forked from NBISweden/workshop-r
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab_graphics.Rmd
600 lines (452 loc) · 18.5 KB
/
lab_graphics.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
---
title: "Graphics in R"
subtitle: "R Programming Foundation for Life Scientists"
output:
bookdown::html_document2:
highlight: textmate
toc: true
toc_float:
collapsed: true
smooth_scroll: true
print: false
toc_depth: 4
number_sections: true
df_print: default
code_folding: none
self_contained: false
keep_md: false
encoding: 'UTF-8'
css: "assets/lab.css"
include:
after_body: assets/footer-lab.html
---
```{r,child="assets/header-lab.Rmd"}
```
```{r,include=FALSE}
library(lubridate)
```
# Introduction
In this lab, we will go step-by-step through manually building a scientific plot using base graphics in R.
# Generating data
First, we will produce some random data that we will later plot. Make a data frame with
- 20 random coordinates (x,y) and
- radius $r$ for each data point.
- The *x* coord takes random values from 1 to 25 and
- both the *y* and the radius *r* coord are samples from $N(0,1)$.
- Each point (row of the data frame) has a name *ind1 ... ind25*.
First, look at the defaults:
- plot the data in the simplest possible way.
```{r,fig.height=6,fig.width=10}
#20 random datapoints
x <- sample(c(1:25), size=20, replace=T)
y <- rnorm(n=20, mean=0, sd=1) # sample from normal
r <- rnorm(n=20, mean=0, sd=1) # radius from normal
names <- paste("ind", 1:20, sep="") # assign some names
data <- data.frame(cbind(X=x,Y=y, R=r), row.names=names)
plot(data[,1:2])
```
# Building a plot
As you see, the points are displayed in a simple way, axes are set automatically, the radius is not reflected on the plot in any way (3rd dimension).
## Hide markers
Build the plot from scratch, begin by displaying no points. You can do this by setting `type = 'n'`.
* Other `type`s:
+ "p" for points.
+ "l" for lines.
+ "b" for both points and lines.
+ "c" for empty points joined by lines.
+ "o" for overplotted points and lines.
+ "s" and "S" for stair steps.
+ "h" for histogram-like vertical lines.
+ "n" does not produce any points or lines.
```{r,fig.height=6,fig.width=10}
plot(data[,1:2], type='n')
```
## Hide border/axes
Remove the default box around the plot and axes.
```{r,fig.height=6,fig.width=10}
plot(data[,1:2], type='n',xaxt='n', yaxt='n',xlab="", ylab="", frame.plot=F)
```
## Axes labels
Create X and Y axis so that they cover the whole range of *x* and *y*. For the Y axis, set 10 equidistant tickmarks and set labels to their values rounded to two decimals. Turn the labels, so that they are parallel to the OX axis.
```{r,fig.height=6,fig.width=10,echo=FALSE}
## CODE EVALUATED BUT HIDDEN FROM OUTPUT ##
plot(data[,1:2], type='n',xaxt='n', yaxt='n',xlab="", ylab="", frame.plot=F)
#Create X axis
coords.x <- seq(min(data$X),max(data$X), by=1)
axis(side=1, # 1-left, 2-top, 3-right, 4-bottom
at=coords.x # coordinates for tickmarks
)
#Create Y axis
#we want 10 tickmarks along the data range
coords.y <- seq(min(data$Y), max(data$Y), length.out=10)
#and our labels will be the rounded values of y
labels.y <- round(coords.y, digits=2)
axis(side=2,
at=coords.y,
labels=labels.y, # we want specific labels
las=2 # turn the text so it is parallel to OX
)
```
```{r,eval=FALSE}
#Create X axis
coords.x <- seq(min(data$X),max(data$X), by=1)
axis(side=1, # 1-left, 2-top, 3-right, 4-bottom
at=coords.x # coordinates for tickmarks
)
#Create Y axis
#we want 10 tickmarks along the data range
coords.y <- seq(min(data$Y), max(data$Y), length.out=10)
#and our labels will be the rounded values of y
labels.y <- round(coords.y, digits=2)
axis(side=2,
at=coords.y,
labels=labels.y, # we want specific labels
las=2 # turn the text so it is parallel to OX
)
```
## Grid lines
Plot gridlines so that it is easier to read the plot. There should be a grey dashed line from each tickmark on both axes.
```{r,fig.height=6,fig.width=10,echo=FALSE}
## CODE EVALUATED BUT HIDDEN FROM OUTPUT ##
plot(data[,1:2], type='n',xaxt='n', yaxt='n',xlab="", ylab="", frame.plot=F)
#Create X axis
coords.x <- seq(min(data$X),max(data$X), by=1)
axis(side=1, # 1-left, 2-top, 3-right, 4-bottom
at=coords.x # coordinates for tickmarks
)
#Create Y axis
#we want 10 tickmarks along the data range
coords.y <- seq(min(data$Y), max(data$Y), length.out=10)
#and our labels will be the rounded values of y
labels.y <- round(coords.y, digits=2)
axis(side=2,
at=coords.y,
labels=labels.y, # we want specific labels
las=2 # turn the text so it is parallel to OX
)
abline(v=coords.x, col="darkgrey", lty=3)
abline(h=coords.y, col="darkgrey", lty=3)
```
```{r,fig.height=6,fig.width=10,eval=FALSE}
abline(v=coords.x, col="darkgrey", lty=3)
abline(h=coords.y, col="darkgrey", lty=3)
#you could also use grid()
```
## Add markers
Define a new *mycol* function that takes a color name and a transparency value as two arguments and returns the corresponding rgb color value.
```{r,fig.height=6,fig.width=10}
#Function for adding transparency to a given color.
mycol <- function(colname="olivedrab", transparency=.5) {
#convert color name to its RGB value and add the desired
#transparency
color <- c(as.vector(col2rgb(colname))/255, transparency)
# and make a new color from the above
color <- rgb(color[1], color[2], color[3], color[4])
return(color)
}
```
Plot datapoints so that their size is proportional to $e^r$ where $r$ is the radius, points at even X should be round and blue and points at odd X square and grey.
```{r,fig.height=6,fig.width=10,echo=FALSE}
## CODE EVALUATED BUT HIDDEN FROM OUTPUT ##
plot(data[,1:2], type='n',xaxt='n', yaxt='n',xlab="", ylab="", frame.plot=F)
#Create X axis
coords.x <- seq(min(data$X),max(data$X), by=1)
axis(side=1, # 1-left, 2-top, 3-right, 4-bottom
at=coords.x # coordinates for tickmarks
)
#Create Y axis
#we want 10 tickmarks along the data range
coords.y <- seq(min(data$Y), max(data$Y), length.out=10)
#and our labels will be the rounded values of y
labels.y <- round(coords.y, digits=2)
axis(side=2,
at=coords.y,
labels=labels.y, # we want specific labels
las=2 # turn the text so it is parallel to OX
)
abline(v=coords.x, col="darkgrey", lty=3)
abline(h=coords.y, col="darkgrey", lty=3)
points(data[data$X%%2 == 0,], pch=19, cex=exp(r), col=mycol("slateblue", .5))
points(data[data$X%%2 != 0,], pch=15, cex=exp(r), col=mycol("grey", .5))
```
```{r,fig.height=6,fig.width=10,eval=FALSE}
#Plot radii
points(data[data$X%%2 == 0,], pch=19, cex=exp(r), col=mycol("slateblue", .5))
points(data[data$X%%2 != 0,], pch=15, cex=exp(r), col=mycol("grey", .5))
```
Plot centers of the points as a cross: grey for blue/even points and red for grey/odd points.
```{r,fig.height=6,fig.width=10,echo=FALSE}
## CODE EVALUATED BUT HIDDEN FROM OUTPUT ##
plot(data[,1:2], type='n',xaxt='n', yaxt='n',xlab="", ylab="", frame.plot=F)
#Create X axis
coords.x <- seq(min(data$X),max(data$X), by=1)
axis(side=1, # 1-left, 2-top, 3-right, 4-bottom
at=coords.x # coordinates for tickmarks
)
#Create Y axis
#we want 10 tickmarks along the data range
coords.y <- seq(min(data$Y), max(data$Y), length.out=10)
#and our labels will be the rounded values of y
labels.y <- round(coords.y, digits=2)
axis(side=2,
at=coords.y,
labels=labels.y, # we want specific labels
las=2 # turn the text so it is parallel to OX
)
abline(v=coords.x, col="darkgrey", lty=3)
abline(h=coords.y, col="darkgrey", lty=3)
points(data[data$X%%2 == 0,], pch=19, cex=exp(r), col=mycol("slateblue", .5))
points(data[data$X%%2 != 0,], pch=15, cex=exp(r), col=mycol("grey", .5))
points(data[data$X%%2 == 0,], pch=3, cex=1, col="darkgrey")
points(data[data$X%%2 != 0,], pch=3, cex=1, col="red")
```
```{r,fig.height=6,fig.width=10,eval=FALSE}
points(data[data$X%%2 == 0,], pch=3, cex=1, col="darkgrey")
points(data[data$X%%2 != 0,], pch=3, cex=1, col="red")
```
## Annotation
Add grey text 'Center' at the center of the plot.
```{r,fig.height=6,fig.width=10,echo=FALSE}
## CODE EVALUATED BUT HIDDEN FROM OUTPUT ##
plot(data[,1:2], type='n',xaxt='n', yaxt='n',xlab="", ylab="", frame.plot=F)
#Create X axis
coords.x <- seq(min(data$X),max(data$X), by=1)
axis(side=1, # 1-left, 2-top, 3-right, 4-bottom
at=coords.x # coordinates for tickmarks
)
#Create Y axis
#we want 10 tickmarks along the data range
coords.y <- seq(min(data$Y), max(data$Y), length.out=10)
#and our labels will be the rounded values of y
labels.y <- round(coords.y, digits=2)
axis(side=2,
at=coords.y,
labels=labels.y, # we want specific labels
las=2 # turn the text so it is parallel to OX
)
abline(v=coords.x, col="darkgrey", lty=3)
abline(h=coords.y, col="darkgrey", lty=3)
points(data[data$X%%2 == 0,], pch=19, cex=exp(r), col=mycol("slateblue", .5))
points(data[data$X%%2 != 0,], pch=15, cex=exp(r), col=mycol("grey", .5))
points(data[data$X%%2 == 0,], pch=3, cex=1, col="darkgrey")
points(data[data$X%%2 != 0,], pch=3, cex=1, col="red")
center.x <- mean(range(data[,1]))
center.y <- mean(range(data[,2]))
text(x=center.x, y=center.y, "Center", col="lightgrey")
```
```{r,fig.height=6,fig.width=10,eval=FALSE}
center.x <- mean(range(data[,1]))
center.y <- mean(range(data[,2]))
text(x=center.x, y=center.y, "Center", col="lightgrey")
```
## Titles
Add title 'Odds and Ends' and text 'X' and 'Y' on the margins of the appropriate axes.
```{r,fig.height=6,fig.width=10,echo=FALSE}
## CODE EVALUATED BUT HIDDEN FROM OUTPUT ##
plot(data[,1:2], type='n',xaxt='n', yaxt='n',xlab="", ylab="", frame.plot=F)
#Create X axis
coords.x <- seq(min(data$X),max(data$X), by=1)
axis(side=1, # 1-left, 2-top, 3-right, 4-bottom
at=coords.x # coordinates for tickmarks
)
#Create Y axis
#we want 10 tickmarks along the data range
coords.y <- seq(min(data$Y), max(data$Y), length.out=10)
#and our labels will be the rounded values of y
labels.y <- round(coords.y, digits=2)
axis(side=2,
at=coords.y,
labels=labels.y, # we want specific labels
las=2 # turn the text so it is parallel to OX
)
abline(v=coords.x, col="darkgrey", lty=3)
abline(h=coords.y, col="darkgrey", lty=3)
points(data[data$X%%2 == 0,], pch=19, cex=exp(r), col=mycol("slateblue", .5))
points(data[data$X%%2 != 0,], pch=15, cex=exp(r), col=mycol("grey", .5))
points(data[data$X%%2 == 0,], pch=3, cex=1, col="darkgrey")
points(data[data$X%%2 != 0,], pch=3, cex=1, col="red")
center.x <- mean(range(data[,1]))
center.y <- mean(range(data[,2]))
text(x=center.x, y=center.y, "Center", col="lightgrey")
title("Odds and Ends")
mtext("Y", side=2, line=3, cex.lab=1,las=2, col="blue")
mtext("X", side=1, line=3, cex.lab=1,las=1, col="blue")
```
```{r,fig.height=6,fig.width=10,eval=FALSE}
title("Odds and Ends")
mtext("Y", side=2, line=3, cex.lab=1,las=2, col="blue")
mtext("X", side=1, line=3, cex.lab=1,las=1, col="blue")
```
## Legend
Add a legend for 'odd' and 'even' points. Place it in the top-right corner.
```{r,fig.height=6,fig.width=10,echo=FALSE}
## CODE EVALUATED BUT HIDDEN FROM OUTPUT ##
plot(data[,1:2], type='n',xaxt='n', yaxt='n',xlab="", ylab="", frame.plot=F)
#Create X axis
coords.x <- seq(min(data$X),max(data$X), by=1)
axis(side=1, # 1-left, 2-top, 3-right, 4-bottom
at=coords.x # coordinates for tickmarks
)
#Create Y axis
#we want 10 tickmarks along the data range
coords.y <- seq(min(data$Y), max(data$Y), length.out=10)
#and our labels will be the rounded values of y
labels.y <- round(coords.y, digits=2)
axis(side=2,
at=coords.y,
labels=labels.y, # we want specific labels
las=2 # turn the text so it is parallel to OX
)
abline(v=coords.x, col="darkgrey", lty=3)
abline(h=coords.y, col="darkgrey", lty=3)
points(data[data$X%%2 == 0,], pch=19, cex=exp(r), col=mycol("slateblue", .5))
points(data[data$X%%2 != 0,], pch=15, cex=exp(r), col=mycol("grey", .5))
points(data[data$X%%2 == 0,], pch=3, cex=1, col="darkgrey")
points(data[data$X%%2 != 0,], pch=3, cex=1, col="red")
center.x <- mean(range(data[,1]))
center.y <- mean(range(data[,2]))
text(x=center.x, y=center.y, "Center", col="lightgrey")
title("Odds and Ends")
mtext("Y", side=2, line=3, cex.lab=1,las=2, col="blue")
mtext("X", side=1, line=3, cex.lab=1,las=1, col="blue")
legend('topright',
legend=c("odd", "even"),
col=c(mycol("slateblue", .5), mycol("grey", .5)),
pch=c(19,15),
cex=1,
pt.cex=1.2,
title="Legend",
bty='n'
)
```
```{r,fig.height=6,fig.width=10,eval=FALSE}
legend('topright',
legend=c("odd", "even"),
col=c(mycol("slateblue", .5), mycol("grey", .5)),
pch=c(19,15),
cex=1,
pt.cex=1.2,
title="Legend",
bty='n'
)
```
# Visualizing growth data
A female child was measured at the following dates:
- '30-09-2015', '12-10-2015', '19-10-2015', '26-10-2015', '07-11-2015', '16-11-2015', '30-11-2015', '11-01-2016', '08-02-2016', '14-03-2016', '05-04-2016', '14-04-2016', '31-05-2016', '14-07-2016',
- the measured weights in grams were: 3300, 3540, 3895, 4070, 4230, 4385, 4855, 5865, not taken, 6736, 7065, 7080, 7530, 7640 and
- the measured lengths: 43, no measurement taken, 53, 54, 55, 56, 58, 62.5, 65, 67, 67.5, 67.5, 70.5, 71.5.
- The headcircumference for the same datapoints was (in cm): 34, 35.5, 36.1, 36.8, 36.8, 37.3, 38, 40.2, 41.4, 42.1, not taken, 43, 44, 45.
Your task is to plot these data on the WHO centile grids. Choose weight/length/circumference depending on the month you was born:
- weight: Jan, Apr, Jul, Oct
- length: Feb, May, Aug, Nov
- circumference: Mar, Jun, Sep, Dec
## Prepare input data
We save the timepoints and measurements in vectors.
```{r}
library(lubridate)
timepoints <- dmy(c('30-09-2015', '12-10-2015','19-10-2015', '26-10-2015', '07-11-2015', '16-11-2015','30-11-2015', '11-01-2016', '08-02-2016', '14-03-2016', '05-04-2016', '14-04-2016', '31-05-2016', '14-07-2016'))
weight <- c(3300, 3540, 3895, 4070, 4230, 4385, 4855, 5865, NA, 6736, 7065, 7080, 7530, 7640)
length <- c(43,NA,53,54,55,56,58,62.5,65,67,67.5,67.5,70.5,71.5)
head <- c(34,35.5,36.1,36.8,36.8,37.3,38,40.2,41.4,42.1,NA,43,44,45)
```
We can calculate the interval between the dates of measurements by two approaches:
**Approach1:**
Simply calculate the interval by subtracting each date from the the first date of data collection (e.g. '2016-05-31' - '2015-09-30' ) and then convert it to months.
```{r}
xpoints <- (as.Date(timepoints) - as.Date(timepoints[1]) )/ 30
```
**Approach2:**
Calculate the intervals by seconds and then use WHO standard months day length which is 30.4375 to calculate by month.
Use function `dmy()` from the **lubridate** package to create a vector of timepoints.
HINTS:
- We can define an Interval using the `%--%` operator.
- check `as.duration()` and `ddays()` functions.
```{r, echo = T, eval = F}
who.month <- 30.4375 #days
xpoints <- as.duration(timepoints[1] %--% timepoints) / ddays(1) / who.month
```
## Prepare reference data
Download manually and then load:
Go to WHO website (http://www.who.int/childgrowth/standards/en/) and find out the link to the dataset of your concern, e.g. Weight for age, percentiles for girls have the following address: http://www.who.int/entity/childgrowth/standards/wfa_girls_p_0_5.xlsx
Or using direct link to the excel file:
```{r,eval=T}
library(readxl)
uri <- "https://cdn.who.int/media/docs/default-source/child-growth/child-growth-standards/indicators/weight-for-age/tab_wfa_girls_p_0_5.xlsx?sfvrsn=666fe445_7"
local_file_path <- "wfa_girls_p_0_5.xlsx" ## give the local path of the downloaded file
download.file(url = uri, destfile = local_file_path, mode = "wb")
myData <-read_excel(local_file_path)
```
## Build empty plot
Create an empty plot to show your and WHO data,
```{r,accordion=TRUE,fig.height=6,fig.width=10,eval=T}
plot(1, xlim=c(0, max(myData$Month)), type='n', bty='n', ylim=c(0, max(myData[,c(5:19)])), las=1, xlab='Month', ylab='kg')
grid()
```
## Plot reference data
Plot WHO mean and percentiles: P25, P75, P0.1 and P99.9, use different colors and line types to make the plot pretty.
```{r,fig.height=6,fig.width=10,echo=FALSE,eval=FALSE}
## CODE EVALUATED BUT NOT DISPLAYED ##
plot(1, xlim=c(0, max(myData$Month)), type='n', bty='n', ylim=c(0, max(myData[,c(5:19)])), las=1, xlab='Month', ylab='kg')
grid()
lines(myData$M, col='grey', lty=1)
lines(myData$P25, col='blue', lty=2)
lines(myData$P75, col='blue', lty=2)
lines(myData$P01, col='tomato', lty=2)
lines(myData$P999, col='tomato', lty=2)
```
```{r,accordion=TRUE,eval=FALSE}
lines(myData$M, col='grey', lty=1)
lines(myData$P25, col='blue', lty=2)
lines(myData$P75, col='blue', lty=2)
lines(myData$P01, col='tomato', lty=2)
lines(myData$P999, col='tomato', lty=2)
```
## Plot input data
Plot your data on top of the percentiles, mind the units so that they match with the WHO ones
```{r,fig.height=6,fig.width=10,echo=FALSE,eval=T}
## CODE EVALUATED BUT NOT DISPLAYED ##
plot(1, xlim=c(0, max(myData$Month)), type='n', bty='n', ylim=c(0, max(myData[,c(5:19)])), las=1, xlab='Month', ylab='kg')
grid()
lines(myData$M, col='grey', lty=1)
lines(myData$P25, col='blue', lty=2)
lines(myData$P75, col='blue', lty=2)
lines(myData$P01, col='tomato', lty=2)
lines(myData$P999, col='tomato', lty=2)
points(xpoints, weight/1000, pch=3, type='l', cex=.5)
points(xpoints, weight/1000, pch=3, type='p', cex=.5)
```
```{r,accordion=TRUE,eval=FALSE}
points(xpoints, weight/1000, pch=3, type='l', cex=.5)
points(xpoints, weight/1000, pch=3, type='p', cex=.5)
```
## Add annotation
Add descriptions of the confidence lines in the margins
```{r,fig.height=6,fig.width=10,echo=FALSE,eval=T}
## CODE EVALUATED BUT NOT DISPLAYED ##
plot(1, xlim=c(0, max(myData$Month)), type='n', bty='n', ylim=c(0, max(myData[,c(5:19)])), las=1, xlab='Month', ylab='kg')
grid()
lines(myData$M, col='grey', lty=1)
lines(myData$P25, col='blue', lty=2)
lines(myData$P75, col='blue', lty=2)
lines(myData$P01, col='tomato', lty=2)
lines(myData$P999, col='tomato', lty=2)
points(xpoints, weight/1000, pch=3, type='l', cex=.5)
points(xpoints, weight/1000, pch=3, type='p', cex=.5)
mtext(text = c('P0.1','P25','P75','P99.9'), side = 4, at=myData[dim(myData)[1], c('P01','P25','P75','P999')], las=1, cex=.8)
```
```{r,accordion=TRUE,eval=FALSE}
mtext(text = c('P0.1','P25','P75','P99.9'), side = 4, at=myData[dim(myData)[1], c('P01','P25','P75','P999')], las=1, cex=.8)
```
# Visualizing Gapminder data
You task here is to use the already acquired R knowledge to plot an interesting relationship between two freely selected variables available at Hans Rosling's Gapminder Foundation page.
- Go to http://www.gapminder.org/data/
- Select a dataset of interest,
- Load data to R, take care of missing values etc.,
- Find a nice way of visualizing the relationship between some selected variables,
- Think of scales (linear, logarythmic), axes labels etc.,
- Be creative,
- Visualize a selected variables using boxplot and histogram on one plot (HINT: parameter mfrow),
- Discuss the result with your colleagues and TAs.
```{r}
unlink(local_file_path)
```