-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_2VAE_2GAN.py
446 lines (342 loc) · 14.5 KB
/
test_2VAE_2GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import os
import torch
import torch.nn
import matplotlib.pyplot as plt
import numpy as np
import torchvision
from torchvision.transforms import ToTensor
from src.timbre_transfer.datasets.NSynthDataset import NSynthDoubleDataset
from src.timbre_transfer.helpers.audiotransform import AudioTransform
from src.timbre_transfer.models.network.Spectral_Decoder import Spectral_Decoder
from src.timbre_transfer.models.network.Spectral_Encoder import Spectral_Encoder
from src.timbre_transfer.models.network.Spectral_Discriminator import Spectral_Discriminator
from src.timbre_transfer.models.VAE_GAN import SpectralVAE_GAN
from torchinfo import summary
from torch.utils.tensorboard import SummaryWriter
dataset_folder = 'data'
preTrained_loadNames = ["pretrained/test_come/vocal_4", "pretrained/test_come/string_4"]
preTrained_saveName = ["pretrained/test_come/vocal_4", "pretrained/test_come/string_4"]
writer = SummaryWriter(os.path.join('runs','test_come_4'))
## Name of the saved trained network
## Training parameters
# Number of Epochs
epochs = 100
# Learning rate
lr = 1e-4
# Beta-VAE Beta coefficient and warm up length
beta_end = .5
warm_up_length = 50 #epochs
#Lambdas [VAE & CC, Gan, Latent]
lambdas = [1,1000]
# Dataloaders parameters
train_batch_size = 128
valid_batch_size = 1024
num_threads = 0
## Model Parameters
# Dimension of the linear layer
hidden_dim = 256
# Dimension of the latent space
latent_dim = 16
# Number of filters of the first convolutionnal layer
base_depth = 64
# Max number of channels of te convolutionnal layers
max_depth = 512
# Number of convolutionnal layers
n_convLayers = 3
# Kernel size of convolutionnal layers (recommended : stride*2+3)
kernel_size = 11
# Stride of convolutionnal layers (recommended : 2 or 4)
stride = 4
# Models returns images of size freqs_dim*len_dim
freqs_dim = 128
len_dim = 128
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#device = 'cpu'
print(device)
AT = AudioTransform(input_freq = 16000, n_fft = 1024, n_mel = freqs_dim, stretch_factor=.8, device = device).to(device)
## Loading the NSynth dataset
train_dataset = NSynthDoubleDataset(
dataset_folder,
usage = 'train',
filter_keys = ('vocal_acoustic', 'string_acoustic'),
transform = AT,
length_style = 'min',
device = device
)
valid_dataset = NSynthDoubleDataset(
dataset_folder,
usage = 'valid',
filter_keys = ('vocal_acoustic', 'string_acoustic'),
transform = AT,
length_style = 'min',
device = device
)
nb_train = len(train_dataset)
nb_valid = len(valid_dataset)
print(f"Number of training examples : {nb_train}")
print(f"Number of validation examples : {nb_valid}")
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=train_batch_size, num_workers=num_threads, shuffle=True)
valid_loader = torch.utils.data.DataLoader(dataset=valid_dataset, batch_size=valid_batch_size, num_workers=num_threads, shuffle=True)
## Model definition
encoder = Spectral_Encoder(
freqs_dim = freqs_dim,
len_dim = len_dim,
latent_dim = latent_dim,
hidden_dim = hidden_dim,
base_depth = base_depth,
n_convLayers = n_convLayers,
kernel_size = kernel_size,
max_depth = max_depth,
stride = stride)
decoder1 = Spectral_Decoder(
freqs_dim = freqs_dim,
len_dim = len_dim,
latent_dim = latent_dim,
hidden_dim = hidden_dim,
base_depth = base_depth,
n_convLayers = n_convLayers,
kernel_size = kernel_size,
max_depth = max_depth,
stride = stride)
decoder2 = Spectral_Decoder(
freqs_dim = freqs_dim,
len_dim = len_dim,
latent_dim = latent_dim,
hidden_dim = hidden_dim,
base_depth = base_depth,
n_convLayers = n_convLayers,
kernel_size = kernel_size,
max_depth = max_depth,
stride = stride)
discriminator1 = Spectral_Discriminator(
freqs_dim = freqs_dim,
len_dim = len_dim,
latent_dim = latent_dim,
hidden_dim = hidden_dim,
base_depth = base_depth,
n_convLayers = n_convLayers,
kernel_size = kernel_size,
max_depth = max_depth,
stride = stride)
discriminator2 = Spectral_Discriminator(
freqs_dim = freqs_dim,
len_dim = len_dim,
latent_dim = latent_dim,
hidden_dim = hidden_dim,
base_depth = base_depth,
n_convLayers = n_convLayers,
kernel_size = kernel_size,
max_depth = max_depth,
stride = stride)
model1 = SpectralVAE_GAN(encoder, decoder1, discriminator1, freqs_dim = freqs_dim, len_dim = len_dim, encoding_dim = hidden_dim, latent_dim = latent_dim)
model2 = SpectralVAE_GAN(encoder, decoder2, discriminator2, freqs_dim = freqs_dim, len_dim = len_dim, encoding_dim = hidden_dim, latent_dim = latent_dim)
## Loading pre-trained model
if os.path.isfile(preTrained_loadNames[0]+'.pt') and os.path.isfile(preTrained_loadNames[1]+'.pt'):
model1.load_state_dict(torch.load('./'+preTrained_loadNames[0]+'.pt'))
model2.load_state_dict(torch.load('./'+preTrained_loadNames[1]+'.pt'))
# Optimizer
param_gen = list(encoder.parameters())+list(decoder1.parameters())+list(decoder2.parameters())
optimizer_gen = torch.optim.Adam(param_gen, lr=lr)
optimizer_dis_1 = torch.optim.Adam(discriminator1.parameters(), lr = lr)
optimizer_dis_2 = torch.optim.Adam(discriminator2.parameters(), lr = lr)
print('VAE')
summary(model1, input_size=(train_batch_size, 1, 128, 128))
#print('Model 2')
#summary(model2, input_size=(train_batch_size, 1, 128, 128))
print('Encoder')
summary(encoder, input_size=(train_batch_size, 1, 128, 128))
print('Decoder')
summary(decoder1, input_size=(train_batch_size, latent_dim))
print('Discriminator')
summary(discriminator1, input_size=(train_batch_size, 1, 128, 128))
print('\n')
model1 = model1.to(device)
model2 = model2.to(device)
MSE = torch.nn.MSELoss(reduction = 'none')
def computeLoss_discriminator(model, real_samples, fake_samples):
estimate_real = model.discriminate(real_samples)
desired_real = torch.ones_like(estimate_real)
estimate_fake = model.discriminate(fake_samples)
desired_fake = torch.zeros_like(estimate_fake)
loss = MSE(estimate_real, desired_real) + MSE(estimate_fake, desired_fake)
loss = loss.mean()
return loss
def computeLoss_generator(model, fake_samples):
estimate_fake = model.discriminate(fake_samples)
desired_fake = torch.ones_like(estimate_fake)
loss = MSE(estimate_fake, desired_fake)
loss = loss.mean()
return loss
def trainStep(model1, model2, optimizer_gen, optimizer_dis_1, optimizer_dis_2, x1, x2, beta, lambdas, device):
## Computing the discriminator loss
loss_discriminator = 0
y12, _ = model2(x1)
y21, _ = model1(x2)
y121, kldiv121 = model1(y12)
if lambdas[1] !=0:
loss_discriminator += computeLoss_discriminator(model1, x1, y121)
y212, kldiv212 = model1(y21)
if lambdas[1] !=0:
loss_discriminator += computeLoss_discriminator(model2, x2, y212)
lossFull_discriminator = lambdas[1]*loss_discriminator
optimizer_dis_1.zero_grad()
optimizer_dis_2.zero_grad()
lossFull_discriminator.backward()
optimizer_dis_1.step()
optimizer_dis_2.step()
## Computing the generator loss
#loss_generator = [Recons, KLDiv, Adversarial]
loss_generator = torch.zeros(3, device=device)
y11, kldiv11 = model1(x1)
loss_generator[0] += MSE(y11, x1).mean(0).sum()
loss_generator[1] += kldiv11.mean(0).sum()
y22, kldiv22 = model2(x2)
loss_generator[0] += MSE(y22, x2).mean(0).sum()
loss_generator[1] += kldiv22.mean(0).sum()
y12, _ = model2(x1)
y21, _ = model1(x2)
y121, kldiv121 = model1(y12)
loss_generator[0] += MSE(y121, x1).mean(0).sum()
loss_generator[1] += kldiv121.mean(0).sum()
if lambdas[1] !=0:
loss_generator[2] += computeLoss_generator(model1, y121)
y212, kldiv212 = model1(y21)
loss_generator[0] += MSE(y212, x2).mean(0).sum()
loss_generator[1] += kldiv212.mean(0).sum()
if lambdas[1] !=0:
loss_generator[2] += computeLoss_generator(model2, y212)
lossFull_generator = lambdas[0]*loss_generator[0] + beta*loss_generator[1] + lambdas[1]*loss_generator[2]
optimizer_gen.zero_grad()
lossFull_generator.backward()
optimizer_gen.step()
return loss_generator, loss_discriminator
def computeLoss(model1, model2, x1, x2, device):
## Computing the discriminator loss
loss_discriminator = 0
#loss_generator = [Recons, KLDiv, Adversarial]
loss_generator = torch.zeros(3, device = device)
y11, kldiv11 = model1(x1)
#loss_discriminator += computeLoss_discriminator(model1, x1, y11)
loss_generator[0] += MSE(y11, x1).mean(0).sum()
loss_generator[1] += kldiv11.mean(0).sum()
#loss_generator[2] += computeLoss_generator(model1, y11)
y22, kldiv22 = model2(x2)
#loss_discriminator += computeLoss_discriminator(model2, x2, y22)
loss_generator[0] += MSE(y22, x2).mean(0).sum()
loss_generator[1] += kldiv22.mean(0).sum()
#loss_generator[2] += computeLoss_generator(model2, y22)
y12, kldiv12 = model2(x1)
#loss_discriminator += computeLoss_discriminator(model2, x2, y12)
loss_generator[1] += kldiv12.mean(0).sum()
#loss_generator[2] += computeLoss_generator(model2, y12)
y21, kldiv21 = model1(x2)
#loss_discriminator += computeLoss_discriminator(model1, x1, y21)
loss_generator[1] += kldiv21.mean(0).sum()
#loss_generator[2] += computeLoss_generator(model1, y21)
y121, kldiv121 = model1(y12)
loss_discriminator += computeLoss_discriminator(model1, x1, y121)
loss_generator[0] += MSE(y121, x1).mean(0).sum()
loss_generator[1] += kldiv121.mean(0).sum()
loss_generator[2] += computeLoss_generator(model1, y121)
y212, kldiv212 = model1(y21)
loss_discriminator += computeLoss_discriminator(model2, x2, y212)
loss_generator[0] += MSE(y212, x2).mean(0).sum()
loss_generator[1] += kldiv212.mean(0).sum()
loss_generator[2] += computeLoss_generator(model2, y212)
return loss_generator, loss_discriminator
beta = 0
batchIdx = 0
## Training
for epoch in range(epochs):
train_losses = {}
valid_losses = {}
train_runningLosses = np.zeros(4)
valid_runningLosses = np.zeros(4)
if warm_up_length !=0:
beta = min(beta_end, epoch/warm_up_length*beta_end)
else:
beta = beta_end
for i, (x1, x2) in enumerate(iter(train_loader)):
losses_plot = torch.zeros(4).to(device)
#x1 = x1.to(device)
#x2 = x2.to(device)
loss_gen, loss_dis = trainStep(
model1 = model1, model2 = model2,
optimizer_gen = optimizer_gen,
optimizer_dis_1=optimizer_dis_1,
optimizer_dis_2=optimizer_dis_2,
x1=x1,
x2=x2,
beta=beta,
lambdas=lambdas,
device=device)
train_runningLosses[0]+=loss_gen[0]*x1.size()[0]/nb_train
train_runningLosses[1]+=loss_gen[1]*x1.size()[0]/nb_train
train_runningLosses[2]+=loss_gen[2]*x1.size()[0]/nb_train
train_runningLosses[3]+=loss_dis*x1.size()[0]/nb_train
# Saving the trained model
torch.save(model1.state_dict(), preTrained_saveName[0]+'.pt')
torch.save(model2.state_dict(), preTrained_saveName[1]+'.pt')
with torch.no_grad():
for i, (x1, x2) in enumerate(iter(valid_loader)):
#x1 = x1.to(device)
#x2 = x2.to(device)
loss_gen, loss_dis = computeLoss(model1, model2, x1, x2, device=device)
valid_runningLosses[0]+=loss_gen[0]*x1.size()[0]/nb_valid
valid_runningLosses[1]+=loss_gen[1]*x1.size()[0]/nb_valid
valid_runningLosses[2]+=loss_gen[2]*x1.size()[0]/nb_valid
valid_runningLosses[3]+=loss_dis*x1.size()[0]/nb_valid
writer.add_scalars("VAE",{
'Training_Reconstruction' : train_runningLosses[0],
'Validation_Reconstruction' : valid_runningLosses[0],
'Training_KLDiv' : train_runningLosses[1],
'Validation_KLDiv' : valid_runningLosses[1]
}, epoch)
writer.add_scalars("Adversarial", {
"Training_Generator" : train_runningLosses[2],
"Training_Discriminator" : train_runningLosses[3],
"Validation_Generator" : valid_runningLosses[2],
"Validation_Discriminator" : valid_runningLosses[3]
}, epoch)
print(f'epoch : {epoch}, beta : {round(beta,2)}')
x1_test, x2_test = next(iter(valid_loader))
x1_test = x1_test[:8].to(device)
x2_test = x2_test[:8].to(device)
zeros = torch.zeros_like(x1_test)
y11_test = model1(x1_test)[0].detach()
y12_test = model2(x1_test)[0].detach()
y22_test = model2(x2_test)[0].detach()
y21_test = model1(x2_test)[0].detach()
y11_test = torch.where(y11_test>0, y11_test, zeros)
y12_test = torch.where(y12_test>0, y12_test, zeros)
y22_test = torch.where(y22_test>0, y22_test, zeros)
y21_test = torch.where(y21_test>0, y21_test, zeros)
x1_grid = torchvision.utils.make_grid(x1_test)
x2_grid = torchvision.utils.make_grid(x2_test)
y11_grid = torchvision.utils.make_grid(y11_test)
y12_grid = torchvision.utils.make_grid(y12_test)
y22_grid = torchvision.utils.make_grid(y22_test)
y21_grid = torchvision.utils.make_grid(y21_test)
writer.add_image("Set 1, input image", x1_grid, epoch)
writer.add_image("Set 1, model 1 output image", y11_grid, epoch)
writer.add_image("Set 1, model 2 output image", y12_grid, epoch)
writer.add_image("Set 2, input image", x2_grid, epoch)
writer.add_image("Set 2, model 2 output image", y22_grid, epoch)
writer.add_image("Set 2, model 1 output image", y21_grid, epoch)
if (epoch+1)%20==0:
print('Exporting sound')
x1_test_sound = AT.inverse(mel = x1_test[0])
x2_test_sound = AT.inverse(mel = x2_test[0])
y12_test_sound = AT.inverse(mel = y12_test[0])
y22_test_sound = AT.inverse(mel = y22_test[0])
y11_test_sound = AT.inverse(mel = y11_test[0])
y21_test_sound = AT.inverse(mel = y21_test[0])
writer.add_audio("Set 1, input audio", x1_test_sound, sample_rate=16000, global_step=epoch)
writer.add_audio("Set 1, model1, output audio", y11_test_sound, sample_rate=16000, global_step=epoch)
writer.add_audio("Set 1, model2, output audio", y12_test_sound, sample_rate=16000, global_step=epoch)
writer.add_audio("Set 2, input audio", x2_test_sound, sample_rate=16000, global_step=epoch)
writer.add_audio("Set 2, model1, output audio", y21_test_sound, sample_rate=16000, global_step=epoch)
writer.add_audio("Set 2, model2, output audio", y22_test_sound, sample_rate=16000, global_step=epoch)
print('Exported !\n')
writer.flush()
writer.close()