forked from NBISweden/workshop-r
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab_ggplot2.Rmd
700 lines (552 loc) · 25.6 KB
/
lab_ggplot2.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
---
title: "R graphics using ggplot2"
subtitle: "R Programming Foundation for Life Scientists"
output:
bookdown::html_document2:
highlight: textmate
toc: true
toc_float:
collapsed: true
smooth_scroll: true
print: false
toc_depth: 4
number_sections: true
df_print: default
code_folding: none
self_contained: false
keep_md: false
encoding: 'UTF-8'
css: "assets/lab.css"
include:
after_body: assets/footer-lab.html
---
```{r,child="assets/header-lab.Rmd"}
```
```{r,include=FALSE}
library(ggplot2)
library(dplyr)
library(tidyr)
```
# Introduction
Although the plotting capabilities of R base are really impressive compared to other programming languages, there are other packages available to help you generate awesome graphics. Two of the more popular packages besides the base package are **lattice** and **ggplot2**. According to many users, these are superior to
the base plot library, especially when it comes to exploratory data analysis; without too much work, they generate trellis graphics, e.g. graphs that display a variable or the relationship between variables, conditioned on one or more other variables. Over the last years ggplot2 has become the standard plotting library for many R users, especially as it keeps evolving and new features are added continuously. In addition to being more convient for certain types of plots, many feel that the default colors, axis types etc. look better on ggplot2 compared to the base R and lattice libraries.
# Basics
First step is to make sure that `ggplot2` is installed and the package is loaded.
```{r}
library(ggplot2)
```
We use the `iris` data to get started. This dataset has four continuous variables and one categorical variable. It is important to remember about the data type when plotting graphs.
```{r}
data("iris")
head(iris)
```
## Building a plot
ggplot2 plots are initialised by specifying the dataset. This can be saved to a variable or it draws a blank plot.
```{r,fig.height=4,fig.width=4}
ggplot(data=iris)
```
Now we can specify what we want on the x and y axes using aethetic mapping. And we specify the geometric using geoms. Note that the variable names do not have double quotes `""` like in base plots.
```{r,fig.height=4,fig.width=4}
ggplot(data=iris)+
geom_point(mapping=aes(x=Petal.Length,y=Petal.Width))
```
## Multiple geoms
Further geoms can be added. For example let's add a regression line. When multiple geoms with the same aesthetics are used, they can be specified as a common mapping. Note that the order in which geoms are plotted depends on the order in which the geoms are supplied in the code. In the code below, the points are plotted first and then the regression line.
```{r,fig.height=4,fig.width=4}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point()+
geom_smooth(method="lm")
```
## Using colors
We can use the categorical column `Species` to color the points. The color aesthetic is used by `geom_point` and `geom_smooth`. Three different regression lines are now drawn. Notice that a legend is automatically created.
```{r,fig.height=4,fig.width=5}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width,color=Species))+
geom_point()+
geom_smooth(method="lm")
```
If we wanted to keep a common regression line while keeping the colors for the points, we could specify color aesthetic only for `geom_point`.
```{r,fig.height=4,fig.width=5}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Species))+
geom_smooth(method="lm")
```
## Aesthetic parameter
We can change the size of all points by a fixed amount by specifying size outside the aesthetic parameter.
```{r,fig.height=4,fig.width=5}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Species),size=3)+
geom_smooth(method="lm")
```
## Aesthetic mapping
We can map another variable as size of the points. This is done by specifying size inside the aesthetic mapping. Now the size of the points denote `Sepal.Width`. A new legend group is created to show this new aesthetic.
```{r,fig.height=4,fig.width=5}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Species,size=Sepal.Width))+
geom_smooth(method="lm")
```
## Discrete colors
We can change the default colors by specifying new values inside a scale.
```{r,fig.height=4,fig.width=5}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Species,size=Sepal.Width))+
geom_smooth(method="lm")+
scale_color_manual(values=c("red","blue","green"))
```
## Continuous colors
We can also map the colors to a continuous variable. This creates a color bar legend item.
```{r,fig.height=4,fig.width=5}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Sepal.Width))+
geom_smooth(method="lm")
```
## Titles
Now let's rename the axis labels, change the legend title and add a title, a subtitle and a caption. We change the legend title using `scale_color_continuous()`. All other labels are changed using `labs()`.
```{r,fig.height=4,fig.width=5}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Sepal.Width))+
geom_smooth(method="lm")+
scale_color_continuous(name="New Legend Title")+
labs(title="This Is A Title",subtitle="This is a subtitle",x=" Petal Length",
y="Petal Width", caption="This is a little caption.")
```
## Axes modification
Let's say we are not happy with the x-axis breaks 2,4,6 etc. We would like to have 1,2,3... We change this using `scale_x_continuous()`.
```{r,fig.height=4,fig.width=5}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Sepal.Width))+
geom_smooth(method="lm")+
scale_color_continuous(name="New Legend Title")+
scale_x_continuous(breaks=1:8)+
labs(title="This Is A Title",subtitle="This is a subtitle",x=" Petal Length",
y="Petal Width", caption="This is a little caption.")
```
## Facetting
We can create subplots using the facetting functionality. Let's create three subplots for the three levels of Species.
```{r,fig.height=4,fig.width=6,dev="png"}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Sepal.Width))+
geom_smooth(method="lm")+
scale_color_continuous(name="New Legend Title")+
scale_x_continuous(breaks=1:8)+
labs(title="This Is A Title",subtitle="This is a subtitle",x=" Petal Length",
y="Petal Width", caption="This is a little caption.")+
facet_wrap(~Species)
```
## Themes
The look of the plot can be changed using themes. Let's can the default `theme_grey()` to `theme_bw()`.
```{r,fig.height=4,fig.width=6,dev="png"}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Sepal.Width))+
geom_smooth(method="lm")+
scale_color_continuous(name="New Legend Title")+
scale_x_continuous(breaks=1:8)+
labs(title="This Is A Title",subtitle="This is a subtitle",x=" Petal Length",
y="Petal Width", caption="This is a little caption.")+
facet_wrap(~Species)+
theme_bw()
```
All non-data related aspects of the plot can be modified through themes. Let's modify the colors of the title labels and turn off the gridlines. The various parameters for theme ca be found using `?theme`.
```{r,fig.height=4,fig.width=6,dev="png"}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Sepal.Width))+
geom_smooth(method="lm")+
scale_color_continuous(name="New Legend Title")+
scale_x_continuous(breaks=1:8)+
labs(title="This Is A Title",subtitle="This is a subtitle",x=" Petal Length",
y="Petal Width", caption="This is a little caption.")+
facet_wrap(~Species)+
theme_bw()+
theme(
axis.title=element_text(color="Blue",face="bold"),
plot.title=element_text(color="Green",face="bold"),
plot.subtitle=element_text(color="Pink"),
panel.grid=element_blank()
)
```
Themes can be saved and reused.
```{r,fig.height=4,fig.width=6,dev="png"}
newtheme <- theme(
axis.title=element_text(color="Blue",face="bold"),
plot.title=element_text(color="Green",face="bold"),
plot.subtitle=element_text(color="Pink"),
panel.grid=element_blank())
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Sepal.Width))+
geom_smooth(method="lm")+
scale_color_continuous(name="New Legend Title")+
scale_x_continuous(breaks=1:8)+
labs(title="This Is A Title",subtitle="This is a subtitle",x=" Petal Length",
y="Petal Width", caption="This is a little caption.")+
facet_wrap(~Species)+
theme_bw()+
newtheme
```
## Controlling legends
Here we see two legends based on the two aesthetic mappings.
```{r,fig.height=4,fig.width=5,dev="png"}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Species,size=Sepal.Width))
```
If we don't want to have the extra legend, we can turn off legends individually by aesthetic.
```{r,fig.height=4,fig.width=5,dev="png"}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Species,size=Sepal.Width))+
guides(size="none")
```
We can also turn off legends by geom.
```{r,fig.height=4,fig.width=5,dev="png"}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Species,size=Sepal.Width),show.legend=FALSE)
```
Legends can be moved around using theme.
```{r,fig.height=4,fig.width=6,dev="png"}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Species,size=Sepal.Width))+
theme(legend.position="top",
legend.justification="right")
```
Legend rows can be controlled in a finer manner.
```{r,fig.height=4,fig.width=5,dev="png"}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Species,size=Sepal.Width))+
guides(size=guide_legend(nrow=2,byrow=TRUE),
color=guide_legend(nrow=3,byrow=T))+
theme(legend.position="top",
legend.justification="right")
```
## Labelling
Items on the plot can be labelled using the `geom_text` or `geom_label` geoms.
```{r,fig.height=4,fig.width=5,dev="png"}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Species))+
geom_text(aes(label=Species,hjust=0),nudge_x=0.5,size=3)
```
```{r,fig.height=4,fig.width=5,dev="png"}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Species))+
geom_label(aes(label=Species,hjust=0),nudge_x=0.5,size=3)
```
Check out the R package `ggrepel` allows for non-overlapping labels.
## Annotations
Custom annotations of any geom can be added arbitrarily anywhere on the plot.
```{r,fig.height=4,fig.width=6,dev="png"}
ggplot(data=iris,mapping=aes(x=Petal.Length,y=Petal.Width))+
geom_point(aes(color=Species))+
annotate("text",x=2.5,y=2.1,label="There is a random line here")+
annotate("segment",x=2,xend=4,y=1.5,yend=2)
```
## Barplots
```{r,fig.height=4,fig.width=6,dev="png"}
ggplot(data=iris,mapping=aes(x=Species,y=Petal.Width))+
geom_bar(stat="identity")
```
## Flip axes
x and y axes can be flipped using `coord_flip`.
```{r,fig.height=4,fig.width=6,dev="png"}
ggplot(data=iris,mapping=aes(x=Species,y=Petal.Width))+
geom_bar(stat="identity")+
coord_flip()
```
## Error Bars
An example of using error bars with points. The mean and standard deviation is computed. This is used to create upper and lower bounds for the error bars.
```{r,fig.height=4,fig.width=6}
dfr <- iris %>% group_by(Species) %>%
summarise(mean=mean(Sepal.Length),sd=sd(Sepal.Length)) %>%
mutate(high=mean+sd,low=mean-sd)
ggplot(data=dfr,mapping=aes(x=Species,y=mean,color=Species))+
geom_point(size=4)+
geom_errorbar(aes(ymax=high,ymin=low),width=0.2)
```
# Covid data
Covid cases data was download from [ECDC](https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide) as a CSV file. We will explore this dataset to plot some common scientific figures.
Read the table, keep only date up to september, convert the `dateRep` as date format to a new column named `date`, convert month and year to factors.
```{r}
d <- read.csv("https://raw.githubusercontent.com/NBISweden/workshop-r/master/data/lab_ggplot2/covid.csv",header=TRUE,stringsAsFactors=TRUE) %>%
filter(month<=9) %>%
mutate(date=as.Date(as.character(dateRep),"%d/%m/%Y"),
month=as.factor(month),
year=as.factor(year))
```
## Histogram
Create a histogram showing the overall distribution of cases.
```{r,class.source="blur-effect"}
d %>%
ggplot(aes(x=cases))+
geom_histogram()
```
A whole lot of zero cases which is not surprising. A very few number of extremely large number of cases.
## Line plot
A line plot is a good option when you dense data and over a time period/duration. Create a line plot for the Country Sweden (`geoId=="SE"` or `countriesAndTerritories=="Sweden"`) showing date (`date`) on the x-axis and cases per day (`cases`) on the y-axis. Set a plot title and axes titles.
```{r,class.source="blur-effect"}
d %>%
filter(geoId=="SE") %>%
ggplot(aes(x=date,y=cases))+
geom_line()+
labs(x="Date",y="Cases",title="Sweden | COVID Cases Per Day")
```
The number of cases per day in Sweden are shown for the period from Jan to Sep. The highest peak is in June and cases were low in summer. Why do you think the line is oscillating up and down rather than being a smooth line?
Similar to above, create a line plot for the following 8 countries: `Sweden, Denmark, Norway, Finland, United_Kingdom, France, Germany, Italy` where each country has a different coloured line. Set plot title and axes titles. Change theme to `theme_bw()`.
```{r,class.source="blur-effect"}
d %>%
filter(countriesAndTerritories %in% c("Sweden", "Denmark", "Norway", "Finland", "United_Kingdom", "France", "Germany", "Italy")) %>%
ggplot(aes(x=date,y=cases,colour=countriesAndTerritories))+
geom_line()+
scale_color_discrete(name="Country")+
labs(x="Date",y="Cases",title="COVID Cases Per Day")+
theme_bw()
```
The countries with lower number of counts are hard to see. Perhaps a log transformation would help? Change the y-axis to a log scale to bring clarity to countries with lower cases.
```{r,class.source="blur-effect"}
d %>%
filter(countriesAndTerritories %in% c("Sweden", "Denmark", "Norway", "Finland", "United_Kingdom", "France", "Germany", "Italy")) %>%
ggplot(aes(x=date,y=cases,colour=countriesAndTerritories))+
geom_line()+
scale_y_log10()+
scale_color_discrete(name="Country")+
labs(x="Date",y="Cases",title="COVID Cases Per Day")+
theme_bw()
```
Did that really help? Why not? Perhaps we could draw a trendline rather than showing the actual data. Create a line plot for the same information as above showing a smoothed trendline (`geom_smooth()`) rather than the actual data points.
```{r,class.source="blur-effect"}
d %>%
filter(countriesAndTerritories %in% c("Sweden", "Denmark", "Norway", "Finland", "United_Kingdom", "France", "Germany", "Italy")) %>%
ggplot(aes(x=date,y=cases,colour=countriesAndTerritories))+
geom_smooth()+
scale_y_log10()+
scale_color_discrete(name="Country")+
labs(x="Date",y="Cases",title="COVID Cases Per Day")+
theme_bw()
```
This is much easier to read.
Similarily, we can plot regression lines by changing arguments inside `geom_smooth()`.
```{r,class.source="blur-effect"}
d %>%
filter(countriesAndTerritories %in% c("Sweden", "Denmark", "Norway", "Finland", "United_Kingdom", "France", "Germany", "Italy")) %>%
ggplot(aes(x=date,y=cases,colour=countriesAndTerritories))+
geom_smooth(method="lm")+
scale_y_log10()+
scale_color_discrete(name="Country")+
labs(x="Date",y="Cases",title="COVID Cases Per Day")+
theme_bw()
```
## Boxplots
Boxplot show the full distribution of data within a bin. Now, for the same countries, create monthwise boxplots (`geom_boxplot()`) of cases.
```{r,class.source="blur-effect"}
d %>%
filter(countriesAndTerritories %in% c("Sweden", "Denmark", "Norway", "Finland", "United_Kingdom", "France", "Germany", "Italy")) %>%
ggplot(aes(x=month,y=cases,colour=countriesAndTerritories))+
geom_boxplot()+
#facet_wrap(~countriesAndTerritories)+
scale_color_discrete(name="Country")+
labs(x="Month",y="Cases",title="COVID Cases Per Month")+
theme_bw()
```
This gets a bit messy. Can you split each country into a subplot rather than showing all the countries in one plot?
```{r,class.source="blur-effect"}
d %>%
filter(countriesAndTerritories %in% c("Sweden", "Denmark", "Norway", "Finland", "United_Kingdom", "France", "Germany", "Italy")) %>%
ggplot(aes(x=month,y=cases,colour=countriesAndTerritories))+
geom_boxplot()+
facet_wrap(~countriesAndTerritories)+
scale_color_discrete(name="Country")+
labs(x="Month",y="Cases",title="COVID Cases Per Month")+
theme_bw()
```
## Barplots
Create a barplot (`geom_bar()`) with mean cases for each continent.
```{r,class.source="blur-effect"}
d %>%
group_by(continentExp) %>%
summarise(mean=mean(cases,na.rm=TRUE)) %>%
ggplot(aes(x=continentExp,y=mean))+
geom_bar(stat="identity")
```
Now for a bit more complexity, create a stacked barplot (`geom_bar()`) with total cases monthwise for each continent. Set months on the x-axis, cases on the y-axis. Colour the bars by continent.
```{r,class.source="blur-effect"}
d %>%
group_by(continentExp,month) %>%
summarise(sum=sum(cases,na.rm=TRUE)) %>%
ggplot(aes(x=month,y=sum,fill=continentExp))+
geom_bar(stat="identity")
```
This figure shows the total number of cases per month across the globe. Continent-wise information shows that a large proportion of the cases are in America followed by Asia. The more common usage of stacked barplots is to show proportion/percentage rather than absolute counts (ie; all the bars are same height).
Create a stacked barplot as above showing proportion of total cases on the y-axis.
```{r,class.source="blur-effect"}
d %>%
group_by(continentExp,month) %>%
summarise(sum=sum(cases,na.rm=TRUE)) %>%
ungroup() %>%
group_by(month) %>%
mutate(total=sum(sum,na.rm=TRUE)) %>%
ungroup() %>%
mutate(frac=round(sum/total,5)) %>%
ggplot(aes(x=month,y=frac,fill=continentExp))+
geom_bar(stat="identity")+
scale_fill_discrete(name="Continent")+
theme_bw()+
labs(x="Month",y="Proportion of Cases")
```
Now, we can see that the pandemic initially started with 100% of the cases in the Asia. As we can also see the rise and fall of cases over summer.
Now let's look at barplots with error bars. First, create a barplot showing mean number of cases per continent per month. Place the bars within a group (month) next to each other rather than stack.
```{r,class.source="blur-effect"}
d %>%
group_by(continentExp,month) %>%
summarise(mean=mean(cases,na.rm=TRUE)) %>%
ggplot(aes(x=month,y=mean,fill=continentExp))+
geom_bar(stat="identity",position=position_dodge())+
scale_fill_discrete(name="Continent")+
labs(x="Month",y="Mean cases per Month")
```
Now to compute, error bars, computer error metrics in the `summary()` function, let's say standard deviation (`sd()`).
```{r,class.source="blur-effect"}
d %>%
group_by(continentExp,month) %>%
summarise(mean=mean(cases,na.rm=TRUE),
sd=sd(cases,na.rm=TRUE),
high=mean+sd,
low=mean-sd) %>%
ggplot(aes(x=month,y=mean,fill=continentExp))+
geom_bar(stat="identity",position=position_dodge())+
geom_errorbar(aes(ymax=high,ymin=low),position=position_dodge(width=0.9),colour="grey40")+
scale_fill_discrete(name="Continent")+
labs(x="Month",y="Mean cases per Month")
```
## Scatterplots
Scatterplots are commonly used for continuous vs continuous variables. Let's try to see if there is any relationship between number of cases and number of deaths. Create a scatterplot showing `cases` vs `deaths`.
```{r,class.source="blur-effect",dev="png"}
ggplot(d,aes(cases,deaths))+
geom_point()
```
Scatterplots are extremely useful in visually inspecting relationships between variables.
Scatterplots can also be used with categorical variables. Create a scatterplot with month on the x-axis and cases per month on the y-axis. Colour the points by continent.
```{r,class.source="blur-effect",dev="png"}
ggplot(d,aes(x=month,y=cases,colour=continentExp))+
geom_point()+
scale_colour_discrete(name="Continent")+
labs(x="Month",y="Cases per Month")
```
`geom_jitter()` can be used to jitter the points around, so they do not overlap.
```{r,class.source="blur-effect",dev="png"}
ggplot(d,aes(x=month,y=cases,colour=continentExp))+
geom_jitter(width=0.3)+
scale_colour_discrete(name="Continent")+
labs(x="Month",y="Cases per Month")
```
Create a scatterplot with month on the x-axis and **mean** cases per month on the y-axis. Colour the points by continent.
```{r,class.source="blur-effect",dev="png"}
d %>%
group_by(month,continentExp) %>%
summarise(mean=mean(cases,na.rm=TRUE)) %>%
ggplot(aes(x=month,y=mean,colour=continentExp))+
geom_point()+
scale_colour_discrete(name="Continent")+
labs(x="Month",y="Mean cases per Month")
```
Add a line to connect the continents across months. Use the `group` argument in `aes()`.
```{r,class.source="blur-effect",dev="png"}
d %>%
group_by(month,continentExp) %>%
summarise(mean=mean(cases,na.rm=TRUE)) %>%
ggplot(aes(x=month,y=mean,colour=continentExp,group=continentExp))+
geom_point()+
geom_line()+
scale_colour_discrete(name="Continent")+
labs(x="Month",y="Mean cases per Month")
```
Now for a slightly more advanced example. Create the same plot above with each continent as separate facets. Add all other continents in the background as reference lines in light grey colour.
```{r,class.source="blur-effect",fig.height=6,dev="png"}
ds <- d %>%
group_by(month,continentExp) %>%
summarise(mean=mean(cases,na.rm=TRUE))
# new df for background points
dsb <- ds %>% mutate(co=continentExp) %>% select(-continentExp)
ggplot()+
geom_point(data=dsb,aes(x=month,y=mean,group=co),colour="grey90")+
geom_line(data=dsb,aes(x=month,y=mean,group=co),colour="grey90")+
geom_point(data=ds,aes(x=month,y=mean,colour=continentExp,group=continentExp))+
geom_line(data=ds,aes(x=month,y=mean,colour=continentExp,group=continentExp))+
facet_wrap(~continentExp)+
scale_colour_discrete(name="Continent")+
labs(x="Month",y="Mean cases per Month")+
guides(colour=guide_legend(nrow=1))+
theme_bw()+
theme(plot.background = element_blank(),
panel.border = element_blank(),
axis.ticks = element_blank(),
panel.grid.minor = element_blank(),
panel.grid.major.x = element_blank(),
legend.position = "top",
legend.direction = "horizontal",
legend.title=element_blank(),
strip.background = element_blank())
```
## Heatmap
Here, we will look at creating a heatmap using ggplot2 as well as fine customisation of the plot for publication. This heatmap shows cases for all European countries over time. This is also a slightly more advanced example.
First, countries in Europe are selected and cases per million people is computed.
```{r,fig.height=8}
# subset europe, calculate cases per million
d2 <- d %>%
filter(continentExp=="Europe") %>%
mutate(casesp=log10(round((cases/popData2019)*10^6,3)+1))
```
```{r,fig.height=8,dev="png"}
# colours
cols <- c("#e7f0fa","#c9e2f6","#95cbee","#0099dc","#4ab04a", "#ffd73e","#eec73a","#e29421","#f05336","#ce472e")
leg_label <- "Log[10]~Cases~Per~Million~Persons"
# plotting
ggplot(d2,aes(x=date,y=countriesAndTerritories,fill=casesp))+
geom_tile()+
labs(x="",y="")+
scale_fill_gradientn(colors=cols,na.value="grey90",
guide=guide_colourbar(ticks=T,nbin=10,barheight=.5,label=T,barwidth=10),
name=eval(parse(text=leg_label)))+
scale_x_date(breaks=seq(as.Date("2020/1/1"), by = "month", length.out = 10),
labels=format(seq(as.Date("2020/1/1"), by = "month", length.out = 10),"%b"))+
theme_bw()+
theme(plot.background = element_blank(),
panel.border = element_blank(),
axis.ticks = element_blank(),
panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
legend.position = "top",
legend.direction = "horizontal")
#pheatmap::pheatmap(d3,cluster_cols = F,scale = "none")
```
It would be nice to have the countries grouping together based on the trend rather than just alphabetical order. This bit of code below clusters countries based on the data. Therefore, countries with similar case patterns should cluster together.
```{r}
# cluster countries
d3 <- d2 %>%
mutate(casesp=casesp) %>%
select(date,countriesAndTerritories,casesp) %>%
spread(key=date,value=casesp)
rownames(d3) <- d3$countriesAndTerritories
d3$countriesAndTerritories <- NULL
h <- hclust(dist(d3))
d2$countriesAndTerritories <- factor(as.character(d2$countriesAndTerritories),levels=rownames(d3)[h$order])
```
```{r,include=FALSE}
#h <- hclust(as.dist(cor(t(d3),use = "na.or.complete")))
```
Now, our new figure looks like this. It should be easier to see the trend over time. Primary and secondary waves are now starting to be easily visible.
```{r,fig.height=8,dev="png"}
# colours
cols <- c("#e7f0fa","#c9e2f6","#95cbee","#0099dc","#4ab04a", "#ffd73e","#eec73a","#e29421","#f05336","#ce472e")
leg_label <- "Log[10]~Cases~Per~Million~Persons"
# plotting
ggplot(d2,aes(x=date,y=countriesAndTerritories,fill=casesp))+
geom_tile()+
labs(x="",y="")+
scale_fill_gradientn(colors=cols,na.value="grey90",
guide=guide_colourbar(ticks=T,nbin=10,barheight=.5,label=T,barwidth=10),
name=eval(parse(text=leg_label)))+
scale_x_date(breaks=seq(as.Date("2020/1/1"), by = "month", length.out = 10),
labels=format(seq(as.Date("2020/1/1"), by = "month", length.out = 10),"%b"))+
theme_bw()+
theme(plot.background = element_blank(),
panel.border = element_blank(),
axis.ticks = element_blank(),
panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
legend.position = "top",
legend.direction = "horizontal")
```