-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheqmap.py
executable file
·453 lines (411 loc) · 15.1 KB
/
eqmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
#! /usr/bin/env python3
"""
This script generates MAP and XLSX files.
Earthquake data could be retrieved from two sources:
- earthquake.usgs.gov (USGS FDSN Event Web Service)
- rest-api.eqalert.ru (EQAlert Seismo API)
"""
import sys
import argparse
import requests
import pandas as pd
from pandas.io.json import json_normalize
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.basemap import Basemap
from adjustText import adjust_text
# parse command line arguments
PARSER = argparse.ArgumentParser(
description='Plot PNG maps and save XLSX files based on \
RES-API.EQALERT.RU and USGS earthquakes data!')
PARSER.add_argument(
'lon_min', type=float,
help='minimal longitude (left boundary)')
PARSER.add_argument(
'lon_max', type=float,
help='minimal longitude (right boundary)')
PARSER.add_argument(
'lat_min', type=float,
help='minimal latitude (down boundary)')
PARSER.add_argument(
'lat_max', type=float,
help='maximum latitude (up boundary)')
PARSER.add_argument(
'--date-min', type=str,
help='Limit to events on or after the specified start time\
FORMAT: YYYY-MM-DD')
PARSER.add_argument(
'--date-max', type=str,
help='Limit to events on or before the specified end time\
FORMAT: YYYY-MM-DD')
PARSER.add_argument(
'--mag-min', type=float,
help='Limit to events with a magnitude larger than the\
specified minimum')
PARSER.add_argument(
'--mag-max', type=float,
help='Limit to events with a magnitude smaller than the\
specified maximum')
PARSER.add_argument(
'--depth-min', type=float,
help='Limit to events with depth more than the specified minimum')
PARSER.add_argument(
'--depth-max', type=float,
help='Limit to events with depth less than the specified maximum.')
PARSER.add_argument(
'--login', type=str,
help='Username from EQALERT.RU service\
please note that you have to complete registration to use\
queries without constrains, see more details on\
https://eqalert.ru/#/register')
PARSER.add_argument(
'--password', type=str,
help='Password from EQALERT.RU service')
PARSER.add_argument(
'--shape-file', type=str,
help='Path to path to shapefile.\
The Shapefile name must go without the shp extension.\
The library assumes that all shp, sbf and shx files\
will exist with this given name')
PARSER.add_argument(
'--from-usgs', action='store_true',
help='Wether or not gather data\
from earthquake.usgs.gov service\
instead of default rest-api.eqalert.ru')
PARSER.add_argument(
'--numerate-events', action='store_true',
help='Numerate events')
PARSER.add_argument(
'--plot-stations', action='store_true',
help='Plot stations, only if rest-api.eqalert.ru data source selected')
PARSER.add_argument(
'--full-resolution', action='store_true',
help='Plot a HIGH resolution basemap')
ARGS = PARSER.parse_args()
# print(ARGS)
# set globals from ARGS
FROM_USGS = ARGS.from_usgs
NUMERATE_EVENTS = ARGS.numerate_events
PLOT_STATIONS = ARGS.plot_stations
LAT_MIN = ARGS.lat_min
LAT_MAX = ARGS.lat_max
LON_MIN = ARGS.lon_min
LON_MAX = ARGS.lon_max
DATETIME_MIN = ARGS.date_min
DATETIME_MAX = ARGS.date_max
MAG_MIN = ARGS.mag_min
MAG_MAX = ARGS.mag_max
DEPTH_MIN = ARGS.depth_min
DEPTH_MAX = ARGS.depth_max
SHAPE_FILE = ARGS.shape_file
IMAGE_SIZE = 15
PNG_FILE_NAME = 'map.png'
XLSX_FILE_NAME = 'catalog.xlsx'
if ARGS.full_resolution:
RESOLUTION = 'f'
else:
RESOLUTION = 'i'
if (LAT_MAX - LAT_MIN) <= 2:
PARALLELS = np.arange(LAT_MIN, LAT_MAX, 0.25)
elif (LAT_MAX - LAT_MIN) > 2 and (LAT_MAX - LAT_MIN) <= 10:
PARALLELS = np.arange(LAT_MIN, LAT_MAX, 1)
else:
PARALLELS = np.arange(LAT_MIN, LAT_MAX, 2)
if (LON_MAX - LON_MIN) <= 2:
MERIDIANS = np.arange(LON_MIN, LON_MAX, 0.5)
elif (LON_MAX - LON_MIN) > 2 and (LON_MAX - LON_MIN) <= 5:
MERIDIANS = np.arange(LON_MIN, LON_MAX, 1)
elif (LON_MAX - LON_MIN) > 5 and (LON_MAX - LON_MIN) <= 10:
MERIDIANS = np.arange(LON_MIN, LON_MAX, 2)
else:
MERIDIANS = np.arange(LON_MIN, LON_MAX, 4)
EQALERT_LOGIN = ARGS.login
EQALERT_PASSWORD = ARGS.password
USGS_ENDPOINT = 'https://earthquake.usgs.gov/fdsnws/event/1/query'
USGS_JSON_OBJECT = 'features'
EQALERT_GET_LIST = 'https://rest-api.eqalert.ru/api/v1/reports'
EQALERT_ACCESS_TOKEN = 'https://oauth-web.eqalert.ru/token'
EQALERT_JSON_OBJECT_DATA = 'data'
EQALERT_JSON_OBJECT_META = 'meta'
TOKEN = None
USGS_GET_PARAMS = {
'format': 'geojson',
'minlatitude': LAT_MIN,
'minlongitude': LON_MIN,
'maxlatitude': LAT_MAX,
'maxlongitude': LON_MAX
}
USGS_DATA_SELECTED_COLUMNS_1 = [
'id', 'properties.time', 'properties.mag', 'properties.magType',
'properties.net', 'properties.title', 'properties.mmi',
'properties.url']
USGS_DATA_SELECTED_COLUMNS_2 = ['lon', 'lat', 'depth']
USGS_COLUMNS_RENAME = {
"id": "id",
"properties.time": "event_datetime",
"lat": "lat",
"lon": "lon",
"depth": "depth",
"properties.mag": "mag",
"properties.magType": "mag_t",
"properties.net": "agency",
"properties.title": "nearestCity_title",
"properties.mmi": "intensity",
"properties.url": "event_page"}
USGS_COLUMNS_REORDER = [
'id', 'event_datetime', 'lat', 'lon', 'depth',
'mag', 'mag_t', 'agency', 'nearestCity_title',
'intensity', 'event_page']
EQALERT_GET_LIST_PARAMS = {
'include': 'nearestCity',
'limit': 100,
'site_url': 'true',
'lat_min': LAT_MIN,
'lat_max': LAT_MAX,
'lon_min': LON_MIN,
'lon_max': LON_MAX
}
GET_STATIONS_PARAMS = {
'has_realtime': 1
}
EQALERT_DATA_SELECTED_COLUMNS = [
'id', 'locValues.data.event_datetime', 'locValues.data.lat',
'locValues.data.lon', 'locValues.data.depth',
'locValues.data.mag', 'locValues.data.mag_t',
'agency',
'nearestCity.data.settlement.data.translation.data.title',
'nearestCity.data.settlement.data.translation.data.region',
'nearestCity.data.msk64_value',
'site_url']
EQALERT_COLUMNS_RENAME = {
"id": "id",
"locValues.data.event_datetime": "event_datetime",
"locValues.data.lat": "lat",
"locValues.data.lon": "lon",
"locValues.data.depth": "depth",
"locValues.data.mag": "mag",
"locValues.data.mag_t": "mag_t",
"agency": "agency",
"nearestCity.data.settlement.data.translation.data.title":
"nearestCity_title",
"nearestCity.data.settlement.data.translation.data.region":
"nearestCity_regeon",
"nearestCity.data.msk64_value": "nearestCity_intensity",
"site_url": "event_page"}
if DATETIME_MIN:
USGS_GET_PARAMS['starttime'] = DATETIME_MIN
EQALERT_GET_LIST_PARAMS['datetime_min'] = DATETIME_MIN + ' 00:00:00'
if DATETIME_MAX:
USGS_GET_PARAMS['endtime'] = DATETIME_MAX
EQALERT_GET_LIST_PARAMS['datetime_max'] = DATETIME_MAX + ' 00:00:00'
if MAG_MIN:
USGS_GET_PARAMS['minmagnitude'] = MAG_MIN
EQALERT_GET_LIST_PARAMS['mag_min'] = MAG_MIN
if MAG_MAX:
USGS_GET_PARAMS['maxmagnitude'] = MAG_MAX
EQALERT_GET_LIST_PARAMS['mag_max'] = MAG_MAX
if DEPTH_MIN:
USGS_GET_PARAMS['mindepth'] = DEPTH_MIN
EQALERT_GET_LIST_PARAMS['depth_min'] = DEPTH_MIN
if DEPTH_MAX:
USGS_GET_PARAMS['maxdepth'] = DEPTH_MAX
EQALERT_GET_LIST_PARAMS['depth_max'] = DEPTH_MAX
def get_earthquake_data(
url, params, json_object, meta_object=None, token=None):
"""
Get json by URL, normalize it and return a DataFrame with json_object
If meta specified return tuple of Dataframe's (data, meta)
"""
if token:
headers = {'Authorization': 'Bearer ' + token}
else:
headers = None
response = requests.get(url, params, headers=headers)
print('Constructed URL: ', response.url)
if response.status_code != 200:
print('An error occurred wile fetching the data:')
print('HTTP status code: ', response.status_code)
print(response.json())
sys.exit(1)
df_norm = json_normalize(response.json()[json_object])
if df_norm.empty:
print('Events no found, please modify request parameters')
sys.exit(0)
# https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.io.json.json_normalize.html
# That strange IF below because
# json_normalize(response.json()[json_object]) and
# json_normalize(response.json(), json_object)
# return **different** results while parsing USGS/EQALERT json response.
# So, USGS have not cursor and it is possible to parse only
# nested 'Feature' object. For EQALERT it's required to pass
# data and meta json objects.
if meta_object:
meta_norm = json_normalize(response.json()[meta_object])
print('return with meta')
return (df_norm, meta_norm)
return df_norm
def get_eqalert_access_token(
url, username, password, access_token_key='access_token'):
"""
Get access token for signing requests to
EQALERT API
"""
post_data = {'username': username, 'password': password}
get_resp = requests.post(url, post_data)
if get_resp.status_code != 200:
print('An error occurred wile getting token:')
print('HTTP status code: ', get_resp.status_code)
print(get_resp.json())
sys.exit(1)
token = get_resp.json()[access_token_key]
return token
if FROM_USGS:
print('Getting events from USGS API...')
print('Params are ', USGS_GET_PARAMS)
EQ_LIST_FULL = get_earthquake_data(
USGS_ENDPOINT, USGS_GET_PARAMS, USGS_JSON_OBJECT)
# select meaningfull columns for plotting
EQ_LIST_SELECTED = EQ_LIST_FULL[USGS_DATA_SELECTED_COLUMNS_1].copy()
EQ_LIST_SELECTED[USGS_DATA_SELECTED_COLUMNS_2] = pd.DataFrame(
EQ_LIST_FULL['geometry.coordinates'].values.tolist(),
columns=USGS_DATA_SELECTED_COLUMNS_2)
EQ_LIST_SELECTED = EQ_LIST_SELECTED.rename(
index=str,
columns=USGS_COLUMNS_RENAME)
# reorder columns
EQ_LIST_SELECTED = EQ_LIST_SELECTED[USGS_COLUMNS_REORDER]
# convert time stampt to human related
EQ_LIST_SELECTED['event_datetime'] = pd.to_datetime(
EQ_LIST_SELECTED['event_datetime'], unit='ms')
else:
print('Gathering events from EQALERT API...')
print('Params are ', EQALERT_GET_LIST_PARAMS)
if EQALERT_LOGIN is not None and EQALERT_PASSWORD is not None:
TOKEN = get_eqalert_access_token(
EQALERT_ACCESS_TOKEN, EQALERT_LOGIN, EQALERT_PASSWORD)
DATA_WITH_META = get_earthquake_data(
EQALERT_GET_LIST,
EQALERT_GET_LIST_PARAMS,
EQALERT_JSON_OBJECT_DATA,
meta_object=EQALERT_JSON_OBJECT_META,
token=TOKEN)
EQ_LIST_FULL = DATA_WITH_META[0]
META = DATA_WITH_META[1]
# getting next page if exist
print('Number of events on THIS page: ',
META['cursor.count'].iloc[0])
while META['cursor.next'].iloc[0]:
print('Next cursor: ', META['cursor.next'].iloc[0])
EQALERT_GET_LIST_PARAMS['cursor'] = META['cursor.next'].iloc[0]
print('Add data from next cursor:')
DATA_WITH_META = get_earthquake_data(
EQALERT_GET_LIST,
EQALERT_GET_LIST_PARAMS,
EQALERT_JSON_OBJECT_DATA,
meta_object=EQALERT_JSON_OBJECT_META,
token=TOKEN)
EQ_LIST_FULL = EQ_LIST_FULL.append(DATA_WITH_META[0])
META = DATA_WITH_META[1]
print('Number of events on THIS page: ',
META['cursor.count'].iloc[0])
# select meaningfull columns for plotting
EQ_LIST_SELECTED = EQ_LIST_FULL.copy()
EQ_LIST_SELECTED = EQ_LIST_SELECTED[EQALERT_DATA_SELECTED_COLUMNS]
EQ_LIST_SELECTED = EQ_LIST_SELECTED.rename(
index=str,
columns=EQALERT_COLUMNS_RENAME)
# reorder events in chronology from earlier to the last
EQ_LIST_SELECTED = EQ_LIST_SELECTED.iloc[::-1]
# Generate index from 1 to N
EQ_LIST_SELECTED.index = np.arange(1, len(EQ_LIST_SELECTED)+1)
print(
'Total events that were fetched from API: ',
len(EQ_LIST_SELECTED))
# print(EQ_LIST_SELECTED)
# create a subplot and set the size of fig
FIG, AX = plt.subplots()
FIG.set_figheight(IMAGE_SIZE)
FIG.set_figwidth(IMAGE_SIZE)
print('Constructing BASEMAP...')
mpl.rcParams.update(
{'font.weight': 'normal',
'font.size': 12})
MAP = Basemap(
llcrnrlon=LON_MIN, urcrnrlon=LON_MAX,
llcrnrlat=LAT_MIN, urcrnrlat=LAT_MAX,
projection='merc', resolution=RESOLUTION, ax=AX)
MAP.drawcoastlines()
MAP.drawrivers()
MAP.drawparallels(PARALLELS, labels=[1, 1, 0, 0])
MAP.drawmeridians(MERIDIANS, labels=[0, 0, 0, 1])
if SHAPE_FILE:
print('Ploting shape file object...')
MAP.readshapefile(
SHAPE_FILE,
'shape-object',
linewidth=2.0,
color='c',
ax=AX)
print('Plotting events...')
# converting lat-lon to MAP X,Y
X, Y = MAP(
EQ_LIST_SELECTED['lon'].values.tolist(),
EQ_LIST_SELECTED['lat'].values.tolist())
# powering the magnitude for circle distinguishing
MAG = (EQ_LIST_SELECTED['mag'] ** 3).values.tolist()
AX.scatter(
X, Y,
MAG,
c='red', alpha=0.5, zorder=10)
if NUMERATE_EVENTS:
print('Numerating events...')
# change fornt settings
mpl.rcParams.update(
{'text.color': 'purple',
'font.size': 10,
'font.weight': 'bold'})
# numerate events from 1 to N
ANN = EQ_LIST_SELECTED.index.to_list()
ANNOTATE = [
AX.text(
X[i], Y[i], '%s' % txt, zorder=10) for i, txt in enumerate(ANN)]
adjust_text(ANNOTATE, ax=AX, on_basemap=False) # on_basemap=True is buggy
if PLOT_STATIONS & (not FROM_USGS):
print('Plotting stations...')
GET_STATIONS = get_earthquake_data(
'https://rest-api.eqalert.ru/api/v1/stations',
GET_STATIONS_PARAMS,
'data')
# filter according map boundaries
GET_STATIONS = GET_STATIONS[
(
GET_STATIONS.sta_lon > LON_MIN) & (
GET_STATIONS.sta_lon < LON_MAX) & (
GET_STATIONS.sta_lat > LAT_MIN) & (
GET_STATIONS.sta_lat < LAT_MAX)]
# change fornt settings
mpl.rcParams.update(
{'text.color': "blue",
'font.weight': 'normal',
'font.size': 10})
X, Y = MAP(
GET_STATIONS['sta_lon'].values.tolist(),
GET_STATIONS['sta_lat'].values.tolist())
AX.scatter(
X, Y,
color='blue',
marker="^", alpha=0.5, zorder=5)
ANN_STA = GET_STATIONS.scnl_name.to_list()
ANNOTATE_STA = [
AX.text(X[i], Y[i], '%s' % txt) for i, txt in enumerate(ANN_STA)]
adjust_text(ANNOTATE_STA, ax=AX, on_basemap=False)
print('Saving the PNG image file...')
FIG.savefig(
PNG_FILE_NAME,
dpi=300, quality=100, orientation='portrait')
print('Save catalog to XLSX file...')
with pd.ExcelWriter(XLSX_FILE_NAME) as writer:
EQ_LIST_SELECTED.to_excel(writer, sheet_name='CAT')
print('Well done! Everything OK!')