From 966e168830942f4d679afc25a02de2cb1579c3d5 Mon Sep 17 00:00:00 2001 From: Jeff Bolz Date: Tue, 10 Dec 2024 11:22:20 -0600 Subject: [PATCH 1/6] vulkan: disable spirv-opt for coopmat shaders (llama/10763) There are some bugs in the 1.3.296 SDK, so disable this. It isn't strictly necessary anyway. Add missing dependency on vulkan-shaders-gen, so shaders get recompiled when it changes. Fix coopmat support reporting when glslc doesn't support NV_coopmat2. --- src/ggml-vulkan/CMakeLists.txt | 2 +- src/ggml-vulkan/ggml-vulkan.cpp | 2 ++ src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp | 7 +++++-- 3 files changed, 8 insertions(+), 3 deletions(-) diff --git a/src/ggml-vulkan/CMakeLists.txt b/src/ggml-vulkan/CMakeLists.txt index 546c853b6..6d46e5f24 100644 --- a/src/ggml-vulkan/CMakeLists.txt +++ b/src/ggml-vulkan/CMakeLists.txt @@ -81,7 +81,7 @@ if (Vulkan_FOUND) --target-cpp ${_ggml_vk_source} --no-clean - DEPENDS ${_ggml_vk_shader_deps} + DEPENDS ${_ggml_vk_shader_deps} ${_ggml_vk_genshaders_cmd} COMMENT "Generate vulkan shaders" ) diff --git a/src/ggml-vulkan/ggml-vulkan.cpp b/src/ggml-vulkan/ggml-vulkan.cpp index 5d9eba983..ad5535c11 100644 --- a/src/ggml-vulkan/ggml-vulkan.cpp +++ b/src/ggml-vulkan/ggml-vulkan.cpp @@ -2425,9 +2425,11 @@ static void ggml_vk_print_gpu_info(size_t idx) { } else if (strcmp("VK_KHR_cooperative_matrix", properties.extensionName) == 0 && !getenv("GGML_VK_DISABLE_COOPMAT")) { coopmat_support = true; +#if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT) } else if (strcmp("VK_NV_cooperative_matrix2", properties.extensionName) == 0 && !getenv("GGML_VK_DISABLE_COOPMAT2")) { coopmat2_support = true; +#endif } } diff --git a/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp b/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp index bc6fca506..ee3520833 100644 --- a/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp @@ -206,10 +206,13 @@ void string_to_spv_func(const std::string& _name, const std::string& in_fname, c std::string target_env = (name.find("_cm2") != std::string::npos) ? "--target-env=vulkan1.3" : "--target-env=vulkan1.2"; + // disable spirv-opt for coopmat shaders for https://github.com/ggerganov/llama.cpp/issues/10734 + std::string opt_level = coopmat ? "" : "-O"; + #ifdef _WIN32 - std::vector cmd = {GLSLC, "-fshader-stage=compute", target_env, "-O", "\"" + in_path + "\"", "-o", "\"" + out_fname + "\""}; + std::vector cmd = {GLSLC, "-fshader-stage=compute", target_env, opt_level, "\"" + in_path + "\"", "-o", "\"" + out_fname + "\""}; #else - std::vector cmd = {GLSLC, "-fshader-stage=compute", target_env, "-O", in_path, "-o", out_fname}; + std::vector cmd = {GLSLC, "-fshader-stage=compute", target_env, opt_level, in_path, "-o", out_fname}; #endif #ifdef GGML_VULKAN_SHADER_DEBUG_INFO From 9320c279f87e73e26cd7d653af7030db2da013e3 Mon Sep 17 00:00:00 2001 From: Andreas Kieslinger <47689530+aendk@users.noreply.github.com> Date: Tue, 10 Dec 2024 18:23:24 +0100 Subject: [PATCH 2/6] CUDA: rename macros to avoid conflicts with WinAPI (llama/10736) * Renames NVIDIA GPU-architecture flags to avoid name clashes with WinAPI. (e.g. CC_PASCAL, GPU architecture or WinAPI pascal compiler flag?) * Reverts erroneous rename in SYCL-code. * Renames GGML_CUDA_MIN_CC_DP4A to GGML_CUDA_CC_DP4A. * Renames the rest of the compute capability macros for consistency. --- src/ggml-common.h | 2 +- src/ggml-cuda/common.cuh | 70 +++++++++++++++++++------------------- src/ggml-cuda/convert.cu | 6 ++-- src/ggml-cuda/fattn.cu | 2 +- src/ggml-cuda/ggml-cuda.cu | 12 +++---- src/ggml-cuda/mma.cuh | 8 ++--- src/ggml-cuda/mmq.cu | 10 +++--- src/ggml-cuda/mmq.cuh | 26 +++++++------- src/ggml-cuda/mmvq.cu | 2 +- src/ggml-cuda/sum.cu | 2 -- 10 files changed, 69 insertions(+), 71 deletions(-) diff --git a/src/ggml-common.h b/src/ggml-common.h index 7fd2aadec..f13fd4dea 100644 --- a/src/ggml-common.h +++ b/src/ggml-common.h @@ -473,7 +473,7 @@ GGML_TABLE_BEGIN(uint8_t, ksigns_iq2xs, 128) 240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255, GGML_TABLE_END() -//#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics +//#if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A // lowest compute capability for integer intrinsics GGML_TABLE_BEGIN(uint64_t, ksigns64, 128) 0x0000000000000000, 0xff000000000000ff, 0xff0000000000ff00, 0x000000000000ffff, 0xff00000000ff0000, 0x0000000000ff00ff, 0x0000000000ffff00, 0xff00000000ffffff, diff --git a/src/ggml-cuda/common.cuh b/src/ggml-cuda/common.cuh index 535118d87..2c0a56226 100644 --- a/src/ggml-cuda/common.cuh +++ b/src/ggml-cuda/common.cuh @@ -41,28 +41,28 @@ #define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed) #define CUDART_HMASK 12000 // CUDA 12.0, min. ver. for half2 -> uint mask comparisons -#define CC_PASCAL 600 -#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products -#define CC_VOLTA 700 -#define CC_TURING 750 -#define CC_AMPERE 800 -#define CC_OFFSET_AMD 1000000 +#define GGML_CUDA_CC_PASCAL 600 +#define GGML_CUDA_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products +#define GGML_CUDA_CC_VOLTA 700 +#define GGML_CUDA_CC_TURING 750 +#define GGML_CUDA_CC_AMPERE 800 +#define GGML_CUDA_CC_OFFSET_AMD 1000000 // GCN/CNDA, wave size is 64 -#define CC_GCN4 (CC_OFFSET_AMD + 803) // Tonga, Fiji, Polaris, minimum for fast fp16 -#define CC_VEGA (CC_OFFSET_AMD + 900) // Vega56/64, minimum for fp16 dual issue -#define CC_VEGA20 (CC_OFFSET_AMD + 906) // MI50/Radeon VII, minimum for dp4a -#define CC_CDNA (CC_OFFSET_AMD + 908) // MI100, minimum for MFMA, acc registers -#define CC_CDNA2 (CC_OFFSET_AMD + 910) // MI210, minimum acc register renameing -#define CC_CDNA3 (CC_OFFSET_AMD + 942) // MI300 +#define GGML_CUDA_CC_GCN4 (GGML_CUDA_CC_OFFSET_AMD + 803) // Tonga, Fiji, Polaris, minimum for fast fp16 +#define GGML_CUDA_CC_VEGA (GGML_CUDA_CC_OFFSET_AMD + 900) // Vega56/64, minimum for fp16 dual issue +#define GGML_CUDA_CC_VEGA20 (GGML_CUDA_CC_OFFSET_AMD + 906) // MI50/Radeon VII, minimum for dp4a +#define GGML_CUDA_CC_CDNA (GGML_CUDA_CC_OFFSET_AMD + 908) // MI100, minimum for MFMA, acc registers +#define GGML_CUDA_CC_CDNA2 (GGML_CUDA_CC_OFFSET_AMD + 910) // MI210, minimum acc register renameing +#define GGML_CUDA_CC_CDNA3 (GGML_CUDA_CC_OFFSET_AMD + 942) // MI300 // RNDA removes MFMA, dp4a, xnack, acc registers, wave size is 32 -#define CC_RDNA1 (CC_OFFSET_AMD + 1010) // RX 5000 -#define CC_RDNA2 (CC_OFFSET_AMD + 1030) // RX 6000, minimum for dp4a -#define CC_RDNA3 (CC_OFFSET_AMD + 1100) // RX 7000, minimum for WMMA +#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 1010) // RX 5000 +#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 1030) // RX 6000, minimum for dp4a +#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 1100) // RX 7000, minimum for WMMA -#define CC_QY1 210 -#define CC_QY2 220 +#define GGML_CUDA_CC_QY1 210 +#define GGML_CUDA_CC_QY2 220 #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses @@ -131,36 +131,36 @@ typedef float dfloat; // dequantize float typedef float2 dfloat2; #endif // GGML_CUDA_F16 -#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL +#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL #define FP16_AVAILABLE -#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL +#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL #if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610 #define FAST_FP16_AVAILABLE #endif // defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610 -#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA +#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA #define FP16_MMA_AVAILABLE -#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA +#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA -#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING +#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING #define INT8_MMA_AVAILABLE -#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING +#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING -#if !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= CC_QY1) +#if !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1) #define FLASH_ATTN_AVAILABLE -#endif // !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= CC_QY1) +#endif // !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1) static constexpr bool fast_fp16_available(const int cc) { - return cc >= CC_PASCAL && cc != 610; + return cc >= GGML_CUDA_CC_PASCAL && cc != 610; } static constexpr bool fp16_mma_available(const int cc) { - return cc < CC_OFFSET_AMD && cc >= CC_VOLTA; + return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_VOLTA; } static constexpr bool int8_mma_available(const int cc) { - return cc < CC_OFFSET_AMD && cc >= CC_TURING; + return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_TURING; } [[noreturn]] @@ -187,7 +187,7 @@ static __device__ void no_device_code( #endif // __CUDA_ARCH__ static __device__ __forceinline__ int warp_reduce_sum(int x) { -#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE +#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE return __reduce_add_sync(0xffffffff, x); #else #pragma unroll @@ -195,7 +195,7 @@ static __device__ __forceinline__ int warp_reduce_sum(int x) { x += __shfl_xor_sync(0xffffffff, x, offset, 32); } return x; -#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE +#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE } static __device__ __forceinline__ float warp_reduce_sum(float x) { @@ -284,7 +284,7 @@ static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const hal } static __device__ __forceinline__ half2 warp_reduce_max(half2 x) { -#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL +#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL #pragma unroll for (int offset = 16; offset > 0; offset >>= 1) { x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, offset, 32)); @@ -293,7 +293,7 @@ static __device__ __forceinline__ half2 warp_reduce_max(half2 x) { #else GGML_UNUSED(x); NO_DEVICE_CODE; -#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL +#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL } #if CUDART_VERSION < CUDART_HMASK @@ -333,13 +333,13 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i #else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) -#if __CUDA_ARCH__ >= MIN_CC_DP4A +#if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A return __dp4a(a, b, c); -#else // __CUDA_ARCH__ >= MIN_CC_DP4A +#else // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A const int8_t * a8 = (const int8_t *) &a; const int8_t * b8 = (const int8_t *) &b; return c + a8[0]*b8[0] + a8[1]*b8[1] + a8[2]*b8[2] + a8[3]*b8[3]; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A #endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) } diff --git a/src/ggml-cuda/convert.cu b/src/ggml-cuda/convert.cu index c0a444707..3896f956d 100644 --- a/src/ggml-cuda/convert.cu +++ b/src/ggml-cuda/convert.cu @@ -26,7 +26,7 @@ static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __ template static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, half * __restrict__ y, const int64_t k) { -#if __CUDA_ARCH__ >= CC_PASCAL +#if __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE; const int64_t i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x; @@ -64,7 +64,7 @@ static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, h GGML_UNUSED(y); GGML_UNUSED(k); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_PASCAL +#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL } template @@ -599,7 +599,7 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) { case GGML_TYPE_Q5_1: return dequantize_block_cuda; case GGML_TYPE_Q8_0: - if (ggml_cuda_info().devices[ggml_cuda_get_device()].cc >= CC_PASCAL) { + if (ggml_cuda_info().devices[ggml_cuda_get_device()].cc >= GGML_CUDA_CC_PASCAL) { return dequantize_block_q8_0_f16_cuda; } return dequantize_block_cuda; diff --git a/src/ggml-cuda/fattn.cu b/src/ggml-cuda/fattn.cu index 0e7ebbc53..0b26b0f8e 100644 --- a/src/ggml-cuda/fattn.cu +++ b/src/ggml-cuda/fattn.cu @@ -304,7 +304,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV); // On AMD the tile kernels perform poorly, use the vec kernel instead: - if (cc >= CC_OFFSET_AMD) { + if (cc >= GGML_CUDA_CC_OFFSET_AMD) { if (prec == GGML_PREC_DEFAULT && fast_fp16_available(cc)) { ggml_cuda_flash_attn_ext_vec_f16(ctx, dst); } else { diff --git a/src/ggml-cuda/ggml-cuda.cu b/src/ggml-cuda/ggml-cuda.cu index 15fcb2a65..c180adc84 100644 --- a/src/ggml-cuda/ggml-cuda.cu +++ b/src/ggml-cuda/ggml-cuda.cu @@ -177,7 +177,7 @@ static ggml_cuda_device_info ggml_cuda_init() { info.devices[id].smpb = prop.sharedMemPerBlock; #if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) info.devices[id].smpbo = prop.sharedMemPerBlock; - info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD; + info.devices[id].cc = 100*prop.major + 10*prop.minor + GGML_CUDA_CC_OFFSET_AMD; #else info.devices[id].smpbo = prop.sharedMemPerBlockOptin; info.devices[id].cc = 100*prop.major + 10*prop.minor; @@ -1081,7 +1081,7 @@ static void ggml_cuda_op_mul_mat_cublas( const int compute_capability = ggml_cuda_info().devices[id].cc; - if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) { + if (compute_capability >= GGML_CUDA_CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) { // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32 ggml_cuda_pool_alloc src0_as_f16(ctx.pool(id)); if (src0->type != GGML_TYPE_F16) { @@ -1108,7 +1108,7 @@ static void ggml_cuda_op_mul_mat_cublas( const half beta_f16 = 0.0f; cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F; - if (ggml_cuda_info().devices[ctx.device].cc == CC_CDNA) { + if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) { cu_compute_type = CUBLAS_COMPUTE_32F; } @@ -1612,7 +1612,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F; cudaDataType_t cu_data_type = CUDA_R_16F; - if (ggml_cuda_info().devices[ctx.device].cc == CC_CDNA) { + if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) { cu_compute_type = CUBLAS_COMPUTE_32F; } @@ -2357,7 +2357,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, std::vector ggml_cuda_cpy_fn_ptrs; if (cuda_ctx->cuda_graph->graph == nullptr) { - if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) { + if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) { cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true; #ifndef NDEBUG GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__); @@ -3028,7 +3028,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g return true; } const int cc = ggml_cuda_info().devices[dev_ctx->device].cc; - return cc >= CC_VOLTA && cc < CC_OFFSET_AMD && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16; + return cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16; } case GGML_OP_CROSS_ENTROPY_LOSS: case GGML_OP_CROSS_ENTROPY_LOSS_BACK: diff --git a/src/ggml-cuda/mma.cuh b/src/ggml-cuda/mma.cuh index a452a3cc3..7d11540af 100644 --- a/src/ggml-cuda/mma.cuh +++ b/src/ggml-cuda/mma.cuh @@ -171,7 +171,7 @@ struct mma_int_C_I16J8 { __device__ __forceinline__ void mma_K4(const mma_int_A_I16K4 & mma_A, const mma_int_B_J8K4 & mma_B) { #ifdef INT8_MMA_AVAILABLE -#if __CUDA_ARCH__ >= CC_AMPERE +#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE asm("mma.sync.aligned.m16n8k16.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};" : "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3]) : "r"(mma_A.x[0]), "r"(mma_A.x[1]), "r"(mma_B.x[0])); @@ -183,7 +183,7 @@ struct mma_int_C_I16J8 { asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};" : "+r"(x[2]), "+r"(x[3]) : "r"(mma_A.x[1]), "r"(mma_B.x[0])); -#endif // __CUDA_ARCH__ >= CC_AMPERE +#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE #else GGML_UNUSED(mma_A); GGML_UNUSED(mma_B); @@ -193,7 +193,7 @@ struct mma_int_C_I16J8 { __device__ __forceinline__ void mma_K8(const mma_int_A_I16K8 & mma_A, const mma_int_B_J8K8 & mma_B) { #ifdef INT8_MMA_AVAILABLE -#if __CUDA_ARCH__ >= CC_AMPERE +#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE asm("mma.sync.aligned.m16n8k32.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};" : "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3]) : "r"(mma_A.x[0]), "r"(mma_A.x[1]), "r"(mma_A.x[2]), "r"(mma_A.x[3]), "r"(mma_B.x[0]), "r"(mma_B.x[1])); @@ -211,7 +211,7 @@ struct mma_int_C_I16J8 { asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};" : "+r"(x[2]), "+r"(x[3]) : "r"(mma_A.x[3]), "r"(mma_B.x[1])); -#endif // __CUDA_ARCH__ >= CC_AMPERE +#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE #else GGML_UNUSED(mma_A); GGML_UNUSED(mma_B); diff --git a/src/ggml-cuda/mmq.cu b/src/ggml-cuda/mmq.cu index 7f7c8c90b..270251df4 100644 --- a/src/ggml-cuda/mmq.cu +++ b/src/ggml-cuda/mmq.cu @@ -27,7 +27,7 @@ void ggml_cuda_op_mul_mat_q( // The stream-k decomposition is only faster for recent NVIDIA GPUs. // Also its fixup needs to allocate a temporary buffer in the memory pool. // There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer. - const bool use_stream_k = compute_capability >= CC_VOLTA && compute_capability < CC_OFFSET_AMD && src1_ncols == ne11; + const bool use_stream_k = compute_capability >= GGML_CUDA_CC_VOLTA && compute_capability < GGML_CUDA_CC_OFFSET_AMD && src1_ncols == ne11; const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst, use_stream_k}; switch (src0->type) { @@ -136,7 +136,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) { return true; } - if (cc < MIN_CC_DP4A) { + if (cc < GGML_CUDA_CC_DP4A) { return false; } @@ -144,9 +144,9 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) { return true; #endif //GGML_CUDA_FORCE_MMQ - if (cc < CC_OFFSET_AMD) { - return cc < CC_VOLTA || ne11 < MMQ_DP4A_MAX_BATCH_SIZE; + if (cc < GGML_CUDA_CC_OFFSET_AMD) { + return cc < GGML_CUDA_CC_VOLTA || ne11 < MMQ_DP4A_MAX_BATCH_SIZE; } - return (cc < CC_RDNA3 && cc != CC_CDNA && cc != CC_VEGA20) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE; + return (cc < GGML_CUDA_CC_RDNA3 && cc != GGML_CUDA_CC_CDNA && cc != GGML_CUDA_CC_VEGA20) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE; } diff --git a/src/ggml-cuda/mmq.cuh b/src/ggml-cuda/mmq.cuh index 8d8867121..3cd508a1d 100644 --- a/src/ggml-cuda/mmq.cuh +++ b/src/ggml-cuda/mmq.cuh @@ -89,9 +89,9 @@ struct tile_x_sizes { static constexpr int get_mmq_x_max_host(const int cc) { return int8_mma_available(cc) ? 128 : #ifdef GGML_CUDA_FORCE_MMQ - cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? 128 : 64; + cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD ? 128 : 64; #else - cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? MMQ_DP4A_MAX_BATCH_SIZE : 64; + cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD ? MMQ_DP4A_MAX_BATCH_SIZE : 64; #endif // GGML_CUDA_FORCE_MMQ } @@ -104,23 +104,23 @@ static constexpr __device__ int get_mmq_x_max_device() { return 128; #else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) -#if __CUDA_ARCH__ >= CC_VOLTA +#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA #ifdef GGML_CUDA_FORCE_MMQ return MMQ_DP4A_MAX_BATCH_SIZE; #else // GGML_CUDA_FORCE_MMQ return 128; #endif // GGML_CUDA_FORCE_MMQ -#else // __CUDA_ARCH__ >= CC_VOLTA +#else // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA return 64; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA #endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) #endif // INT8_MMA_AVAILABLE } static constexpr int get_mmq_y_host(const int cc) { - return cc >= CC_OFFSET_AMD ? (cc == CC_RDNA1 ? 64 : 128) : (cc >= CC_VOLTA ? 128 : 64); + return cc >= GGML_CUDA_CC_OFFSET_AMD ? (cc == GGML_CUDA_CC_RDNA1 ? 64 : 128) : (cc >= GGML_CUDA_CC_VOLTA ? 128 : 64); } static constexpr __device__ int get_mmq_y_device() { @@ -131,11 +131,11 @@ static constexpr __device__ int get_mmq_y_device() { return 128; #endif // defined RDNA1 #else -#if __CUDA_ARCH__ >= CC_VOLTA +#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA return 128; #else return 64; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA #endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) } @@ -2574,11 +2574,11 @@ template __launch_bounds__(WARP_SIZE*nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN) #else -#if __CUDA_ARCH__ >= CC_VOLTA +#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA __launch_bounds__(WARP_SIZE*nwarps, 1) #else __launch_bounds__(WARP_SIZE*nwarps, 2) -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA #endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) static __global__ void mul_mat_q( const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup, @@ -2594,7 +2594,7 @@ static __global__ void mul_mat_q( constexpr int mmq_y = get_mmq_y_device(); // On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead: -#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA +#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA { constexpr bool fixup = false; mul_mat_q_process_tile @@ -2602,7 +2602,7 @@ static __global__ void mul_mat_q( blockIdx.x, blockIdx.y, 0, ne00/qk); return; } -#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA +#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA const int64_t blocks_per_ne00 = ne00 / qk; constexpr int blocks_per_iter = MMQ_ITER_K / qk; @@ -2825,7 +2825,7 @@ void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cuda const int mmq_x_max = get_mmq_x_max_host(cc); const int mmq_y = get_mmq_y_host(cc); const int block_num_y = (args.ne01 + mmq_y - 1) / mmq_y; - const bool use_stream_k = cc >= CC_VOLTA && cc < CC_OFFSET_AMD; + const bool use_stream_k = cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD; int mmq_x_best = 0; int nparts_best = INT_MAX; diff --git a/src/ggml-cuda/mmvq.cu b/src/ggml-cuda/mmvq.cu index 02d150983..e3b912d87 100644 --- a/src/ggml-cuda/mmvq.cu +++ b/src/ggml-cuda/mmvq.cu @@ -142,7 +142,7 @@ static void mul_mat_vec_q_cuda( int64_t nwarps = 1; int64_t rows_per_cuda_block = 1; - if (ggml_cuda_info().devices[id].cc < CC_CDNA || ggml_cuda_info().devices[id].cc == CC_RDNA1) { // NVIDIA and AMD older than RDNA2 but not CDNA + if (ggml_cuda_info().devices[id].cc < GGML_CUDA_CC_CDNA || ggml_cuda_info().devices[id].cc == GGML_CUDA_CC_RDNA1) { // NVIDIA and AMD older than RDNA2 but not CDNA switch(ncols_y) { case 1: nwarps = 4; diff --git a/src/ggml-cuda/sum.cu b/src/ggml-cuda/sum.cu index 31cfe5394..e0dafc1d2 100644 --- a/src/ggml-cuda/sum.cu +++ b/src/ggml-cuda/sum.cu @@ -3,8 +3,6 @@ #endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700 #ifdef USE_CUB -// On Windows CUB uses libraries with variables called CC_PASCAL which conflict with the define in common.cuh. -// For this reason CUB must be included BEFORE anything else. #include using namespace cub; #endif // USE_CUB From 2653d31ce3fd28a13fda6535e15a0ec0889d4cac Mon Sep 17 00:00:00 2001 From: Eve <139727413+netrunnereve@users.noreply.github.com> Date: Tue, 10 Dec 2024 19:33:23 +0000 Subject: [PATCH 3/6] vulkan: dynamic subgroup size for the remaining k quants (llama/10745) * q5_k q4_k q3_k q2_k q6_k multi row example * revert as multi row isnt faster for k quants --- src/ggml-vulkan/ggml-vulkan.cpp | 30 ++++++++----------- .../vulkan-shaders/mul_mat_vec_base.comp | 2 -- .../vulkan-shaders/mul_mat_vec_q2_k.comp | 27 ++++++++++------- .../vulkan-shaders/mul_mat_vec_q3_k.comp | 27 ++++++++++------- .../vulkan-shaders/mul_mat_vec_q4_k.comp | 26 +++++++++------- .../vulkan-shaders/mul_mat_vec_q5_k.comp | 21 ++++++++----- 6 files changed, 72 insertions(+), 61 deletions(-) diff --git a/src/ggml-vulkan/ggml-vulkan.cpp b/src/ggml-vulkan/ggml-vulkan.cpp index ad5535c11..bb9572d76 100644 --- a/src/ggml-vulkan/ggml-vulkan.cpp +++ b/src/ggml-vulkan/ggml-vulkan.cpp @@ -44,12 +44,6 @@ #define MAX_VK_BUFFERS 256 -#ifndef K_QUANTS_PER_ITERATION -#define K_QUANTS_PER_ITERATION 1 -#else -static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2"); -#endif - #define VK_CHECK(err, msg) \ do { \ vk::Result err_ = (err); \ @@ -1792,10 +1786,10 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); @@ -1806,10 +1800,10 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size}, 1, true); @@ -1820,10 +1814,10 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); diff --git a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp index 2ec1af5c7..3894fca82 100644 --- a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp +++ b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp @@ -2,8 +2,6 @@ #extension GL_EXT_shader_16bit_storage : require #extension GL_EXT_shader_8bit_storage : require -#define K_QUANTS_PER_ITERATION 2 - #ifdef MUL_MAT_ID #define EXPERT_COUNT 8 #endif diff --git a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp index fcf02210e..1a5350d99 100644 --- a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp +++ b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp @@ -3,9 +3,11 @@ #include "mul_mat_vec_base.comp" -layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in; +layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; -shared FLOAT_TYPE tmp[32]; +layout (constant_id = 0) const uint BLOCK_SIZE = 32; + +shared FLOAT_TYPE tmp[BLOCK_SIZE]; void main() { const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; @@ -20,22 +22,25 @@ void main() { const uint num_blocks_per_row = p.ncols / QUANT_K; const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; - const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 - const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1 + // 16 threads are used to process each block + const uint it_size = gl_WorkGroupSize.x/16; + const uint tid = gl_LocalInvocationID.x; + const uint itid = tid%16; // 0...16 + const uint ix = tid/16; - const uint step = 16/K_QUANTS_PER_ITERATION; // 16 or 8 + const uint step = 8; - const uint v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... - const uint v_in = tid - step*v_im; // 0...15 or 0...7 + const uint v_im = itid/step; // 0 or 1. 0 computes 0..., 1 computes 128... + const uint v_in = itid - step*v_im; // 0...15 or 0...7 - const uint l0 = K_QUANTS_PER_ITERATION*v_in; // 0...15 + const uint l0 = 2*v_in; // 0...15 const uint q_offset = 32*v_im + l0; const uint s_offset = 8*v_im; const uint y_offset = 128*v_im + l0; FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp - [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { + [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { const uint y_idx = i * QUANT_K + y_offset; f16vec2 d = data_a[ib0 + i].d; @@ -71,7 +76,7 @@ void main() { FLOAT_TYPE sum1 = FLOAT_TYPE(0.0); FLOAT_TYPE sum2 = FLOAT_TYPE(0.0); - [[unroll]] for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { + [[unroll]] for (int l = 0; l < 2; ++l) { sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3), fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3), fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3), @@ -96,7 +101,7 @@ void main() { // sum up partial sums and write back result barrier(); - [[unroll]] for (uint s = 16; s > 0; s >>= 1) { + [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } diff --git a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp index 723fadde0..b19c38111 100644 --- a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp +++ b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp @@ -3,9 +3,11 @@ #include "mul_mat_vec_base.comp" -layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in; +layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; -shared FLOAT_TYPE tmp[32]; +layout (constant_id = 0) const uint BLOCK_SIZE = 32; + +shared FLOAT_TYPE tmp[BLOCK_SIZE]; void main() { const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; @@ -20,17 +22,20 @@ void main() { const uint num_blocks_per_row = p.ncols / QUANT_K; const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; - const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 - const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1 + // 16 threads are used to process each block + const uint it_size = gl_WorkGroupSize.x/16; + const uint tid = gl_LocalInvocationID.x; + const uint itid = tid%16; // 0...16 + const uint ix = tid/16; - const uint step = 16/K_QUANTS_PER_ITERATION; // 16 or 8 + const uint step = 8; - const uint v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... - const uint v_in = tid - step*v_im; // 0...15 or 0...7 + const uint v_im = itid/step; // 0 or 1. 0 computes 0..., 1 computes 128... + const uint v_in = itid - step*v_im; // 0...15 or 0...7 const uint8_t m = uint8_t(1 << (4 * v_im)); - const uint l0 = K_QUANTS_PER_ITERATION*v_in; // 0...15 + const uint l0 = 2*v_in; // 0...15 const uint q_offset = 32*v_im + l0; const uint y_offset = 128*v_im + l0; @@ -38,7 +43,7 @@ void main() { const uint s_shift = 4 * v_im; - [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { + [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { const uint y_idx = i * QUANT_K + y_offset; const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); @@ -66,7 +71,7 @@ void main() { u8vec2 s10 = unpack8(s10_16); FLOAT_TYPE sum = FLOAT_TYPE(0.0); - for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { + [[unroll]] for (int l = 0; l < 2; ++l) { sum = fma(FLOAT_TYPE(b0[l]) * FLOAT_TYPE(int8_t(((s0[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 0)) != 0) ? 0 : 4)), fma(FLOAT_TYPE(b32[l]) * FLOAT_TYPE(int8_t(((s2[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 1)) != 0) ? 0 : 4)), fma(FLOAT_TYPE(b64[l]) * FLOAT_TYPE(int8_t(((s4[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 2)) != 0) ? 0 : 4)), @@ -83,7 +88,7 @@ void main() { // sum up partial sums and write back result barrier(); - [[unroll]] for (uint s = 16; s > 0; s >>= 1) { + [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } diff --git a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp index 5846f2e86..b86d28589 100644 --- a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp +++ b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp @@ -4,11 +4,12 @@ #include "mul_mat_vec_base.comp" -layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in; +layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; -shared FLOAT_TYPE tmp[32]; +layout (constant_id = 0) const uint BLOCK_SIZE = 32; + +shared FLOAT_TYPE tmp[BLOCK_SIZE]; -// This shader assumes K_QUANTS_PER_ITERATION == 2 for alignment of loads void main() { const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; @@ -22,14 +23,17 @@ void main() { const uint num_blocks_per_row = p.ncols / QUANT_K; const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; - const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 - const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1 + // 16 threads are used to process each block + const uint it_size = gl_WorkGroupSize.x/16; + const uint tid = gl_LocalInvocationID.x; + const uint itid = tid%16; // 0...16 + const uint ix = tid/16; - const uint step = 8/K_QUANTS_PER_ITERATION; // 8 or 4 + const uint step = 4; - const uint il = tid/step; // 0...3 - const uint ir = tid - step*il; // 0...7 or 0...3 - const uint n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4 + const uint il = itid/step; // 0...3 + const uint ir = itid - step*il; // 0...7 or 0...3 + const uint n = 4; const uint v_im = il / 2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 const uint v_in = il % 2; @@ -40,7 +44,7 @@ void main() { FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp - [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { + [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { const uint y1_idx = i * QUANT_K + y_offset; const uint y2_idx = y1_idx + 128; @@ -115,7 +119,7 @@ void main() { // sum up partial sums and write back result barrier(); - [[unroll]] for (uint s = 16; s > 0; s >>= 1) { + [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } diff --git a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp index b455cbd31..fd243cf91 100644 --- a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp +++ b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp @@ -4,9 +4,11 @@ #include "mul_mat_vec_base.comp" -layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in; +layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; -shared FLOAT_TYPE tmp[32]; +layout (constant_id = 0) const uint BLOCK_SIZE = 32; + +shared FLOAT_TYPE tmp[BLOCK_SIZE]; void main() { const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; @@ -21,11 +23,14 @@ void main() { const uint num_blocks_per_row = p.ncols / QUANT_K; const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; - const uint tid = gl_LocalInvocationID.x/2; // 0...31 or 0...16 - const uint ix = gl_LocalInvocationID.x%2; // 0 or 0, 1 + // 16 threads are used to process each block + const uint it_size = gl_WorkGroupSize.x/16; + const uint tid = gl_LocalInvocationID.x; + const uint itid = tid%16; // 0...16 + const uint ix = tid/16; - const uint il = tid/4; // 0...3 - const uint ir = tid - 4*il; // 0...7 or 0...3 + const uint il = itid/4; // 0...3 + const uint ir = itid - 4*il; // 0...7 or 0...3 const uint v_im = il / 2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 const uint v_in = il % 2; @@ -36,7 +41,7 @@ void main() { FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp - [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += 2) { + [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { const uint y1_idx = i * QUANT_K + y_offset; const uint y2_idx = y1_idx + 128; @@ -143,7 +148,7 @@ void main() { // sum up partial sums and write back result barrier(); - [[unroll]] for (uint s = 16; s > 0; s >>= 1) { + [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } From e0d06b747a964bd8af3d0ed2dabcd2ffeafdae31 Mon Sep 17 00:00:00 2001 From: Jeff Bolz Date: Tue, 10 Dec 2024 14:23:17 -0600 Subject: [PATCH 4/6] vulkan: request round-to-even for fp16 in im2col/rope_head (llama/10767) Vulkan doesn't mandate a specific rounding mode, but the shader_float_controls feature allows rounding mode to be requested if the implementation supports it. --- src/ggml-vulkan/ggml-vulkan.cpp | 23 +++++++++++++++---- src/ggml-vulkan/vulkan-shaders/im2col.comp | 5 ++++ src/ggml-vulkan/vulkan-shaders/rope_head.comp | 5 ++++ .../vulkan-shaders/vulkan-shaders-gen.cpp | 3 +++ 4 files changed, 31 insertions(+), 5 deletions(-) diff --git a/src/ggml-vulkan/ggml-vulkan.cpp b/src/ggml-vulkan/ggml-vulkan.cpp index bb9572d76..a8ae58ee2 100644 --- a/src/ggml-vulkan/ggml-vulkan.cpp +++ b/src/ggml-vulkan/ggml-vulkan.cpp @@ -162,6 +162,7 @@ struct vk_device_struct { uint32_t subgroup_size; uint32_t shader_core_count; bool uma; + bool float_controls_rte_fp16; bool coopmat2; bool coopmat_support; @@ -1916,17 +1917,26 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16_wg512, "soft_max_f32_f16_wg512", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1); ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f32, "rope_norm_f32", rope_norm_f32_len, rope_norm_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); - ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_len, rope_norm_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); - ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); - ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); + + if (device->float_controls_rte_fp16) { + ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_rte_len, rope_norm_f16_rte_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_rte_len, rope_neox_f16_rte_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); + } else { + ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_len, rope_norm_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); + } ggml_vk_create_pipeline(device, device->pipeline_argsort_f32, "argsort_f32", argsort_f32_len, argsort_f32_data, "main", 2, sizeof(vk_op_argsort_push_constants), {1024, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_sum_rows_f32, "sum_rows_f32", sum_rows_f32_len, sum_rows_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1); ggml_vk_create_pipeline(device, device->pipeline_im2col_f32, "im2col_f32", im2col_f32_len, im2col_f32_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1); - ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_len, im2col_f32_f16_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1); + if (device->float_controls_rte_fp16) { + ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_rte_len, im2col_f32_f16_rte_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1); + } else { + ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_len, im2col_f32_f16_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1); + } ggml_vk_create_pipeline(device, device->pipeline_timestep_embedding_f32, "timestep_embedding_f32", timestep_embedding_f32_len, timestep_embedding_f32_data, "main", 2, sizeof(vk_op_timestep_embedding_push_constants), {256, 1, 1}, {}, 1); @@ -2007,11 +2017,13 @@ static vk_device ggml_vk_get_device(size_t idx) { vk::PhysicalDeviceDriverProperties driver_props; vk::PhysicalDeviceShaderSMBuiltinsPropertiesNV sm_props; vk::PhysicalDeviceShaderCoreProperties2AMD amd_shader_core_properties2_props; + vk::PhysicalDeviceVulkan12Properties vk12_props; props2.pNext = &props3; props3.pNext = &subgroup_props; subgroup_props.pNext = &driver_props; + driver_props.pNext = &vk12_props; - VkBaseOutStructure * last_struct = (VkBaseOutStructure *)&driver_props; + VkBaseOutStructure * last_struct = (VkBaseOutStructure *)&vk12_props; if (maintenance4_support) { last_struct->pNext = (VkBaseOutStructure *)&props4; @@ -2057,6 +2069,7 @@ static vk_device ggml_vk_get_device(size_t idx) { } else { device->shader_core_count = 0; } + device->float_controls_rte_fp16 = vk12_props.shaderRoundingModeRTEFloat16; const bool force_disable_f16 = getenv("GGML_VK_DISABLE_F16") != nullptr; diff --git a/src/ggml-vulkan/vulkan-shaders/im2col.comp b/src/ggml-vulkan/vulkan-shaders/im2col.comp index 4d48610a3..966fedf8f 100644 --- a/src/ggml-vulkan/vulkan-shaders/im2col.comp +++ b/src/ggml-vulkan/vulkan-shaders/im2col.comp @@ -1,6 +1,11 @@ #version 450 #extension GL_EXT_shader_16bit_storage : require +#extension GL_EXT_spirv_intrinsics: enable + +#if RTE16 +spirv_execution_mode(capabilities = [4467], 4462, 16); // RoundingModeRTE, 16 bits +#endif layout (push_constant) uniform parameter { diff --git a/src/ggml-vulkan/vulkan-shaders/rope_head.comp b/src/ggml-vulkan/vulkan-shaders/rope_head.comp index ea8954226..574b51ca5 100644 --- a/src/ggml-vulkan/vulkan-shaders/rope_head.comp +++ b/src/ggml-vulkan/vulkan-shaders/rope_head.comp @@ -1,6 +1,11 @@ #include "types.comp" #extension GL_EXT_shader_16bit_storage : require +#extension GL_EXT_spirv_intrinsics: enable + +#if RTE16 +spirv_execution_mode(capabilities = [4467], 4462, 16); // RoundingModeRTE, 16 bits +#endif layout(local_size_x = 1, local_size_y = 256, local_size_z = 1) in; diff --git a/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp b/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp index ee3520833..c48a228ae 100644 --- a/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp @@ -461,9 +461,11 @@ void process_shaders() { string_to_spv("rope_norm_f32", "rope_norm.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); string_to_spv("rope_norm_f16", "rope_norm.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}}); + string_to_spv("rope_norm_f16_rte", "rope_norm.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"RTE16", "1"}}); string_to_spv("rope_neox_f32", "rope_neox.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); string_to_spv("rope_neox_f16", "rope_neox.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}}); + string_to_spv("rope_neox_f16_rte", "rope_neox.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"RTE16", "1"}}); string_to_spv("argsort_f32", "argsort.comp", {{"A_TYPE", "float"}}); @@ -471,6 +473,7 @@ void process_shaders() { string_to_spv("im2col_f32", "im2col.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); string_to_spv("im2col_f32_f16", "im2col.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}})); + string_to_spv("im2col_f32_f16_rte", "im2col.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}, {"RTE16", "1"}})); string_to_spv("timestep_embedding_f32", "timestep_embedding.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); From 8fb4f536b8ba58318761f217f8861c8a2a912e43 Mon Sep 17 00:00:00 2001 From: Gilad S <7817232+giladgd@users.noreply.github.com> Date: Wed, 11 Dec 2024 02:47:21 +0200 Subject: [PATCH 5/6] ggml: load all backends from a user-provided search path (llama/10699) * feat: load all backends from a user-provided search path * fix: Windows search path * refactor: rename `ggml_backend_load_all_in_search_path` to `ggml_backend_load_all_from_path` * refactor: rename `search_path` to `dir_path` * fix: change `NULL` to `nullptr` Co-authored-by: Diego Devesa * fix: change `NULL` to `nullptr` --------- Co-authored-by: Diego Devesa --- include/ggml-backend.h | 1 + src/ggml-backend-reg.cpp | 40 +++++++++++++++++++++++++++------------- 2 files changed, 28 insertions(+), 13 deletions(-) diff --git a/include/ggml-backend.h b/include/ggml-backend.h index 19881a505..7221a0830 100644 --- a/include/ggml-backend.h +++ b/include/ggml-backend.h @@ -228,6 +228,7 @@ extern "C" { GGML_API void ggml_backend_unload(ggml_backend_reg_t reg); // Load all known backends from dynamic libraries GGML_API void ggml_backend_load_all(void); + GGML_API void ggml_backend_load_all_from_path(const char * dir_path); // // Backend scheduler diff --git a/src/ggml-backend-reg.cpp b/src/ggml-backend-reg.cpp index 5cb0fb9d1..2e7340145 100644 --- a/src/ggml-backend-reg.cpp +++ b/src/ggml-backend-reg.cpp @@ -449,11 +449,21 @@ static std::string backend_filename_suffix() { #endif } -static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent) { +static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, const char * user_search_path) { // enumerate all the files that match [lib]ggml-name-*.[so|dll] in the search paths // TODO: search system paths - std::vector search_paths = { "./", get_executable_path() }; std::string file_prefix = backend_filename_prefix() + name + "-"; + std::vector search_paths; + if (user_search_path == nullptr) { + search_paths.push_back("./"); + search_paths.push_back(get_executable_path()); + } else { +#if defined(_WIN32) + search_paths.push_back(std::string(user_search_path) + "\\"); +#else + search_paths.push_back(std::string(user_search_path) + "/"); +#endif + } int best_score = 0; std::string best_path; @@ -509,21 +519,25 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent) } void ggml_backend_load_all() { + ggml_backend_load_all_from_path(nullptr); +} + +void ggml_backend_load_all_from_path(const char * dir_path) { #ifdef NDEBUG bool silent = true; #else bool silent = false; #endif - ggml_backend_load_best("blas", silent); - ggml_backend_load_best("cann", silent); - ggml_backend_load_best("cuda", silent); - ggml_backend_load_best("hip", silent); - ggml_backend_load_best("kompute", silent); - ggml_backend_load_best("metal", silent); - ggml_backend_load_best("rpc", silent); - ggml_backend_load_best("sycl", silent); - ggml_backend_load_best("vulkan", silent); - ggml_backend_load_best("musa", silent); - ggml_backend_load_best("cpu", silent); + ggml_backend_load_best("blas", silent, dir_path); + ggml_backend_load_best("cann", silent, dir_path); + ggml_backend_load_best("cuda", silent, dir_path); + ggml_backend_load_best("hip", silent, dir_path); + ggml_backend_load_best("kompute", silent, dir_path); + ggml_backend_load_best("metal", silent, dir_path); + ggml_backend_load_best("rpc", silent, dir_path); + ggml_backend_load_best("sycl", silent, dir_path); + ggml_backend_load_best("vulkan", silent, dir_path); + ggml_backend_load_best("musa", silent, dir_path); + ggml_backend_load_best("cpu", silent, dir_path); } From b374c321e8a92c6a1285592da4bfcadcad61582a Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Thu, 12 Dec 2024 18:17:20 +0200 Subject: [PATCH 6/6] sync : llama.cpp ggml-ci --- scripts/sync-llama.last | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scripts/sync-llama.last b/scripts/sync-llama.last index 2d58c04ee..59f2814e0 100644 --- a/scripts/sync-llama.last +++ b/scripts/sync-llama.last @@ -1 +1 @@ -26a8406ba9198eb6fdd8329fa717555b4f77f05f +9fdb1243049aa7e8211693f116daf2052d47507d