generated from georgia-tech-db/license-plate-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtoxicity_classifier.py
79 lines (65 loc) · 2.34 KB
/
toxicity_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# coding=utf-8
# Copyright 2018-2022 EVA
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import pandas as pd
from eva.udfs.abstract.abstract_udf import AbstractClassifierUDF
try:
import detoxify
except ImportError as e:
raise ImportError(
f"Failed to import with error {e}, \
please try `pip install detoxify`"
)
class ToxicityClassifier(AbstractClassifierUDF):
"""
Arguments:
threshold (float): Threshold for classifier confidence score
"""
@property
def name(self) -> str:
return "ToxicityClassifier"
def setup(self, threshold=0.2):
self.threshold = threshold
self.model = detoxify.Detoxify("original")
@property
def input_format(self) -> str:
return str
@property
def labels(self) -> List[str]:
return ["toxic", "not toxic"]
def forward(self, text_dataframe: pd.DataFrame) -> pd.DataFrame:
"""
Performs predictions on input text
Arguments:
text (pd.DataFrame): Dataframe with text on which predictions need to be performed
['example text 1','example text 2']
['example text 3']
...
['example text 1','example text 5']
Returns:
outcome (List[Str])
"""
# reconstruct dimension of the input
outcome = pd.DataFrame()
dataframe_size = text_dataframe.size
for i in range(0, dataframe_size):
text = text_dataframe.iat[i, 0]
single_result = self.model.predict(text)
toxicity_score = single_result["toxicity"][0]
if toxicity_score >= self.threshold:
outcome = outcome.append({"labels": "toxic"}, ignore_index=True)
else:
outcome = outcome.append({"labels": "not toxic"}, ignore_index=True)
return outcome