This document provides basic instructions for training and evaluation using pycls.
- For general information about pycls, please see
README.md
- For installation instructions, please see
INSTALL.md
Training on CIFAR with 1 GPU:
python tools/train_net.py \
--cfg configs/cifar/resnet/R-56_nds_1gpu.yaml \
OUT_DIR /tmp
Training on ImageNet with 1 GPU:
python tools/train_net.py \
--cfg configs/imagenet/resnet/R-50-1x64d_step_1gpu.yaml \
OUT_DIR /tmp
Training on ImageNet with 2 GPUs:
python tools/train_net.py \
--cfg configs/imagenet/resnet/R-50-1x64d_step_2gpu.yaml \
OUT_DIR /tmp
Finetuning on ImageNet with 1 GPU:
python tools/train_net.py \
--cfg configs/imagenet/resnet/R-50-1x64d_step_1gpu.yaml \
TRAIN.WEIGHTS /path/to/weights/file \
OUT_DIR /tmp
Evaluation on ImageNet with 1 GPU:
python tools/test_net.py \
--cfg configs/imagenet/resnet/R-50-1x64d_step_1gpu.yaml \
TEST.WEIGHTS /path/to/weights/file \
OUT_DIR /tmp