, source="model-fit", reoptimize=False
)
lc_1d = lc_maker_1d.run(datasets)
def fit_lc(datasets):
spectral_model = PowerLawSpectralModel(
index=2.0, amplitude="1e-12 cm-2 s-1 TeV-1", reference="1 TeV"
)
temporal_model1 = ExpDecayTemporalModel(t0="10 h", t_ref=gti_t0.mjd * u.d)
model = SkyModel(
spectral_model=spectral_model,
temporal_model=temporal_model1,
name="model-test",
)
for dataset in datasets:
dataset.models = [model]
fit = Fit()
result = fit.run(datasets=datasets)
print(result.success)
print(result.parameters.to_table())
def run_benchmark():
info = {"n_obs": N_OBS}
t = time.time()
datasets = simulate()
info["simulations"] = time.time() - t
t = time.time()
get_lc(datasets)
info["lc estimation"] = time.time() - t
t = time.time()
fit_lc(datasets)
info["temporal fitting"] = time.time() - t
t = time.time()
Path("bench.yaml").write_text(yaml.dump(info, sort_keys=False, indent=4))
if __name__ == "__main__":
run_benchmark()