forked from wooyeolBaek/attention-map-diffusers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
390 lines (302 loc) · 13.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import os
import math
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F
from diffusers.utils import deprecate
from diffusers.models.attention_processor import (
Attention,
AttnProcessor,
AttnProcessor2_0,
LoRAAttnProcessor,
LoRAAttnProcessor2_0
)
attn_maps = {}
def attn_call(
self,
attn: Attention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
scale=1.0,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states, scale=scale)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states, scale=scale)
value = attn.to_v(encoder_hidden_states, scale=scale)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
####################################################################################################
# (20,4096,77) or (40,1024,77)
if hasattr(self, "store_attn_map"):
self.attn_map = attention_probs
####################################################################################################
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states, scale=scale)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:
# Efficient implementation equivalent to the following:
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
attn_bias = torch.zeros(L, S, dtype=query.dtype)
if is_causal:
assert attn_mask is None
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias.to(attn_weight.device)
attn_weight = torch.softmax(attn_weight, dim=-1)
return torch.dropout(attn_weight, dropout_p, train=True) @ value, attn_weight
def attn_call2_0(
self,
attn: Attention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
scale: float = 1.0,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states, scale=scale)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states, scale=scale)
value = attn.to_v(encoder_hidden_states, scale=scale)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
####################################################################################################
# if self.store_attn_map:
if hasattr(self, "store_attn_map"):
hidden_states, attn_map = scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
# (2,10,4096,77) or (2,20,1024,77)
self.attn_map = attn_map
else:
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
####################################################################################################
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states, scale=scale)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def lora_attn_call(self, attn: Attention, hidden_states, *args, **kwargs):
self_cls_name = self.__class__.__name__
deprecate(
self_cls_name,
"0.26.0",
(
f"Make sure use {self_cls_name[4:]} instead by setting"
"LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
" `LoraLoaderMixin.load_lora_weights`"
),
)
attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)
attn._modules.pop("processor")
attn.processor = AttnProcessor()
if hasattr(self, "store_attn_map"):
attn.processor.store_attn_map = True
return attn.processor(attn, hidden_states, *args, **kwargs)
def lora_attn_call2_0(self, attn: Attention, hidden_states, *args, **kwargs):
self_cls_name = self.__class__.__name__
deprecate(
self_cls_name,
"0.26.0",
(
f"Make sure use {self_cls_name[4:]} instead by setting"
"LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
" `LoraLoaderMixin.load_lora_weights`"
),
)
attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)
attn._modules.pop("processor")
attn.processor = AttnProcessor2_0()
if hasattr(self, "store_attn_map"):
attn.processor.store_attn_map = True
return attn.processor(attn, hidden_states, *args, **kwargs)
def cross_attn_init():
AttnProcessor.__call__ = attn_call
AttnProcessor2_0.__call__ = attn_call # attn_call is faster
# AttnProcessor2_0.__call__ = attn_call2_0
LoRAAttnProcessor.__call__ = lora_attn_call
# LoRAAttnProcessor2_0.__call__ = lora_attn_call2_0
LoRAAttnProcessor2_0.__call__ = lora_attn_call
def reshape_attn_map(attn_map):
attn_map = torch.mean(attn_map,dim=0) # mean by head dim: (20,4096,77) -> (4096,77)
attn_map = attn_map.permute(1,0) # (4096,77) -> (77,4096)
latent_size = int(math.sqrt(attn_map.shape[1]))
latent_shape = (attn_map.shape[0],latent_size,-1)
attn_map = attn_map.reshape(latent_shape) # (77,4096) -> (77,64,64)
return attn_map # torch.sum(attn_map,dim=0) = [1,1,...,1]
def hook_fn(name):
def forward_hook(module, input, output):
if hasattr(module.processor, "attn_map"):
attn_maps[name] = module.processor.attn_map
del module.processor.attn_map
return forward_hook
def register_cross_attention_hook(unet):
for name, module in unet.named_modules():
if not name.split('.')[-1].startswith('attn2'):
continue
if isinstance(module.processor, AttnProcessor):
module.processor.store_attn_map = True
elif isinstance(module.processor, AttnProcessor2_0):
module.processor.store_attn_map = True
elif isinstance(module.processor, LoRAAttnProcessor):
module.processor.store_attn_map = True
elif isinstance(module.processor, LoRAAttnProcessor2_0):
module.processor.store_attn_map = True
hook = module.register_forward_hook(hook_fn(name))
return unet
def prompt2tokens(tokenizer, prompt):
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
tokens = []
for text_input_id in text_input_ids[0]:
token = tokenizer.decoder[text_input_id.item()]
tokens.append(token)
return tokens
# TODO: generalize for rectangle images
def upscale(attn_map, target_size):
attn_map = torch.mean(attn_map, dim=0) # (10, 32*32, 77) -> (32*32, 77)
attn_map = attn_map.permute(1,0) # (32*32, 77) -> (77, 32*32)
if target_size[0]*target_size[1] != attn_map.shape[1]:
temp_size = (target_size[0]//2, target_size[1]//2)
attn_map = attn_map.view(attn_map.shape[0], *temp_size) # (77, 32,32)
attn_map = attn_map.unsqueeze(0) # (77,32,32) -> (1,77,32,32)
attn_map = F.interpolate(
attn_map.to(dtype=torch.float32),
size=target_size,
mode='bilinear',
align_corners=False
).squeeze() # (77,64,64)
else:
attn_map = attn_map.to(dtype=torch.float32) # (77,64,64)
attn_map = torch.softmax(attn_map, dim=0)
attn_map = attn_map.reshape(attn_map.shape[0],-1) # (77,64*64)
return attn_map
def get_net_attn_map(image_size, batch_size=2, instance_or_negative=False, detach=True):
target_size = (image_size[0]//16, image_size[1]//16)
idx = 0 if instance_or_negative else 1
net_attn_maps = []
for name, attn_map in attn_maps.items():
attn_map = attn_map.cpu() if detach else attn_map
attn_map = torch.chunk(attn_map, batch_size)[idx] # (20, 32*32, 77) -> (10, 32*32, 77) # negative & positive CFG
if len(attn_map.shape) == 4:
attn_map = attn_map.squeeze()
attn_map = upscale(attn_map, target_size) # (10,32*32,77) -> (77,64*64)
net_attn_maps.append(attn_map) # (10,32*32,77) -> (77,64*64)
net_attn_maps = torch.mean(torch.stack(net_attn_maps,dim=0),dim=0)
net_attn_maps = net_attn_maps.reshape(net_attn_maps.shape[0], 64,64) # (77,64*64) -> (77,64,64)
return net_attn_maps
def save_net_attn_map(net_attn_maps, dir_name, tokenizer, prompt):
if not os.path.exists(dir_name):
os.makedirs(dir_name)
tokens = prompt2tokens(tokenizer, prompt)
total_attn_scores = 0
for i, (token, attn_map) in enumerate(zip(tokens, net_attn_maps)):
attn_map_score = torch.sum(attn_map)
attn_map = attn_map.cpu().numpy()
h,w = attn_map.shape
attn_map_total = h*w
attn_map_score = attn_map_score / attn_map_total
total_attn_scores += attn_map_score
token = token.replace('</w>','')
save_attn_map(
attn_map,
f'{token}:{attn_map_score:.2f}',
f"{dir_name}/{i}_<{token}>:{int(attn_map_score*100)}.png"
)
print(f'total_attn_scores: {total_attn_scores}')
def resize_net_attn_map(net_attn_maps, target_size):
net_attn_maps = F.interpolate(
net_attn_maps.to(dtype=torch.float32).unsqueeze(0),
size=target_size,
mode='bilinear',
align_corners=False
).squeeze() # (77,64,64)
return net_attn_maps
def save_attn_map(attn_map, title, save_path):
normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
normalized_attn_map = normalized_attn_map.astype(np.uint8)
image = Image.fromarray(normalized_attn_map)
image.save(save_path, format='PNG', compression=0)