-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_single.py
126 lines (111 loc) · 3.64 KB
/
run_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import typer
from dotenv import load_dotenv
from rich.rule import Rule
from rich import print
from constants import Perturbation
from models import (
OpenAIModel,
AnthropicModel,
OPENAI_MODELS,
ANTHROPIC_MODELS,
COHERE_MODELS,
CohereModel,
TogetherAIModel,
TOGETHERAI_MODELS,
)
from main import (
load_data,
pre_processing_baseline,
pre_processing_irrelavant,
pre_processing_relevant,
pre_processing_pathological,
pre_processing_combo,
validate_answer,
)
load_dotenv()
def main(
model: str = typer.Option(help="Model to use for experiment"),
perturbation: Perturbation = typer.Option(help="Perturbation to experiment with"),
datapoint_index: int = typer.Option(help="Datapoint index to experiment with"),
):
model_provider = None
if model in OPENAI_MODELS:
model_provider = OpenAIModel(
api_key=os.getenv("OPENAI_API_KEY"), model_name=model
)
elif model in ANTHROPIC_MODELS:
model_provider = AnthropicModel(
api_key=os.getenv("ANTHROPIC_KEY"), model_name=model
)
elif model in COHERE_MODELS:
model_provider = CohereModel(api_key=os.getenv("COHERE_KEY"), model_name=model)
elif model in TOGETHERAI_MODELS:
model_provider = TogetherAIModel(
api_key=os.getenv("TOGETHER_AI_KEY"), model_name=model
)
if model_provider is None:
raise Exception("Invalid input model.")
dataset, samples_distribution = load_data()
datapoint = [
(x, batch["steps"])
for batch in dataset
for x in batch["datapoints"]
if x["index"] == datapoint_index
]
if not datapoint:
raise Exception("Invalid index passed")
datapoint, reasoning_steps = datapoint[0]
correct_answer = datapoint["answer"]
idd = datapoint["index"]
print(
"[bold red]>> Reasoning Steps: {}, ID: {}[/bold red]".format(
reasoning_steps, idd
)
)
baseline_prompt = pre_processing_baseline(datapoint)
experiment_prompt = ""
match perturbation:
case Perturbation.IRRELEVANT:
experiment_prompt = pre_processing_irrelavant(
datapoint["question"], model_provider
)
case Perturbation.PATHOLOGICAL:
experiment_prompt = pre_processing_pathological(
datapoint["question"], model_provider
)
case Perturbation.RELEVANT:
experiment_prompt = pre_processing_relevant(
datapoint["question"], model_provider
)
case Perturbation.COMBO:
experiment_prompt = pre_processing_combo(
datapoint["question"], model_provider
)
print(
"[green]>>> Question:[/green][white][not bold] {}[white not bold]\n".format(
datapoint["question"]
)
)
print(
"[green]>>> Correct Answer:[/green][white not bold] {}[/white not bold]\n".format(
datapoint["answer"]
)
)
print(Rule(style="green"))
baseline_response = model_provider.generate(prompt=baseline_prompt)
print(
"[green]>>> Baseline Answer:[/green][white not bold] {}[/white not bold]\n".format(
baseline_response
),
)
print(Rule(style="green"))
experiment_response = model_provider.generate(prompt=experiment_prompt)
print(
"[green]>>> Answer in {} experiment:[/green][white not bold] {}[/white not bold]\n".format(
perturbation.value, experiment_response
),
)
validate_answer(correct_answer, baseline_response, experiment_response)
if __name__ == "__main__":
typer.run(main)