From 098c14eef3fe901a84d07f500ce0df826435b1df Mon Sep 17 00:00:00 2001 From: Heiner Date: Thu, 9 May 2024 17:12:07 +0200 Subject: [PATCH] Move print to logging: Fixes. --- convert_grok.py | 25 +++++++++++++------------ 1 file changed, 13 insertions(+), 12 deletions(-) diff --git a/convert_grok.py b/convert_grok.py index aba0793b224faa..d71d647ddf86c9 100644 --- a/convert_grok.py +++ b/convert_grok.py @@ -11,6 +11,7 @@ """ import argparse +import logging import mmap import os import pathlib @@ -34,8 +35,6 @@ import gguf -logger = logging.getLogger("convert_grok") - GGML_QK8_0 = 32 GGML_QK4_0 = 32 GGML_QK4_1 = 32 @@ -216,7 +215,7 @@ def dump_state_dict(f, ggml_type, input_dir, config): tensor_ggml_type, ) weights[name] = weight, scales - logger.info("Loaded", len(weight_names), "files") + logging.debug("Loaded %i files", len(weight_names)) f.write_header_to_file() f.write_kv_data_to_file() @@ -232,21 +231,23 @@ def dump_state_dict(f, ggml_type, input_dir, config): _, tensor_ggml_type = get_dtype_and_ggml_type(tensor, ggml_type) array = maybe_quantize_tensor(tensor, tensor_ggml_type).numpy() - logger.debug( - f"dumping {name}:", - f"{tensor_ggml_type.name}/{array.dtype}, {list(tensor.shape)}, {array.nbytes} bytes", + logging.info( + f"dumping {name}:" + f"{tensor_ggml_type.name}/{array.dtype}, {list(tensor.shape)}, {array.nbytes} bytes" ) f.write_tensor_data(array) tensor_info.append((name, list(tensor.shape), tensor_ggml_type.name)) try: - print(tabulate(tensor_info, headers=["name", "shape", "dtype"], tablefmt="psql")) # noqa: NP100 + print( + tabulate(tensor_info, headers=["name", "shape", "dtype"], tablefmt="psql") + ) # noqa: NP100 except NameError: pass if len(tensor_info) != len(weight_names): - logger.warning("Not all tensors are converted") + logging.warning("Not all tensors are converted") def from_numpy(array): @@ -379,7 +380,7 @@ def ffn_size(emb_size, widening_factor): config.num_experts = len(config.experts) assert config.num_experts >= 2, "need at least 2 experts" - logger.info("experts to export:", config.experts) + logging.info("experts to export: %s", config.experts) f = gguf.GGUFWriter(args.save_path, "grok", endianess=gguf.GGUFEndian.LITTLE) @@ -411,12 +412,12 @@ def ffn_size(emb_size, widening_factor): delta = time.time() - start - logger.info(f"grok GGUF model saved to {args.save_path}. Total time {delta:.2f} sec") + logging.info(f"grok GGUF model saved to {args.save_path}. Total time {delta:.2f} sec") def load_vocab(path): def load_spm(p): - logger.info(f"Loading vocab file {p}") + logging.info(f"Loading vocab file {p}") return SentencePieceVocab(p) # Be extra-friendly and accept either a file or a directory. Also, if it's @@ -452,7 +453,7 @@ def main(): args = parser.parse_args() logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) - + vocab = load_vocab( pathlib.Path(args.vocab_dir) if args.vocab_dir else pathlib.Path(args.input_dir) )