forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworldmodel_learner.py
55 lines (44 loc) · 2.48 KB
/
worldmodel_learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import tensorflow as tf
import numpy as np
from learner import Learner
from worldmodel import DeterministicWorldModel
class WorldmodelLearner(Learner):
"""
Worldmodel-specific training loop details.
"""
def learner_name(self): return "worldmodel"
def make_loader_placeholders(self):
self.obs_loader = tf.placeholder(tf.float32, [self.learner_config["batch_size"], np.prod(self.env_config["obs_dims"])])
self.next_obs_loader = tf.placeholder(tf.float32, [self.learner_config["batch_size"], np.prod(self.env_config["obs_dims"])])
self.action_loader = tf.placeholder(tf.float32, [self.learner_config["batch_size"], self.env_config["action_dim"]])
self.reward_loader = tf.placeholder(tf.float32, [self.learner_config["batch_size"]])
self.done_loader = tf.placeholder(tf.float32, [self.learner_config["batch_size"]])
self.datasize_loader = tf.placeholder(tf.float64, [])
return [self.obs_loader, self.next_obs_loader, self.action_loader, self.reward_loader, self.done_loader, self.datasize_loader]
def make_core_model(self):
worldmodel = DeterministicWorldModel(self.config["name"], self.env_config, self.learner_config)
worldmodel_loss, inspect_losses = worldmodel.build_training_graph(*self.current_batch)
model_optimizer = tf.train.AdamOptimizer(3e-4)
model_gvs = model_optimizer.compute_gradients(worldmodel_loss, var_list=worldmodel.model_params)
capped_model_gvs = model_gvs
worldmodel_train_op = model_optimizer.apply_gradients(capped_model_gvs)
return worldmodel, (worldmodel_loss,), (worldmodel_train_op,), inspect_losses
## Optional functions to override
def initialize(self): pass
def resume_from_checkpoint(self, epoch): pass
def checkpoint(self): pass
def backup(self): pass