-
Notifications
You must be signed in to change notification settings - Fork 5
/
pnas_sample.xml
3590 lines (3590 loc) · 151 KB
/
pnas_sample.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article
PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD with OASIS Tables with MathML3 v1.1 20151215//EN"
"JATS-journalpublishing-oasis-article1-mathml3.dtd">
<article article-type="research-article" dtd-version="1.1" xml:lang="en"
xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<front>
<journal-meta>
<journal-id journal-id-type="pmc">pnas</journal-id>
<journal-id journal-id-type="pubmed">Proc Natl Acad Sci U S A</journal-id>
<journal-id journal-id-type="publisher">PNAS</journal-id>
<issn>0027-8424</issn>
<publisher>
<publisher-name>The National Academy of Sciences</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="publisher-id">181325198</article-id>
<article-id pub-id-type="publisher-id">3251</article-id>
<article-id pub-id-type="doi">10.1073/pnas.181325198</article-id>
<article-id pub-id-type="other">jPNAS.v98.i18.pg10214</article-id>
<article-id pub-id-type="pmid">11517319</article-id>
<article-categories>
<subj-group>
<subject>Physical Sciences</subject>
<subj-group>
<subject>Applied Mathematics</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Biological Sciences</subject>
<subj-group>
<subject>Genetics</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>The coreceptor mutation CCR5Δ32 influences the dynamics of HIV
epidemics and is selected for by HIV</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Sullivan</surname>
<given-names>Amy D.</given-names>
</name>
<xref ref-type="author-notes" rid="FN150">*</xref>
<xref ref-type="aff" rid="aff-1"/>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wigginton</surname>
<given-names>Janis</given-names>
</name>
<xref ref-type="aff" rid="aff-1"/>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kirschner</surname>
<given-names>Denise</given-names>
</name>
<xref ref-type="author-notes" rid="FN151">†</xref>
<xref ref-type="aff" rid="aff-1"/>
</contrib>
</contrib-group>
<aff id="aff-1">Department of Microbiology and Immunology, University of Michigan Medical
School, Ann Arbor, MI 48109-0620</aff>
<author-notes>
<fn id="FN150">
<p>* Present address: Centers for Disease Control and Prevention Epidemiology
Program Office, State Branch Oregon Health Division, 800 NE Oregon Street, Suite 772,
Portland, OR 97232.</p>
</fn>
<fn id="FN151">
<p>† To whom reprint requests should be addressed. E-mail:
<email>[email protected]</email>.</p>
</fn>
<fn fn-type="com">
<p>Communicated by Avner Friedman, University of Minnesota, Minneapolis, MN</p>
</fn>
</author-notes>
<pub-date date-type="pub" publication-format="print" iso-8601-date="2001-08-28">
<day>28</day>
<month>8</month>
<year>2001</year>
</pub-date>
<pub-date date-type="pub" publication-format="electronic" iso-8601-date="2001-08-21">
<day>21</day>
<month>8</month>
<year>2001</year>
</pub-date>
<volume>98</volume>
<issue>18</issue>
<fpage>10214</fpage>
<lpage>10219</lpage>
<history>
<date date-type="received" iso-8601-date="2000-05-30">
<day>30</day>
<month>5</month>
<year>2000</year>
</date>
<date date-type="accepted" iso-8601-date="2001-06-27">
<day>27</day>
<month>6</month>
<year>2001</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2001, The National Academy of
Sciences</copyright-statement>
<copyright-year>2001</copyright-year>
</permissions>
<abstract>
<p>We explore the impact of a host genetic factor on heterosexual HIV epidemics by using a
deterministic mathematical model. A protective allele unequally distributed across
populations is exemplified in our models by the 32-bp deletion in the host-cell chemokine
receptor CCR5, CCR5Δ32. Individuals homozygous for CCR5Δ32 are protected
against HIV infection whereas those heterozygous for CCR5Δ32 have lower pre-AIDS
viral loads and delayed progression to AIDS. CCR5Δ32 may limit HIV spread by
decreasing the probability of both risk of infection and infectiousness. In this work, we
characterize epidemic HIV within three dynamic subpopulations: CCR5/CCR5
(homozygous, wild type), CCR5/CCR5Δ32 (heterozygous), and
CCR5Δ32/CCR5Δ32 (homozygous, mutant). Our results indicate that
prevalence of HIV/AIDS is greater in populations lacking the CCR5Δ32 alleles
(homozygous wild types only) as compared with populations that include people heterozygous
or homozygous for CCR5Δ32. Also, we show that HIV can provide selective pressure
for CCR5Δ32, increasing the frequency of this allele.</p>
</abstract>
</article-meta>
</front>
<body>
<p>Nineteen million people have died of AIDS since the discoa12=b22+c32very of HIV in the 1980s.
In 1999 alone, 5.4 million people were newly infected with HIV (ref. <xref ref-type="bibr"
rid="B1">1</xref> and <ext-link ext-link-type="url"
xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="http://www.unaids.org/epidemicupdate/report/Epireport.html"
>http://www.unaids.org/epidemicupdate/report/Epireport.html</ext-link>). (For brevity, HIV-1
is referred to as HIV in this paper.) Sub-Saharan Africa has been hardest hit, with more than
20% of the general population HIV-positive in some countries (<xref ref-type="bibr"
rid="B2">2</xref>, <xref ref-type="bibr" rid="B3">3</xref>). In comparison, heterosexual
epidemics in developed, market-economy countries have not reached such severe levels. Factors
contributing to the severity of the epidemic in economically developing countries abound,
including economic, health, and social differences such as high levels of sexually transmitted
diseases and a lack of prevention programs. However, the staggering rate at which the epidemic
has spread in sub-Saharan Africa has not been adequately explained. The rate and severity of
this epidemic also could indicate a greater underlying susceptibility to HIV attributable not
only to sexually transmitted disease, economics, etc., but also to other more ubiquitous
factors such as host genetics (<xref ref-type="bibr" rid="B4">4</xref>, <xref ref-type="bibr"
rid="B5">5</xref>).</p>
<p>To exemplify the contribution of such a host genetic factor to HIV prevalence trends, we
consider a well-characterized 32-bp deletion in the host-cell chemokine receptor CCR5,
CCR5Δ32. When HIV binds to host cells, it uses the CD4 receptor on the surface of host
immune cells together with a coreceptor, mainly the CCR5 and CXCR4 chemokine receptors (<xref
ref-type="bibr" rid="B6">6</xref>). Homozygous mutations for this 32-bp deletion offer
almost complete protection from HIV infection, and heterozygous mutations are associated with
lower pre-AIDS viral loads and delayed progression to AIDS (<xref ref-type="bibr" rid="B7"
>7</xref>–<xref ref-type="bibr" rid="B14">14</xref>). CCR5Δ32 generally is
found in populations of European descent, with allelic frequencies ranging from 0 to 0.29
(<xref ref-type="bibr" rid="B13">13</xref>). African and Asian populations studied outside
the United States or Europe appear to lack the CCR5Δ32 allele, with an allelic
frequency of almost zero (<xref ref-type="bibr" rid="B5">5</xref>, <xref ref-type="bibr"
rid="B13">13</xref>). Thus, to understand the effects of a protective allele, we use a
mathematical model to track prevalence of HIV in populations with or without CCR5Δ32
heterozygous and homozygous people and also to follow the CCR5Δ32 allelic
frequency.</p>
<p>We hypothesize that CCR5Δ32 limits epidemic HIV by decreasing infection rates, and we
evaluate the relative contributions to this by the probability of infection and duration of
infectivity. To capture HIV infection as a chronic infectious disease together with vertical
transmission occurring in untreated mothers, we model a dynamic population (i.e., populations
that vary in growth rates because of fluctuations in birth or death rates) based on realistic
demographic characteristics (<xref ref-type="bibr" rid="B18">18</xref>). This scenario also
allows tracking of the allelic frequencies over time. This work considers how a specific host
genetic factor affecting HIV infectivity and viremia at the individual level might influence
the epidemic in a dynamic population and how HIV exerts selective pressure, altering the
frequency of this mutant allele.</p>
<p>CCR5 is a host-cell chemokine receptor, which is also used as a coreceptor by R5 strains of
HIV that are generally acquired during sexual transmission (<xref ref-type="bibr" rid="B6"
>6</xref>, <xref ref-type="bibr" rid="B19">19</xref>–<xref ref-type="bibr" rid="B25"
>25</xref>). As infection progresses to AIDS the virus expands its repertoire of potential
coreceptors to include other CC-family and CXC-family receptors in roughly 50% of
patients (<xref ref-type="bibr" rid="B19">19</xref>, <xref ref-type="bibr" rid="B26"
>26</xref>, <xref ref-type="bibr" rid="B27">27</xref>). CCR5Δ32 was identified in
HIV-resistant people (<xref ref-type="bibr" rid="B28">28</xref>). Benefits to individuals from
the mutation in this allele are as follows. Persons homozygous for the CCR5Δ32 mutation
are almost nonexistent in HIV-infected populations (<xref ref-type="bibr" rid="B11">11</xref>,
<xref ref-type="bibr" rid="B12">12</xref>) (see ref. <xref ref-type="bibr" rid="B13"
>13</xref> for review). Persons heterozygous for the mutant allele (CCR5 W/Δ32) tend
to have lower pre-AIDS viral loads. Aside from the beneficial effects that lower viral loads
may have for individuals, there is also an altruistic effect, as transmission rates are
reduced for individuals with low viral loads (as compared with, for example, AZT and other
studies; ref. <xref ref-type="bibr" rid="B29">29</xref>). Finally, individuals heterozygous
for the mutant allele (CCR5 W/Δ32) also have a slower progression to AIDS than those
homozygous for the wild-type allele (CCR5 W/W) (<xref ref-type="bibr" rid="B7"
>7</xref>–<xref ref-type="bibr" rid="B10">10</xref>), remaining in the population 2
years longer, on average. Interestingly, the dearth of information on HIV disease progression
in people homozygous for the CCR5Δ32 allele (CCR5 Δ32/Δ32) stems from the
rarity of HIV infection in this group (<xref ref-type="bibr" rid="B4">4</xref>, <xref
ref-type="bibr" rid="B12">12</xref>, <xref ref-type="bibr" rid="B28">28</xref>). However, in
case reports of HIV-infected CCR5 Δ32/Δ32 homozygotes, a rapid decline in
CD4<sup>+</sup> T cells and a high viremia are observed, likely because of initial
infection with a more aggressive viral strain (such as X4 or R5X4) (<xref ref-type="bibr"
rid="B30">30</xref>).</p>
<sec>
<title>The Model</title>
<p>Because we are most concerned with understanding the severity of the epidemic in developing
countries where the majority of infection is heterosexual, we consider a purely heterosexual
model. To model the effects of the allele in the population, we examine the rate of HIV
spread by using an enhanced susceptible-infected-AIDS model of epidemic HIV (for review see
ref. <xref ref-type="bibr" rid="B31">31</xref>). Our model compares two population
scenarios: a CCR5 wild-type population and one with CCR5Δ32 heterozygotes and
homozygotes in addition to the wild type. To model the scenario where there are only
wild-type individuals present in the population (i.e., CCR5 W/W), we track the sexually
active susceptibles at time <italic>t</italic> [<italic>S<sub>i,j</sub>
</italic>(<italic>t</italic>)], where <italic>i</italic> = 1 refers to genotype (CCR5
W/W only in this case) and <italic>j</italic> is either the male or female subpopulation. We
also track those who are HIV-positive at time <italic>t</italic> not yet having AIDS in
<italic>I<sub>i,j,k</sub>
</italic>(<italic>t</italic>) where <italic>k</italic> refers to stage of HIV infection
[primary (<italic>A</italic>) or asymptomatic (<italic>B</italic>)]. The total
number of individuals with AIDS at time <italic>t</italic> are tracked in
<italic>A</italic>(<italic>t</italic>). The source population are children, χ<sub>
<italic>i,j</italic>
</sub>(<italic>t</italic>), who mature into the sexually active population at time
<italic>t</italic> (Fig. <xref ref-type="fig" rid="F1">1</xref>, Table <xref
ref-type="table" rid="T1">1</xref>). We compare the model of a population lacking the
CCR5Δ32 allele to a demographically similar population with a high frequency of the
allele. When genetic heterogeneity is included, male and female subpopulations are each
further divided into three distinct genotypic groups, yielding six susceptible
subpopulations, [<italic>S<sub>i,j</sub>
</italic>(<italic>t</italic>), where <italic>i</italic> ranges from 1 to 3, where 1 =
CCR5W/W; 2 = CCR5 W/Δ32; 3 = CCR5 Δ32/Δ32]. The infected
classes, <italic>I<sub>i,j,k</sub>
</italic>(<italic>t</italic>), also increase in number to account for these new genotype
compartments. In both settings we assume there is no treatment available and no knowledge of
HIV status by people in the early acute and middle asymptomatic stages (both conditions
exist in much of sub-Saharan Africa). In addition, we assume that sexual mixing in the
population occurs randomly with respect to genotype and HIV disease status, all HIV-infected
people eventually progress to AIDS, and no barrier contraceptives are used. These last
assumptions reflect both economic and social conditions. </p>
<fig id="F1">
<label>Figure 1</label>
<caption>
<p>A schematic representation of the basic compartmental HIV epidemic model. The
criss-cross lines indicate the sexual mixing between different compartments. Each of
these interactions has a positive probability of taking place; they also incorporate
individual rates of transmission indicated as λ, but in full notation is λ<sub>
<italic>î</italic>,<italic></italic>,<italic></italic>→<italic>i</italic>,<italic>j</italic>,</sub>
where <italic>i</italic>,<italic>j</italic>,<italic>k</italic> is the phenotype of the
infected partner and <italic>î</italic>,<italic></italic> is the
phenotype of the susceptible partner. Also shown are the different rates of disease
progression, γ<sub>
<italic>i</italic>,<italic>j</italic>,<italic>k</italic>
</sub>, that vary according to genotype, gender, and stage. Thus, the interactions
between different genotypes, genders, and stages are associated with a unique
probability of HIV infection. M, male; F, female.</p>
</caption>
<graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="pq1813251001"/>
</fig>
<table-wrap id="T1">
<label>Table 1</label>
<caption>
<p>Children's genotype</p>
</caption>
<table>
<tr>
<th>Parents</th>
<th colspan="4">Mother</th>
</tr>
<tr>
<td colspan="5">
<hr/>
</td>
</tr>
<tr>
<td>Father</td>
<td/>
<td>W/W</td>
<td>W/Δ32</td>
<td>Δ32/Δ32</td>
</tr>
<tr>
<td/>
<td>W/W</td>
<td>χ<sub>1,<italic>j</italic>
</sub>1,<italic>j</italic>
</td>
<td>χ<sub>1,<italic>j</italic>
</sub>1,<italic>j</italic>, χ<sub>2,<italic>j</italic>
</sub>2,<italic>j</italic>
</td>
<td>χ<sub>2,<italic>j</italic>
</sub>2,<italic>j</italic>
</td>
</tr>
<tr>
<td/>
<td>W/Δ32</td>
<td>χ<sub>1,<italic>j</italic>
</sub>1,<italic>j</italic>, χ<sub>2,<italic>j</italic>
</sub>2,<italic>j</italic>
</td>
<td>χ<sub>1,<italic>j</italic>
</sub>1,<italic>j</italic>, χ<sub>2,<italic>j</italic>
</sub>2,<italic>j</italic>, χ<sub>3,<italic>j</italic>
</sub>3,<italic>j</italic>
</td>
<td>χ<sub>2,<italic>j</italic>
</sub>2,<italic>j</italic>, χ<sub>3,<italic>j</italic>
</sub>3,<italic>j</italic>
</td>
</tr>
<tr>
<td/>
<td>Δ32/Δ32</td>
<td>χ<sub>2,<italic>j</italic>
</sub>2,<italic>j</italic>
</td>
<td>χ<sub>2,<italic>j</italic>
</sub>2,<italic>j</italic>, χ<sub>3,<italic>j</italic>
</sub>3,<italic>j</italic>
</td>
<td>χ<sub>3,<italic>j</italic>
</sub>3,<italic>j</italic>
</td>
</tr>
</table>
<table-wrap-foot>
<fn>
<p>χ<sub>1,<italic>j</italic>
</sub>1,<italic>j</italic> = wild-type children; (W/W);
χ<sub>2,<italic>j</italic>
</sub>2,<italic>j</italic> = heterozygous children (W/Δ32);
χ<sub>3,<italic>j</italic>
</sub>3,<italic>j</italic> = homozygous children (Δ32/Δ32) of
gender <italic>j</italic>. Children's genotypes are determined by using Mendelian
inheritance patterns.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<sec>
<title>Parameter Estimates for the Model.</title>
<p>Estimates for rates that govern the interactions depicted in Fig. <xref ref-type="fig"
rid="F1">1</xref> were <mml:math>
<mml:mrow>
<mml:msup>
<mml:mi>a</mml:mi>
<mml:mn>2</mml:mn>
</mml:msup>
<mml:mo>=</mml:mo>
<mml:msup>
<mml:mi>b</mml:mi>
<mml:mn>2</mml:mn>
</mml:msup>
<mml:mo>+</mml:mo>
<mml:msup>
<mml:mi>c</mml:mi>
<mml:mn>2</mml:mn>
</mml:msup>
</mml:mrow>
</mml:math> derived from the extensive literature on HIV. Our parameters and their
estimates are summarized in Tables <xref ref-type="table" rid="T2">2</xref>–<xref
ref-type="table" rid="T4">4</xref>. The general form of the equations describing the
rates of transition between population classes as depicted in Fig. <xref ref-type="fig"
rid="F1">1</xref> are summarized as follows: <disp-formula id="E1">
<tex-math id="M1">\documentclass[12pt]{minimal} \usepackage{wasysym}
\usepackage[substack]{amsmath} \usepackage{amsfonts} \usepackage{amssymb}
\usepackage{amsbsy} \usepackage[mathscr]{eucal} \usepackage{mathrsfs}
\DeclareFontFamily{T1}{linotext}{} \DeclareFontShape{T1}{linotext}{m}{n} {
<-> linotext }{} \DeclareSymbolFont{linotext}{T1}{linotext}{m}{n}
\DeclareSymbolFontAlphabet{\mathLINOTEXT}{linotext} \begin{document} $$
\frac{dS_{i,j}(t)}{dt}={\chi}_{i,j}(t)-{\mu}_{j}S_{i,j}(t)-{\lambda}_{\hat
{\imath},\hat {},\hat {k}{\rightarrow}i,j}S_{i,j}(t), $$ \end{document} </tex-math>
</disp-formula>
<disp-formula id="E2">
<tex-math id="M2">\documentclass[12pt]{minimal} \usepackage{wasysym}
\usepackage[substack]{amsmath} \usepackage{amsfonts} \usepackage{amssymb}
\usepackage{amsbsy} \usepackage[mathscr]{eucal} \usepackage{mathrsfs}
\DeclareFontFamily{T1}{linotext}{} \DeclareFontShape{T1}{linotext}{m}{n} {
<-> linotext }{} \DeclareSymbolFont{linotext}{T1}{linotext}{m}{n}
\DeclareSymbolFontAlphabet{\mathLINOTEXT}{linotext} \begin{document} $$
\hspace{1em}\hspace{1em}\hspace{.167em}\frac{dI_{i,j,A}(t)}{dt}={\lambda}_{\hat
{\imath},\hat {},\hat
{k}{\rightarrow}i,j}S_{i,j}(t)-{\mu}_{j}I_{i,j,A}(t)-{\gamma}_{i,j,A}I_{i,j,A}(t), $$
\end{document} </tex-math>
</disp-formula>
<disp-formula id="E3">
<tex-math id="M3">\documentclass[12pt]{minimal} \usepackage{wasysym}
\usepackage[substack]{amsmath} \usepackage{amsfonts} \usepackage{amssymb}
\usepackage{amsbsy} \usepackage[mathscr]{eucal} \usepackage{mathrsfs}
\DeclareFontFamily{T1}{linotext}{} \DeclareFontShape{T1}{linotext}{m}{n} {
<-> linotext }{} \DeclareSymbolFont{linotext}{T1}{linotext}{m}{n}
\DeclareSymbolFontAlphabet{\mathLINOTEXT}{linotext} \begin{document} $$
\frac{dI_{i,j,B}(t)}{dt}={\gamma}_{i,j,A}I_{i,j,A}(t)-{\mu}_{j}I_{i,j,B}(t)-{\gamma}_{i,j,B}I_{i,j,B}(t),
$$ \end{document} </tex-math>
</disp-formula>
<disp-formula id="E4">
<tex-math id="M4">\documentclass[12pt]{minimal} \usepackage{wasysym}
\usepackage[substack]{amsmath} \usepackage{amsfonts} \usepackage{amssymb}
\usepackage{amsbsy} \usepackage[mathscr]{eucal} \usepackage{mathrsfs}
\DeclareFontFamily{T1}{linotext}{} \DeclareFontShape{T1}{linotext}{m}{n} {
<-> linotext }{} \DeclareSymbolFont{linotext}{T1}{linotext}{m}{n}
\DeclareSymbolFontAlphabet{\mathLINOTEXT}{linotext} \begin{document} $$
\frac{dA(t)}{dt}={\gamma}_{i,j,B} \left( { \,\substack{ ^{3} \\ {\sum} \\ _{i=1} }\,
}I_{i,F,B}(t)+I_{i,M,B}(t) \right) -{\mu}_{A}A(t)-{\delta}A(t), $$ \end{document}
</tex-math>
</disp-formula> where, in addition to previously defined populations and rates (with
<italic>i</italic> equals genotype, <italic>j</italic> equals gender, and
<italic>k</italic> equals stage of infection, either <italic>A</italic> or
<italic>B</italic>), μ<sub>
<italic>j</italic>
</sub>, represents the non-AIDS (natural) death rate for males and females respectively,
and μ<sub>A</sub> is estimated by the average (μ<sub>F</sub> +
μ<sub>M</sub>/2). This approximation allows us to simplify the model (only one
AIDS compartment) without compromising the results, as most people with AIDS die of AIDS
(δ<sub>AIDS</sub>) and very few of other causes (μ<sub>A</sub>). These
estimates include values that affect infectivity (λ<sub>
<italic>î</italic>,<italic></italic>,<italic></italic>→<italic>i</italic>,<italic>j</italic>
</sub>), transmission (β<sub>
<italic>î</italic>,<italic></italic>,<italic></italic>→<italic>i</italic>,<italic>j</italic>
</sub>), and disease progression (γ<sub>
<italic>i</italic>
</sub>
<sub>,</sub>
<sub>
<italic>j</italic>
</sub>
<sub>,</sub>
<sub>
<italic>k</italic>
</sub>) where the
<italic>î</italic>,<italic></italic>,<italic></italic> notation
represents the genotype, gender, and stage of infection of the infected partner, and
<italic>j</italic> ≠ <italic></italic>. </p>
<table-wrap id="T2">
<label>Table 2</label>
<caption>
<p>Transmission probabilities</p>
</caption>
<table>
<tr>
<th rowspan="3">HIV-infected partner (îıı^^,
^^, <italic>k</italic>
<italic>k</italic>^^)</th>
<th colspan="4">Susceptible partner (<italic>i</italic>, <italic>j</italic>)</th>
</tr>
<tr>
<td colspan="4">
<hr/>
</td>
</tr>
<tr>
<th>(^^ to <italic>j</italic>)</th>
<th>W/W</th>
<th>W/Δ32</th>
<th>Δ32/Δ32 </th>
</tr>
<tr>
<td colspan="5">
<hr/>
</td>
</tr>
<tr>
<td>Acute/primary</td>
</tr>
<tr>
<td> W/W or Δ32/Δ32</td>
<td>M to F</td>
<td>0.040</td>
<td>0.040</td>
<td>0.00040 </td>
</tr>
<tr>
<td/>
<td>F to M</td>
<td>0.020</td>
<td>0.020</td>
<td>0.00020 </td>
</tr>
<tr>
<td> W/Δ32</td>
<td>M to F</td>
<td>0.030</td>
<td>0.030</td>
<td>0.00030 </td>
</tr>
<tr>
<td/>
<td>F to M</td>
<td>0.015</td>
<td>0.015</td>
<td>0.00015 </td>
</tr>
<tr>
<td>Asymptomatic </td>
</tr>
<tr>
<td> W/W or Δ32/Δ32</td>
<td>M to F</td>
<td>0.0010</td>
<td>0.0010</td>
<td>10 × 10<sup>−6</sup>
</td>
</tr>
<tr>
<td/>
<td>F to M</td>
<td>0.0005</td>
<td>0.0005</td>
<td>5 × 10<sup>−6</sup>
</td>
</tr>
<tr>
<td> W/Δ32</td>
<td>M to F</td>
<td>0.0005</td>
<td>0.0005</td>
<td>5 × 10<sup>−6</sup>
</td>
</tr>
<tr>
<td/>
<td>F to M</td>
<td>0.00025</td>
<td>0.00025</td>
<td>2.5 × 10<sup>−6</sup>
</td>
</tr>
</table>
<table-wrap-foot>
<fn>
<p>Listed are the different transmission probabilities
(β<sub>îıı^^,^^,<italic>k</italic>
<italic>k</italic>^^→<italic>i</italic>,<italic>j</italic>
</sub>) for random sexual mixing between persons where <italic>i</italic>,
<italic>j</italic>, <italic>k</italic> is the phenotype of the infected partner
and <italic>i</italic>, <italic>j</italic> is the phenotype of the susceptible
partner. M, male; F, female.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="T3">
<label>Table 3</label>
<caption>
<p>Progression rates</p>
</caption>
<table>
<tr>
<th>Genotype</th>
<th>Disease stage</th>
<th>Males/females </th>
</tr>
<tr>
<td colspan="3">
<hr/>
</td>
</tr>
<tr>
<td>W/W</td>
<td>A</td>
<td>3.5</td>
</tr>
<tr>
<td/>
<td>B</td>
<td>0.16667 </td>
</tr>
<tr>
<td>W/Δ32</td>
<td>A</td>
<td>3.5 </td>
</tr>
<tr>
<td/>
<td>B</td>
<td>0.125</td>
</tr>
<tr>
<td>Δ32/Δ32</td>
<td>A</td>
<td>3.5 </td>
</tr>
<tr>
<td/>
<td>B</td>
<td>0.16667</td>
</tr>
</table>
<table-wrap-foot>
<fn>
<p>Shown are the rates of progression, γ<sub>
<italic>i</italic>,<italic>j</italic>,<italic>k</italic>
</sub>
<italic>i</italic>,<italic>j</italic>,<italic>k</italic> reflecting the different
rates at which persons progress through different stages of disease by genotype,
gender, and disease stage.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="T4">
<label>Table 4</label>
<caption>
<p>Parameter values</p>
</caption>
<table>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Value</th>
</tr>
<tr>
<td colspan="3">
<hr/>
</td>
</tr>
<tr>
<td>μ<sub>
<italic>F</italic>
</sub>
<italic>F</italic>, μ<sub>
<italic>M</italic>
</sub>
<italic>M</italic>
</td>
<td align="left">All-cause mortality for adult females (males)</td>
<td align="left">0.015 (0.016) per year</td>
</tr>
<tr>
<td>μ<sub>χ</sub>χ</td>
<td align="left">All-cause childhood mortality (<15 years of age)</td>
<td align="left">0.01 per year</td>
</tr>
<tr>
<td>
<italic>B</italic>
<sub>
<italic>r</italic>
</sub>
<italic>r</italic>
</td>
<td align="left">Birthrate</td>
<td align="left">0.25 per woman per year</td>
</tr>
<tr>
<td>
<italic>SA</italic>
<sub>
<italic>F</italic>
</sub>
<italic>F</italic>
</td>
<td align="left">Percent females acquiring new partners (sexual activity)</td>
<td align="left">10%</td>
</tr>
<tr>
<td>
<italic>SA</italic>
<sub>
<italic>M</italic>
</sub>
<italic>M</italic>
</td>
<td align="left">Percent males acquiring new partners (sexual activity)</td>
<td align="left">25%</td>
</tr>
<tr>
<td>
<italic>m</italic>
<sub>
<italic>F</italic>
</sub>
<italic>F</italic>(ς<inline-formula>
<tex-math id="M5">\documentclass[12pt]{minimal} \usepackage{wasysym}
\usepackage[substack]{amsmath} \usepackage{amsfonts} \usepackage{amssymb}
\usepackage{amsbsy} \usepackage[mathscr]{eucal} \usepackage{mathrsfs}
\DeclareFontFamily{T1}{linotext}{} \DeclareFontShape{T1}{linotext}{m}{n} {
<-> linotext }{} \DeclareSymbolFont{linotext}{T1}{linotext}{m}{n}
\DeclareSymbolFontAlphabet{\mathLINOTEXT}{linotext} \begin{document} $$
{\mathrm{_{{F}}^{{2}}}} $$ \end{document} </tex-math>
</inline-formula>)</td>
<td align="left">Mean (variance) no. of new partners for females</td>
<td align="left">1.8 (1.2) per year</td>
</tr>
<tr>
<td>ς<inline-formula>
<tex-math id="M6">\documentclass[12pt]{minimal} \usepackage{wasysym}
\usepackage[substack]{amsmath} \usepackage{amsfonts} \usepackage{amssymb}
\usepackage{amsbsy} \usepackage[mathscr]{eucal} \usepackage{mathrsfs}
\DeclareFontFamily{T1}{linotext}{} \DeclareFontShape{T1}{linotext}{m}{n} {
<-> linotext }{} \DeclareSymbolFont{linotext}{T1}{linotext}{m}{n}
\DeclareSymbolFontAlphabet{\mathLINOTEXT}{linotext} \begin{document} $$
{\mathrm{_{{M}}^{{2}}}} $$ \end{document} </tex-math>
</inline-formula>
</td>
<td align="left">Variance in no. of new partners for males</td>
<td align="left">5.5 per year </td>
</tr>
<tr>
<td>1 − <italic>p</italic>
<sub>
<italic>v</italic>
</sub>
<italic>v</italic>
</td>
<td align="left">Probability of vertical transmission</td>
<td align="left">0.30 per birth</td>
</tr>
<tr>
<td>
<italic>I</italic>
<sub>
<italic>i</italic>,<italic>j</italic>,<italic>k</italic>
</sub>
<italic>i</italic>,<italic>j</italic>,<italic>k</italic>(0)</td>
<td align="left">Initial total population HIV-positive</td>
<td align="left">0.50% </td>
</tr>
<tr>
<td>χ<sub>
<italic>i</italic>,<italic>j</italic>
</sub>
<italic>i</italic>,<italic>j</italic>(0)</td>
<td align="left">Initial total children in population (<15 years of age)</td>
<td align="left">45%</td>
</tr>
<tr>
<td>
<italic>W</italic>/<italic>W</italic> (0)</td>
<td align="left">Initial total wild types
(<italic>W</italic>/<italic>W</italic>) in population</td>
<td align="left">80% </td>
</tr>
<tr>
<td>
<italic>W</italic>/Δ32(0)</td>
<td align="left">Initial total heterozygotes (<italic>W</italic>/Δ32) in
population</td>
<td align="left">19%</td>
</tr>
<tr>
<td>Δ32/Δ32(0)</td>
<td align="left">Initial total homozygotes (Δ32/Δ32) in
population</td>
<td align="left">1%</td>
</tr>
<tr>
<td>
<italic>r</italic>
<sub>
<italic>M</italic>
</sub>
<italic>M</italic>(<italic>r</italic>
<sub>
<italic>F</italic>
</sub>
<italic>F</italic>)</td>
<td align="left">Initial percent males (females) in total population</td>
<td align="left">49% (51%)</td>
</tr>
<tr>
<td>ϕ<sub>
<italic>F</italic>
</sub>
<italic>F</italic>, ϕ<sub>
<italic>M</italic>
</sub>
<italic>M</italic>
</td>
<td align="left">Number of sexual contacts a female (male) has</td>
<td align="left">30 (24) per partner</td>
</tr>
<tr>
<td>ɛ<sub>
<italic>i</italic>,<italic>j</italic>,<italic>k</italic>
</sub>
<italic>i</italic>,<italic>j</italic>,<italic>k</italic>
</td>
<td align="left">% effect of mutation on transmission rates (see Table <xref
ref-type="table" rid="T2">2</xref>)</td>
<td align="left">0 < ɛ<sub>
<italic>i</italic>,<italic>j</italic>,<italic>k</italic>
</sub>
<italic>i</italic>,<italic>j</italic>,<italic>k</italic> < 1</td>
</tr>
<tr>
<td>δ</td>
<td align="left">Death rate for AIDS population</td>
<td align="left">1.0 per year </td>
</tr>
<tr>
<td>
<italic>q</italic>
</td>
<td align="left">Allelic frequency of Δ32 allele</td>
<td align="left">0.105573</td>
</tr>
</table>
<table-wrap-foot>
<fn>
<p>Shown are the parameter values for parameters other than the transmission
probabilities (Table <xref ref-type="table" rid="T2">2</xref>) and the progression
rates (Table <xref ref-type="table" rid="T3">3</xref>). Each were estimated from
data as described in text.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>The effects of the CCR5 W/Δ32 and CCR5 Δ32/Δ32 genotypes are
included in our model through both the per-capita probabilities of infection, λ<sub>
<italic>î</italic>,<italic></italic>,<italic></italic>→<italic>i</italic>,<italic>j</italic>
</sub>, and the progression rates, γ<sub>
<italic>i</italic>
</sub>
<sub>,</sub>
<sub>
<italic>j</italic>
</sub>
<sub>,</sub>
<sub>
<italic>k</italic>
</sub>. The infectivity coefficients, λ<sub>
<italic>î</italic>,<italic></italic>,<italic></italic>→<italic>i</italic>,<italic>j</italic>
</sub>, are calculated for each population subgroup based on the following: likelihood of
HIV transmission in a sexual encounter between a susceptible and an infected
(β<sub>îıı^^,<italic>j</italic>,<italic>k</italic>
<italic>k</italic>^^→<italic>i</italic>,<italic>j</italic>
</sub>) person; formation of new partnerships (<italic>c</italic>
<sub>
<italic>j</italic>
</sub>
<italic>j</italic>); number of contacts in a given partnership (ϕ<sub>
<italic>j</italic>
</sub>); and probability of encountering an infected individual (<italic>I</italic>
<sub>
<italic>î</italic>,<italic></italic>,<italic></italic>
</sub>/<italic>N</italic>
<sub>
<italic></italic>
</sub>). The formula representing this probability of infection is <disp-formula>
<tex-math id="M7">\documentclass[12pt]{minimal} \usepackage{wasysym}
\usepackage[substack]{amsmath} \usepackage{amsfonts} \usepackage{amssymb}
\usepackage{amsbsy} \usepackage[mathscr]{eucal} \usepackage{mathrsfs}
\DeclareFontFamily{T1}{linotext}{} \DeclareFontShape{T1}{linotext}{m}{n} {
<-> linotext }{} \DeclareSymbolFont{linotext}{T1}{linotext}{m}{n}
\DeclareSymbolFontAlphabet{\mathLINOTEXT}{linotext} \begin{document} $$
{\lambda}_{\hat {i},\hat {j},\hat
{k}{\rightarrow}i,j}=\frac{C_{j}{\cdot}{\phi}_{j}}{N_{\hat {j}}}\hspace{.167em} \left[
{ \,\substack{ \\ {\sum} \\ _{\hat {i},\hat {k}} }\, }{\beta}_{\hat {i},\hat {j},\hat
{k}{\rightarrow}i,j}{\cdot}I_{\hat {i},\hat {j},\hat {k}} \right] , $$ \end{document}
</tex-math>
</disp-formula> where <italic>j</italic> ≠ <italic></italic> is either male
or female. <italic>N</italic>
<sub>
<italic></italic>
</sub> represents the total population of gender <italic></italic> (this does not
include those with AIDS in the simulations).</p>
<p>The average rate of partner acquisition, <italic>c<sub>j</sub>
</italic>, includes the mean plus the variance to mean ratio of the relevant distribution
of partner-change rates to capture the small number of high-risk people:
<italic>c<sub>j</sub>
</italic> = <italic>m<sub>j</sub>
</italic> + (ς<inline-formula>
<tex-math id="M8">\documentclass[12pt]{minimal} \usepackage{wasysym}
\usepackage[substack]{amsmath} \usepackage{amsfonts} \usepackage{amssymb}
\usepackage{amsbsy} \usepackage[mathscr]{eucal} \usepackage{mathrsfs}
\DeclareFontFamily{T1}{linotext}{} \DeclareFontShape{T1}{linotext}{m}{n} {
<-> linotext }{} \DeclareSymbolFont{linotext}{T1}{linotext}{m}{n}
\DeclareSymbolFontAlphabet{\mathLINOTEXT}{linotext} \begin{document} $$
{\mathrm{_{{\mathit{j}}}^{2}}} $$ \end{document} </tex-math>
</inline-formula>/<italic>m</italic>
<sub>j</sub>) where the mean (<italic>m<sub>j</sub>
</italic>) and variance (ς<inline-formula>
<tex-math id="M9">\documentclass[12pt]{minimal} \usepackage{wasysym}
\usepackage[substack]{amsmath} \usepackage{amsfonts} \usepackage{amssymb}
\usepackage{amsbsy} \usepackage[mathscr]{eucal} \usepackage{mathrsfs}
\DeclareFontFamily{T1}{linotext}{} \DeclareFontShape{T1}{linotext}{m}{n} {
<-> linotext }{} \DeclareSymbolFont{linotext}{T1}{linotext}{m}{n}
\DeclareSymbolFontAlphabet{\mathLINOTEXT}{linotext} \begin{document} $$
{\mathrm{_{{\mathit{j}}}^{2}}} $$ \end{document} </tex-math>
</inline-formula>) are annual figures for new partnerships only (<xref ref-type="bibr"
rid="B32">32</xref>). These means are estimated from Ugandan data for the number of
heterosexual partners in the past year (<xref ref-type="bibr" rid="B33">33</xref>) and the
number of nonregular heterosexual partners (i.e., spouses or long-term partners) in the
past year (<xref ref-type="bibr" rid="B34">34</xref>). In these sexual activity surveys,
men invariably have more new partnerships; thus, we assumed that they would have fewer
average contacts per partnership than women (a higher rate of new partner acquisition
means fewer sexual contacts with a given partner; ref. <xref ref-type="bibr" rid="B35"
>35</xref>). To incorporate this assumption in our model, the male contacts/partnership, ϕ<sub>
<italic>M</italic>
</sub>, was reduced by 20%. In a given population, the numbers of heterosexual
interactions must equate between males and females. The balancing equation applied here is
<italic>SA</italic>
<sub>F</sub>·<italic>m</italic>
<sub>F</sub>·<italic>N</italic>
<sub>F</sub> = <italic>SA</italic>
<sub>M</sub>·<italic>m</italic>
<sub>M</sub>·<italic>N</italic>
<sub>M</sub>, where <italic>SA<sub>j</sub>
</italic> are the percent sexually active and <italic>N<sub>j</sub>
</italic> are the total in the populations for gender <italic>j</italic>. To specify
changes in partner acquisition, we apply a male flexibility mechanism, holding the female
rate of acquisition constant and allowing the male rates to vary (<xref ref-type="bibr"
rid="B36">36</xref>, <xref ref-type="bibr" rid="B37">37</xref>).</p>
<sec>
<title>Transmission probabilities.</title>
<p>The effect of a genetic factor in a model of HIV transmission can be included by
reducing the transmission coefficient. The probabilities of transmission per contact
with an infected partner,
β<sub>îıı^^,^^,<italic>k</italic>
<italic>k</italic>^^→<italic>i</italic>,<italic>j</italic>
</sub>, have been estimated in the literature (see ref. <xref ref-type="bibr" rid="B38"
>38</xref> for estimates in minimally treated groups). We want to capture a decreased
risk in transmission based on genotype (ref. <xref ref-type="bibr" rid="B39">39</xref>,
Table <xref ref-type="table" rid="T2">2</xref>). No studies have directly evaluated
differences in infectivity between HIV-infected CCR5 W/Δ32 heterozygotes and
HIV-infected CCR5 wild types. Thus, we base estimates for reduced transmission on
studies of groups with various HIV serum viral loads (<xref ref-type="bibr" rid="B40"
>40</xref>), HTLV-I/II viral loads (<xref ref-type="bibr" rid="B41">41</xref>), and a
study of the effect of AZT treatment on transmission (<xref ref-type="bibr" rid="B29"
>29</xref>). We decrease transmission probabilities for infecting
CCR5Δ32/Δ32 persons by 100-fold to reflect the rarity of infections in
these persons. However, we assume that infected CCR5Δ32/Δ32 homozygotes
can infect susceptibles at a rate similar to CCR5W/W homozygotes, as the former
generally have high viremias (ref. <xref ref-type="bibr" rid="B30">30</xref>, Table
<xref ref-type="table" rid="T2">2</xref>). We also assume that male-to-female
transmission is twice as efficient as female-to-male transmission (up to a 9-fold
difference has been reported; ref. <xref ref-type="bibr" rid="B42">42</xref>) (ref.
<xref ref-type="bibr" rid="B43">43</xref>, Table <xref ref-type="table" rid="T2"
>2</xref>).</p>
<p>Given the assumption of no treatment, the high burden of disease in people with AIDS is
assumed to greatly limit their sexual activity. Our initial model excludes people with
AIDS from the sexually active groups. Subsequently, we allow persons with AIDS to be
sexually active, fixing their transmission rates (β<sub>AIDS</sub>) to be the
same across all CCR5 genotypes, and lower than transmission rates for primary-stage
infection (as the viral burden on average is not as high as during the acute phase), and
larger than transmission rates for asymptomatic-stage infection (as the viral burden
characteristically increases during the end stage of disease).</p>
</sec>
<sec>
<title>Disease progression.</title>
<p>We assume three stages of HIV infection: primary (acute, stage A), asymptomatic HIV
(stage B), and AIDS. The rates of transition through the first two stages are denoted by γ<sub>
<italic>i</italic>,<italic>j</italic>,<italic>k</italic>
</sub>
<italic>i</italic>,<italic>j</italic>,<italic>k</italic>, where <italic>i</italic>
represents genotype, <italic>j</italic> is male/female, and <italic>k</italic>
represents either stage A or stage B. Transition rates through each of these stages are
assumed to be inversely proportional to the duration of that stage; however, other
distributions are possible (<xref ref-type="bibr" rid="B31">31</xref>, <xref
ref-type="bibr" rid="B44">44</xref>, <xref ref-type="bibr" rid="B45">45</xref>).
Although viral loads generally peak in the first 2 months of infection, steady-state
viral loads are established several months beyond this (<xref ref-type="bibr" rid="B46"
>46</xref>). For group A, the primary HIV-infecteds, duration is assumed to be 3.5
months. Based on results from European cohort studies (<xref ref-type="bibr" rid="B7"
>7</xref>–<xref ref-type="bibr" rid="B10">10</xref>), the beneficial effects of
the CCR5 W/Δ32 genotype are observed mainly in the asymptomatic years of HIV
infection; ≈7 years after seroconversion survival rates appear to be quite
similar between heterozygous and homozygous individuals. We also assume that
CCR5Δ32/Δ32-infected individuals and wild-type individuals progress
similarly, and that men and women progress through each disease stage at the same rate.
Given these observations, and that survival after infection may be shorter in untreated
populations, we choose the duration time in stage B to be 6 years for wild-type
individuals and 8 years for heterozygous individuals. Transition through AIDS,
δ<sub>AIDS</sub>, is inversely proportional to the duration of AIDS. We
estimate this value to be 1 year for the time from onset of AIDS to death. The
progression rates are summarized in Table <xref ref-type="table" rid="T3">3</xref>.</p>
</sec>
</sec>
<sec>
<title>Demographic Setting.</title>
<p>Demographic parameters are based on data from Malawi, Zimbabwe, and Botswana (<xref
ref-type="bibr" rid="B3">3</xref>, <xref ref-type="bibr" rid="B47">47</xref>). Estimated
birth and child mortality rates are used to calculate the annual numbers of children (χ<sub>
<italic>i</italic>,<italic>j</italic>
</sub>
<italic>i</italic>,<italic>j</italic>) maturing into the potentially sexually active,
susceptible group at the age of 15 years (<xref ref-type="bibr" rid="B3">3</xref>). For
example, in the case where the mother is CCR5 wild type and the father is CCR5 wild type
or heterozygous, the number of CCR5 W/W children is calculated as follows
[<italic>s</italic>uppressing (<italic>t</italic>) notation]:
χ<sub>1,<italic>j</italic>
</sub>1,<italic>j</italic> = <disp-formula>
<tex-math id="M10">\documentclass[12pt]{minimal} \usepackage{wasysym}
\usepackage[substack]{amsmath} \usepackage{amsfonts} \usepackage{amssymb}
\usepackage{amsbsy} \usepackage[mathscr]{eucal} \usepackage{mathrsfs}
\DeclareFontFamily{T1}{linotext}{} \DeclareFontShape{T1}{linotext}{m}{n} {
<-> linotext }{} \DeclareSymbolFont{linotext}{T1}{linotext}{m}{n}
\DeclareSymbolFontAlphabet{\mathLINOTEXT}{linotext} \begin{document} $$
B_{r}\hspace{.167em}{ \,\substack{ \\ {\sum} \\ _{k} }\, } \left[
S_{1,F}\frac{(S_{1,M}+I_{1,M,k})}{N_{M}}+ \left[
(0.5)S_{1,F}\frac{(S_{2,M}+I_{2,M,k})}{N_{M}} \right] + \right $$ \end{document}
</tex-math>
</disp-formula>
<disp-formula>
<tex-math id="M11">\documentclass[12pt]{minimal} \usepackage{wasysym}
\usepackage[substack]{amsmath} \usepackage{amsfonts} \usepackage{amssymb}
\usepackage{amsbsy} \usepackage[mathscr]{eucal} \usepackage{mathrsfs}
\DeclareFontFamily{T1}{linotext}{} \DeclareFontShape{T1}{linotext}{m}{n} {
<-> linotext }{} \DeclareSymbolFont{linotext}{T1}{linotext}{m}{n}
\DeclareSymbolFontAlphabet{\mathLINOTEXT}{linotext} \begin{document} $$ p_{v} \left
\left( \frac{(I_{1,F,k}(S_{1,M}+I_{1,M,k}))}{N_{M}}+ \left[