forked from Harsh19012003/Autopilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
314 lines (264 loc) · 14.4 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import argparse
import time
from pathlib import Path
import numpy as np
import os
from scipy import optimize
from matplotlib import pyplot as plt
import tensorflow as tf
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
import sys
import glob
import utils
from imutils.video import VideoStream
from midas.model_loader import default_models, load_model
# from keras.models import load_model
# from imagee import process_image,weighted_img
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
from top_view_visualization import top_view
from run import run
def detect(save_img=False):
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://', 'https://'))
# Directories
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Initialize yolov7
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model yolov7
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
print("Yolov7 model loaded")
# Load model midas
model_midas, transform, net_w, net_h =load_model(device, opt.model_weights, opt.model_type, optimize, opt.height, opt.square)
print("MiDaS model loaded")
# Load model segmentation
# model_lane=tf.keras.models.load_model('laneseg.h5')
# model_lane.summary()
# print("lane model loaded")
if trace:
model = TracedModel(model, device, opt.img_size)
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
# Set Dataloader
# FOR TESTING INPUT VIA DROIDCAM PORT
'''vid = cv2.VideoCapture(2)
while(True):
ret, frame = vid.read()
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break'''
vid_path, vid_writer = None, None
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
# print("LLLLLLLLLLLLLLLLLLLLLLLLl")
print(type(dataset))
else:
cap=cv2.VideoCapture(opt.source)
while True:
ret,frame=cap.read()
# print(sys.getsizeof(frame))
# print(frame)
cv2.imshow('frame',frame)
cv2.waitKey(0)
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2 = time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
midas_img = run(im0s[0], model_midas, transform, net_w, net_h, device, opt.input_path, opt.output_path, opt.model_type, opt.optimize, opt.side, opt.height, opt.square, opt.grayscale)
detection_base_points = []
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or view_img: # Add bbox to image
label = f'{names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=2)
plot_one_box(xyxy, midas_img, label=label, color=None, line_thickness=1)
detection_base_points.append((int((int(xyxy[0])+int(xyxy[2]))/2), int(xyxy[3])))
# Print time (inference + NMS)
print(f'YOLOv4 FPS: {t2 - t1:.3f}')
# Stream results
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1)
cv2.imshow("midas", midas_img)
cv2.waitKey(1)
top_view(detection_base_points)
'''# Lane detection cv2
frame = cv2.resize(im0, (1280, 720))
birdView, minverse = perspectiveWarp(frame)
# # birdView, birdViewL, birdViewR, minverse = perspectiveWarp(frame)
# 1- an already perspective warped image to process (birdView)
img, hls, grayscale, thresh, blur, canny = processImage(birdView)
hist= plotHistogram(thresh)
ploty, left_fit, right_fit, left_fitx, right_fitx = slide_window_search(thresh, hist)
draw_info = general_search(thresh, left_fit, right_fit)
# Filling the area of detected lanes with green
result = draw_lane_lines(frame, thresh, minverse, draw_info)
# print(type(result))
# cv2.imshow("Final", result) #finalImg'''
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
print(f" The image with the result is saved in: {save_path}")
else: # 'video' or 'stream'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += '.mp4'
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
#print(f"Results saved to {save_dir}{s}")
print(f'Done. ({time.time() - t0:.3f}s)')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
parser.add_argument('-i', '--input_path',
default=None,
help='Folder with input images (if no input path is specified, images are tried to be grabbed '
'from camera)'
)
parser.add_argument('-o', '--output_path',
default=None,
help='Folder for output images'
)
parser.add_argument('-m', '--model_weights',
default="weights/dpt_swin2_tiny_256.pt",
help='Path to the trained weights of model'
)
parser.add_argument('-t', '--model_type',
default='dpt_beit_large_512',
help='Model type: '
'dpt_beit_large_512, dpt_beit_large_384, dpt_beit_base_384, dpt_swin2_large_384, '
'dpt_swin2_base_384, dpt_swin2_tiny_256, dpt_swin_large_384, dpt_next_vit_large_384, '
'dpt_levit_224, dpt_large_384, dpt_hybrid_384, midas_v21_384, midas_v21_small_256 or '
'openvino_midas_v21_small_256'
)
parser.add_argument('-s', '--side',
action='store_true',
help='Output images contain RGB and depth images side by side'
)
parser.add_argument('--optimize', dest='optimize', action='store_true', help='Use half-float optimization')
parser.set_defaults(optimize=False)
parser.add_argument('--height',
type=int, default=None,
help='Preferred height of images feed into the encoder during inference. Note that the '
'preferred height may differ from the actual height, because an alignment to multiples of '
'32 takes place. Many models support only the height chosen during training, which is '
'used automatically if this parameter is not set.'
)
parser.add_argument('--square',
action='store_true',
help='Option to resize images to a square resolution by changing their widths when images are '
'fed into the encoder during inference. If this parameter is not set, the aspect ratio of '
'images is tried to be preserved if supported by the model.'
)
parser.add_argument('--grayscale',
action='store_true',
help='Use a grayscale colormap instead of the inferno one. Although the inferno colormap, '
'which is used by default, is better for visibility, it does not allow storing 16-bit '
'depth values in PNGs but only 8-bit ones due to the precision limitation of this '
'colormap.'
)
parser.add_argument('--model_lane',
default="weights/model2.h5",
help='Path to the trained weights of model'
)
opt = parser.parse_args()
print(opt)
#check_requirements(exclude=('pycocotools', 'thop'))
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov7.pt']:
detect()
strip_optimizer(opt.weights)
else:
detect()