-
Notifications
You must be signed in to change notification settings - Fork 0
/
exports_2VAE_CC_GAN.py
250 lines (191 loc) · 7.66 KB
/
exports_2VAE_CC_GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import torch
import torch.nn
import torchvision
from src.timbre_transfer.datasets.NSynthDataset import NSynthDoubleDataset
from src.timbre_transfer.helpers.audiotransform import AudioTransform
from src.timbre_transfer.models.network.Spectral_Decoder import Spectral_Decoder
from src.timbre_transfer.models.network.Spectral_Encoder import Spectral_Encoder
from src.timbre_transfer.models.network.Spectral_Discriminator import Spectral_Discriminator
from src.timbre_transfer.models.VAE_GAN import SpectralVAE_GAN
from torch.utils.tensorboard import SummaryWriter
dataset_folder = os.path.join("/fast-1","atiam22-23")
preTrained_loadNames = ["pretrained/2VAEs_CC_GAN/vocal_2", "pretrained/2VAEs_CC_GAN/string_2"]
writer = SummaryWriter(os.path.join('runs', 'exports', '2VAEs_CC_GAN'))
## Name of the saved trained network
## Training parameters
# Learning rate
lr = 1e-4
# Dataloaders parameters
valid_batch_size = 1024
num_threads = 0
## Model Parameters
# Dimension of the linear layer
hidden_dim = 256
# Dimension of the latent space
latent_dim = 16
# Number of filters of the first convolutionnal layer
base_depth = 64
# Max number of channels of te convolutionnal layers
max_depth = 512
# Number of convolutionnal layers
n_convLayers = 3
# Kernel size of convolutionnal layers (recommended : stride*2+3)
kernel_size = 11
# Stride of convolutionnal layers (recommended : 2 or 4)
stride = 4
# Models returns images of size freqs_dim*len_dim
freqs_dim = 128
len_dim = 128
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#device = 'cpu'
print(device)
AT = AudioTransform(input_freq = 16000, n_fft = 1024, n_mel = freqs_dim, stretch_factor=.8, device = device).to(device)
## Loading the NSynth dataset
valid_dataset = NSynthDoubleDataset(
dataset_folder,
usage = 'valid',
filter_keys = ('vocal_acoustic', 'string_acoustic'),
transform = AT,
length_style = 'max',
device = device
)
nb_valid = len(valid_dataset)
print(f"Number of validation examples : {nb_valid}")
valid_loader = torch.utils.data.DataLoader(dataset=valid_dataset, batch_size=valid_batch_size, num_workers=num_threads, shuffle=False)
## Model definition
encoder = Spectral_Encoder(
freqs_dim = freqs_dim,
len_dim = len_dim,
latent_dim = latent_dim,
hidden_dim = hidden_dim,
base_depth = base_depth,
n_convLayers = n_convLayers,
kernel_size = kernel_size,
max_depth = max_depth,
stride = stride)
decoder1 = Spectral_Decoder(
freqs_dim = freqs_dim,
len_dim = len_dim,
latent_dim = latent_dim,
hidden_dim = hidden_dim,
base_depth = base_depth,
n_convLayers = n_convLayers,
kernel_size = kernel_size,
max_depth = max_depth,
stride = stride)
decoder2 = Spectral_Decoder(
freqs_dim = freqs_dim,
len_dim = len_dim,
latent_dim = latent_dim,
hidden_dim = hidden_dim,
base_depth = base_depth,
n_convLayers = n_convLayers,
kernel_size = kernel_size,
max_depth = max_depth,
stride = stride)
discriminator1 = Spectral_Discriminator(
freqs_dim = freqs_dim,
len_dim = len_dim,
latent_dim = latent_dim,
hidden_dim = hidden_dim,
base_depth = base_depth,
n_convLayers = n_convLayers,
kernel_size = kernel_size,
max_depth = max_depth,
stride = stride)
discriminator2 = Spectral_Discriminator(
freqs_dim = freqs_dim,
len_dim = len_dim,
latent_dim = latent_dim,
hidden_dim = hidden_dim,
base_depth = base_depth,
n_convLayers = n_convLayers,
kernel_size = kernel_size,
max_depth = max_depth,
stride = stride)
model1 = SpectralVAE_GAN(encoder, decoder1, discriminator1, freqs_dim = freqs_dim, len_dim = len_dim, encoding_dim = hidden_dim, latent_dim = latent_dim)
model2 = SpectralVAE_GAN(encoder, decoder2, discriminator2, freqs_dim = freqs_dim, len_dim = len_dim, encoding_dim = hidden_dim, latent_dim = latent_dim)
## Loading pre-trained model
if os.path.isfile(preTrained_loadNames[0]+'.pt') and os.path.isfile(preTrained_loadNames[1]+'.pt'):
model1.load_state_dict(torch.load('./'+preTrained_loadNames[0]+'.pt'))
model2.load_state_dict(torch.load('./'+preTrained_loadNames[1]+'.pt'))
print('\n')
model1 = model1.to(device)
model2 = model2.to(device)
def norm(x):
return x/torch.max(torch.abs(x))
x1_test, x2_test = next(iter(valid_loader))
x1_test = x1_test[:800:100].to(device)
x2_test = x2_test[:800:100].to(device)
zeros = torch.zeros_like(x1_test)
y11_test = model1(x1_test)[0].detach()
y12_test = model2(x1_test)[0].detach()
y22_test = model2(x2_test)[0].detach()
y21_test = model1(x2_test)[0].detach()
y11_test = torch.where(y11_test>0, y11_test, zeros)
y12_test = torch.where(y12_test>0, y12_test, zeros)
y22_test = torch.where(y22_test>0, y22_test, zeros)
y21_test = torch.where(y21_test>0, y21_test, zeros)
x1_grid = torchvision.utils.make_grid(x1_test)
x2_grid = torchvision.utils.make_grid(x2_test)
y11_grid = torchvision.utils.make_grid(y11_test)
y12_grid = torchvision.utils.make_grid(y12_test)
y22_grid = torchvision.utils.make_grid(y22_test)
y21_grid = torchvision.utils.make_grid(y21_test)
writer.add_image("Set 1, input image", x1_grid)
writer.add_image("Set 1, model 1 output image", y11_grid)
writer.add_image("Set 1, model 2 output image", y12_grid)
writer.add_image("Set 2, input image", x2_grid)
writer.add_image("Set 2, model 2 output image", y22_grid)
writer.add_image("Set 2, model 1 output image", y21_grid)
x1_test_sound = AT.inverse(mel = x1_test)
x2_test_sound = AT.inverse(mel = x2_test)
y12_test_sound = AT.inverse(mel = y12_test)
y22_test_sound = AT.inverse(mel = y22_test)
y11_test_sound = AT.inverse(mel = y11_test)
y21_test_sound = AT.inverse(mel = y21_test)
for i in range(8):
writer.add_audio("Set 1, input audio", norm(x1_test_sound[i]), sample_rate=16000, global_step=i)
writer.add_audio("Set 1, model2, output audio", norm(y12_test_sound[i]), sample_rate=16000, global_step=i)
writer.add_audio("Set 1, model1, output audio", norm(y11_test_sound[i]), sample_rate=16000, global_step=i)
writer.add_audio("Set 2, input audio", norm(x2_test_sound[i]), sample_rate=16000, global_step=i)
writer.add_audio("Set 2, model1, output audio", norm(y21_test_sound[i]), sample_rate=16000, global_step=i)
writer.add_audio("Set 2, model2, output audio", norm(y22_test_sound[i]), sample_rate=16000, global_step=i)
writer.flush()
writer.close()
MSE = torch.nn.L1Loss(reduction = 'none')
def norm(x):
return x/torch.max(torch.abs(x))
def computeLoss(model1, model2, x1, x2, device):
## Computing the discriminator loss
#loss_generator = [Recons, KLDiv, Adversarial]
loss_generator = torch.zeros(4, device = device)
y11, _ = model1(x1)
loss_generator[0] += MSE(y11, x1).mean(0).sum()
y22, _ = model2(x2)
loss_generator[1] += MSE(y22, x2).mean(0).sum()
y12, _ = model2(x1)
y21, _ = model1(x2)
y121, _ = model1(y12)
loss_generator[2] += MSE(y121, x1).mean(0).sum()
y212, _ = model2(y21)
loss_generator[3] += MSE(y212, x2).mean(0).sum()
return loss_generator
running_losses=torch.zeros(4, device = device)
for i, (x1, x2) in enumerate(iter(valid_loader)):
loss = computeLoss(model1, model2, x1, x2, device)
running_losses+=loss*x1.size()[0]/nb_valid
writer.add_scalars("Losses",{
'Reconstruction Loss 1' : running_losses[0],
'Reconstruction Loss 2' : running_losses[1],
'Cycle Consistency Loss 1-2-1' : running_losses[2],
'Cycle Consistency Loss 2-1-2' : running_losses[3],
'Zero' : 0},
global_step = 0)
print({
'Reconstruction Loss 1' : running_losses[0],
'Reconstruction Loss 2' : running_losses[1],
'Cycle Consistency Loss 1-2-1' : running_losses[2],
'Cycle Consistency Loss 2-1-2' : running_losses[3]
})