From 554c247caffed64465f372661f2826640cb10430 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 4 Jun 2024 21:23:20 +0300 Subject: [PATCH] ggml : remove OpenCL (#7735) ggml-ci --- .github/workflows/build.yml | 36 +- CMakeLists.txt | 23 +- Makefile | 17 - README-sycl.md | 2 +- README.md | 116 +- common/common.cpp | 1 - examples/llama-bench/README.md | 9 +- examples/llama-bench/llama-bench.cpp | 11 +- examples/main-cmake-pkg/README.md | 8 +- flake.nix | 1 - ggml-metal.h | 2 +- ggml-opencl.cpp | 2305 -------------------------- ggml-opencl.h | 36 - ggml.c | 62 +- ggml.h | 1 - llama.cpp | 10 +- scripts/LlamaConfig.cmake.in | 5 - scripts/compare-llama-bench.py | 6 +- scripts/server-llm.sh | 11 +- scripts/sync-ggml-am.sh | 4 - scripts/sync-ggml.sh | 2 - 21 files changed, 29 insertions(+), 2639 deletions(-) delete mode 100644 ggml-opencl.cpp delete mode 100644 ggml-opencl.h diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index e824136a56e16..93669d5312214 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -688,8 +688,6 @@ jobs: env: OPENBLAS_VERSION: 0.3.23 - OPENCL_VERSION: 2023.04.17 - CLBLAST_VERSION: 1.6.0 SDE_VERSION: 9.33.0-2024-01-07 VULKAN_VERSION: 1.3.261.1 @@ -706,8 +704,6 @@ jobs: defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF -DBUILD_SHARED_LIBS=ON' - build: 'avx512-x64' defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON' - - build: 'clblast-x64' - defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"' - build: 'openblas-x64' defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"' - build: 'kompute-x64' @@ -732,27 +728,6 @@ jobs: run: | git submodule update --init kompute - - name: Download OpenCL SDK - id: get_opencl - if: ${{ matrix.build == 'clblast-x64' }} - run: | - curl.exe -o $env:RUNNER_TEMP/opencl.zip -L "https://github.com/KhronosGroup/OpenCL-SDK/releases/download/v${env:OPENCL_VERSION}/OpenCL-SDK-v${env:OPENCL_VERSION}-Win-x64.zip" - mkdir $env:RUNNER_TEMP/opencl - tar.exe -xvf $env:RUNNER_TEMP/opencl.zip --strip-components=1 -C $env:RUNNER_TEMP/opencl - - - name: Download CLBlast - id: get_clblast - if: ${{ matrix.build == 'clblast-x64' }} - run: | - curl.exe -o $env:RUNNER_TEMP/clblast.7z -L "https://github.com/CNugteren/CLBlast/releases/download/${env:CLBLAST_VERSION}/CLBlast-${env:CLBLAST_VERSION}-windows-x64.7z" - curl.exe -o $env:RUNNER_TEMP/CLBlast.LICENSE.txt -L "https://github.com/CNugteren/CLBlast/raw/${env:CLBLAST_VERSION}/LICENSE" - 7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/clblast.7z - rename-item $env:RUNNER_TEMP/CLBlast-${env:CLBLAST_VERSION}-windows-x64 clblast - foreach ($f in (gci -Recurse -Path "$env:RUNNER_TEMP/clblast" -Filter '*.cmake')) { - $txt = Get-Content -Path $f -Raw - $txt.Replace('C:/vcpkg/packages/opencl_x64-windows/', "$($env:RUNNER_TEMP.Replace('\','/'))/opencl/") | Set-Content -Path $f -Encoding UTF8 - } - - name: Download OpenBLAS id: get_openblas if: ${{ matrix.build == 'openblas-x64' }} @@ -786,13 +761,6 @@ jobs: cmake -S . -B build ${{ matrix.defines }} cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} - - name: Add clblast.dll - id: add_clblast_dll - if: ${{ matrix.build == 'clblast-x64' }} - run: | - cp $env:RUNNER_TEMP/clblast/lib/clblast.dll ./build/bin/Release - cp $env:RUNNER_TEMP/CLBlast.LICENSE.txt ./build/bin/Release/CLBlast-${env:CLBLAST_VERSION}.txt - - name: Add libopenblas.dll id: add_libopenblas_dll if: ${{ matrix.build == 'openblas-x64' }} @@ -816,7 +784,7 @@ jobs: - name: Test id: cmake_test # not all machines have native AVX-512 - if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'clblast-x64' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }} + if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }} run: | cd build ctest -L main -C Release --verbose --timeout 900 @@ -1071,7 +1039,7 @@ jobs: # hypervisor: 'qemu' # run: | # sudo pkg update -# sudo pkg install -y gmake automake autoconf pkgconf llvm15 clinfo clover opencl clblast openblas +# sudo pkg install -y gmake automake autoconf pkgconf llvm15 openblas # gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j `sysctl -n hw.ncpu` release: diff --git a/CMakeLists.txt b/CMakeLists.txt index 76ea27412caf3..cf37d5bb242ac 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -111,7 +111,6 @@ option(LLAMA_CUDA_FA_ALL_QUANTS "llama: compile all quants for Flas option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF) option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF) option(LLAMA_HIP_UMA "llama: use HIP unified memory architecture" OFF) -option(LLAMA_CLBLAST "llama: use CLBlast" OFF) option(LLAMA_VULKAN "llama: use Vulkan" OFF) option(LLAMA_VULKAN_CHECK_RESULTS "llama: run Vulkan op checks" OFF) option(LLAMA_VULKAN_DEBUG "llama: enable Vulkan debug output" OFF) @@ -502,22 +501,6 @@ if (LLAMA_RPC) set(GGML_SOURCES_RPC ggml-rpc.cpp) endif() -if (LLAMA_CLBLAST) - find_package(CLBlast) - if (CLBlast_FOUND) - message(STATUS "CLBlast found") - - set(GGML_HEADERS_OPENCL ggml-opencl.h) - set(GGML_SOURCES_OPENCL ggml-opencl.cpp) - - add_compile_definitions(GGML_USE_CLBLAST) - - set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} clblast) - else() - message(WARNING "CLBlast not found") - endif() -endif() - if (LLAMA_VULKAN) find_package(Vulkan) if (Vulkan_FOUND) @@ -1265,7 +1248,6 @@ add_library(ggml OBJECT ggml-quants.c ggml-quants.h ${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA} - ${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL} ${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL} ${GGML_SOURCES_RPC} ${GGML_HEADERS_RPC} ${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA} @@ -1353,8 +1335,9 @@ install(FILES ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Llama) set(GGML_PUBLIC_HEADERS "ggml.h" "ggml-alloc.h" "ggml-backend.h" - "${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}" - "${GGML_HEADERS_METAL}" "${GGML_HEADERS_EXTRA}") + "${GGML_HEADERS_CUDA}" + "${GGML_HEADERS_METAL}" + "${GGML_HEADERS_EXTRA}") set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}") install(TARGETS ggml PUBLIC_HEADER) diff --git a/Makefile b/Makefile index 27eb69871322c..802ee6a47654c 100644 --- a/Makefile +++ b/Makefile @@ -547,23 +547,6 @@ ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h $(NVCC_COMPILE) endif # LLAMA_CUDA -ifdef LLAMA_CLBLAST - MK_CPPFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags-only-I clblast OpenCL) - MK_CFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL) - MK_CXXFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL) - - # Mac provides OpenCL as a framework - ifeq ($(UNAME_S),Darwin) - MK_LDFLAGS += -lclblast -framework OpenCL - else - MK_LDFLAGS += $(shell pkg-config --libs clblast OpenCL) - endif - OBJS += ggml-opencl.o - -ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h - $(CXX) $(CXXFLAGS) -c $< -o $@ -endif # LLAMA_CLBLAST - ifdef LLAMA_VULKAN MK_CPPFLAGS += -DGGML_USE_VULKAN MK_LDFLAGS += -lvulkan diff --git a/README-sycl.md b/README-sycl.md index 37f0306dc4724..62b38135c01c0 100644 --- a/README-sycl.md +++ b/README-sycl.md @@ -29,7 +29,7 @@ The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based o When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend. -It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, CLBlast etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose. +It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose. ## News diff --git a/README.md b/README.md index 1f2d9b1f23554..9d2a59d89d6f8 100644 --- a/README.md +++ b/README.md @@ -77,7 +77,7 @@ variety of hardware - locally and in the cloud. - AVX, AVX2 and AVX512 support for x86 architectures - 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use - Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP) -- Vulkan, SYCL, and (partial) OpenCL backend support +- Vulkan and SYCL backend support - CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity Since its [inception](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022), the project has @@ -371,16 +371,11 @@ In order to build llama.cpp you have four different options. 3. Install compilation dependencies. ```bash - sudo pkg install gmake automake autoconf pkgconf llvm15 clinfo clover \ - opencl clblast openblas + sudo pkg install gmake automake autoconf pkgconf llvm15 openblas gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4 ``` - **Notes:** With this packages you can build llama.cpp with OPENBLAS and - CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read - the instructions for use and activate this options in this document below. - ### Homebrew On Mac and Linux, the homebrew package manager can be used via @@ -399,7 +394,7 @@ argument. ### BLAS Build -Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS and CLBlast. There are currently several different BLAS implementations available for build and use: +Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS. There are currently several different BLAS implementations available for build and use: - #### Accelerate Framework: @@ -553,111 +548,6 @@ Building the program with BLAS support may lead to some performance improvements | LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. | | LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. | -- #### CLBlast - - OpenCL acceleration is provided by the matrix multiplication kernels from the [CLBlast](https://github.com/CNugteren/CLBlast) project and custom kernels for ggml that can generate tokens on the GPU. - - You will need the [OpenCL SDK](https://github.com/KhronosGroup/OpenCL-SDK). - - For Ubuntu, Debian, and Fedora the packages `opencl-headers`, `ocl-icd` may be needed. - - - For Windows, a pre-built SDK is available on the [OpenCL Releases](https://github.com/KhronosGroup/OpenCL-SDK/releases) page. - - -
- Installing the OpenCL SDK from source - - ```sh - git clone --recurse-submodules https://github.com/KhronosGroup/OpenCL-SDK.git - cd OpenCL-SDK - cmake -B build -DBUILD_DOCS=OFF \ - -DBUILD_EXAMPLES=OFF \ - -DBUILD_TESTING=OFF \ - -DOPENCL_SDK_BUILD_SAMPLES=OFF \ - -DOPENCL_SDK_TEST_SAMPLES=OFF - cmake --build build - cmake --install build --prefix /some/path - ``` -
- - ##### Installing CLBlast - - Pre-built CLBlast binaries may be found on the [CLBlast Releases](https://github.com/CNugteren/CLBlast/releases) page. For Unix variants, it may also be found in your operating system's packages. - - Linux packaging: - Fedora Linux: - ```bash - sudo dnf install clblast - ``` - - Alternatively, they may be built from source. - - -
- Windows: - - ```cmd - set OPENCL_SDK_ROOT="C:/OpenCL-SDK-v2023.04.17-Win-x64" - git clone https://github.com/CNugteren/CLBlast.git - cd CLBlast - cmake -B build -DBUILD_SHARED_LIBS=OFF -DOVERRIDE_MSVC_FLAGS_TO_MT=OFF -DTUNERS=OFF -DOPENCL_ROOT=%OPENCL_SDK_ROOT% -G "Visual Studio 17 2022" -A x64 - cmake --build build --config Release - cmake --install build --prefix C:/CLBlast - ``` - - (note: `--config Release` at build time is the default and only relevant for Visual Studio builds - or multi-config Ninja builds) - - -
- Unix: - - ```sh - git clone https://github.com/CNugteren/CLBlast.git - cd CLBlast - cmake -B build -DBUILD_SHARED_LIBS=OFF -DTUNERS=OFF - cmake --build build --config Release - cmake --install build --prefix /some/path - ``` - - Where `/some/path` is where the built library will be installed (default is `/usr/local`). -
- - ##### Building Llama with CLBlast - - - Build with make: - ```sh - make LLAMA_CLBLAST=1 - ``` - - CMake (Unix): - ```sh - cmake -B build -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path - cmake --build build --config Release - ``` - - CMake (Windows): - ```cmd - set CL_BLAST_CMAKE_PKG="C:/CLBlast/lib/cmake/CLBlast" - git clone https://github.com/ggerganov/llama.cpp - cd llama.cpp - cmake -B build -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=%CL_BLAST_CMAKE_PKG% -G "Visual Studio 17 2022" -A x64 - cmake --build build --config Release - cmake --install build --prefix C:/LlamaCPP - ``` - - ##### Running Llama with CLBlast - - The CLBlast build supports `--gpu-layers|-ngl` like the CUDA version does. - - To select the correct platform (driver) and device (GPU), you can use the environment variables `GGML_OPENCL_PLATFORM` and `GGML_OPENCL_DEVICE`. - The selection can be a number (starting from 0) or a text string to search: - - ```sh - GGML_OPENCL_PLATFORM=1 ./main ... - GGML_OPENCL_DEVICE=2 ./main ... - GGML_OPENCL_PLATFORM=Intel ./main ... - GGML_OPENCL_PLATFORM=AMD GGML_OPENCL_DEVICE=1 ./main ... - ``` - - The default behavior is to find the first GPU device, but when it is an integrated GPU on a laptop, for instance, the selectors are useful. - Using the variables it is possible to select a CPU-based driver as well, if so desired. - - You can get a list of platforms and devices from the `clinfo -l` command, etc. - - #### Vulkan **With docker**: diff --git a/common/common.cpp b/common/common.cpp index 022bfe28731ba..df583db8390d2 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -2844,7 +2844,6 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false"); fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false"); fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false"); - fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false"); fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false"); fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false"); fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false"); diff --git a/examples/llama-bench/README.md b/examples/llama-bench/README.md index 8578405646af7..fd95b35f46595 100644 --- a/examples/llama-bench/README.md +++ b/examples/llama-bench/README.md @@ -162,7 +162,7 @@ $ ./llama-bench -o csv ``` ```csv -build_commit,build_number,cuda,opencl,metal,gpu_blas,blas,cpu_info,gpu_info,model_filename,model_type,model_size,model_n_params,n_batch,n_threads,f16_kv,n_gpu_layers,main_gpu,mul_mat_q,tensor_split,n_prompt,n_gen,test_time,avg_ns,stddev_ns,avg_ts,stddev_ts +build_commit,build_number,cuda,metal,gpu_blas,blas,cpu_info,gpu_info,model_filename,model_type,model_size,model_n_params,n_batch,n_threads,f16_kv,n_gpu_layers,main_gpu,mul_mat_q,tensor_split,n_prompt,n_gen,test_time,avg_ns,stddev_ns,avg_ts,stddev_ts "3469684","1275","1","0","0","1","1","13th Gen Intel(R) Core(TM) i9-13900K","NVIDIA GeForce RTX 3090 Ti","models/7B/ggml-model-q4_0.gguf","llama 7B mostly Q4_0","3825065984","6738415616","512","16","1","99","0","1","0.00","512","0","2023-09-23T12:09:01Z","212155977","732372","2413.341687","8.305961" "3469684","1275","1","0","0","1","1","13th Gen Intel(R) Core(TM) i9-13900K","NVIDIA GeForce RTX 3090 Ti","models/7B/ggml-model-q4_0.gguf","llama 7B mostly Q4_0","3825065984","6738415616","512","16","1","99","0","1","0.00","0","128","2023-09-23T12:09:02Z","969320879","2728399","132.052051","0.371342" ``` @@ -179,7 +179,6 @@ $ ./llama-bench -o json "build_commit": "3469684", "build_number": 1275, "cuda": true, - "opencl": false, "metal": false, "gpu_blas": true, "blas": true, @@ -210,7 +209,6 @@ $ ./llama-bench -o json "build_commit": "3469684", "build_number": 1275, "cuda": true, - "opencl": false, "metal": false, "gpu_blas": true, "blas": true, @@ -253,7 +251,6 @@ CREATE TABLE IF NOT EXISTS test ( build_commit TEXT, build_number INTEGER, cuda INTEGER, - opencl INTEGER, metal INTEGER, gpu_blas INTEGER, blas INTEGER, @@ -279,6 +276,6 @@ CREATE TABLE IF NOT EXISTS test ( stddev_ts REAL ); -INSERT INTO test (build_commit, build_number, cuda, opencl, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '512', '0', '2023-09-23T12:10:30Z', '212693772', '743623', '2407.240204', '8.409634'); -INSERT INTO test (build_commit, build_number, cuda, opencl, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '0', '128', '2023-09-23T12:10:31Z', '977925003', '4037361', '130.891159', '0.537692'); +INSERT INTO test (build_commit, build_number, cuda, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '512', '0', '2023-09-23T12:10:30Z', '212693772', '743623', '2407.240204', '8.409634'); +INSERT INTO test (build_commit, build_number, cuda, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '0', '128', '2023-09-23T12:10:31Z', '977925003', '4037361', '130.891159', '0.537692'); ``` diff --git a/examples/llama-bench/llama-bench.cpp b/examples/llama-bench/llama-bench.cpp index 5d3cbd842dc69..fa7ad1bdb9e4a 100644 --- a/examples/llama-bench/llama-bench.cpp +++ b/examples/llama-bench/llama-bench.cpp @@ -723,7 +723,6 @@ struct test { static const std::string build_commit; static const int build_number; static const bool cuda; - static const bool opencl; static const bool vulkan; static const bool kompute; static const bool metal; @@ -812,9 +811,6 @@ struct test { if (cuda) { return GGML_CUDA_NAME; } - if (opencl) { - return "OpenCL"; - } if (vulkan) { return "Vulkan"; } @@ -843,7 +839,7 @@ struct test { static const std::vector & get_fields() { static const std::vector fields = { "build_commit", "build_number", - "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas", + "cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas", "cpu_info", "gpu_info", "model_filename", "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", @@ -869,7 +865,7 @@ struct test { field == "avg_ns" || field == "stddev_ns") { return INT; } - if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" || + if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" || field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" || field == "flash_attn" || field == "use_mmap" || field == "embeddings") { return BOOL; @@ -898,7 +894,7 @@ struct test { } std::vector values = { build_commit, std::to_string(build_number), - std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan), + std::to_string(cuda), std::to_string(vulkan), std::to_string(vulkan), std::to_string(metal), std::to_string(sycl), std::to_string(rpc), std::to_string(gpu_blas), std::to_string(blas), cpu_info, gpu_info, model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params), @@ -927,7 +923,6 @@ struct test { const std::string test::build_commit = LLAMA_COMMIT; const int test::build_number = LLAMA_BUILD_NUMBER; const bool test::cuda = !!ggml_cpu_has_cuda(); -const bool test::opencl = !!ggml_cpu_has_clblast(); const bool test::vulkan = !!ggml_cpu_has_vulkan(); const bool test::kompute = !!ggml_cpu_has_kompute(); const bool test::metal = !!ggml_cpu_has_metal(); diff --git a/examples/main-cmake-pkg/README.md b/examples/main-cmake-pkg/README.md index edf20d8db6616..a88e92f23981f 100644 --- a/examples/main-cmake-pkg/README.md +++ b/examples/main-cmake-pkg/README.md @@ -8,16 +8,14 @@ Because this example is "outside of the source tree", it is important to first b ### Considerations -When hardware acceleration libraries are used (e.g. CUDA, Metal, CLBlast, etc.), CMake must be able to locate the associated CMake package. In the example below, when building _main-cmake-pkg_ notice the `CMAKE_PREFIX_PATH` includes the Llama CMake package location _in addition to_ the CLBlast package—which was used when compiling _llama.cpp_. +When hardware acceleration libraries are used (e.g. CUDA, Metal, etc.), CMake must be able to locate the associated CMake package. ### Build llama.cpp and install to C:\LlamaCPP directory -In this case, CLBlast was already installed so the CMake package is referenced in `CMAKE_PREFIX_PATH`. - ```cmd git clone https://github.com/ggerganov/llama.cpp cd llama.cpp -cmake -B build -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=C:/CLBlast/lib/cmake/CLBlast -G "Visual Studio 17 2022" -A x64 +cmake -B build -DBUILD_SHARED_LIBS=OFF -G "Visual Studio 17 2022" -A x64 cmake --build build --config Release cmake --install build --prefix C:/LlamaCPP ``` @@ -27,7 +25,7 @@ cmake --install build --prefix C:/LlamaCPP ```cmd cd ..\examples\main-cmake-pkg -cmake -B build -DBUILD_SHARED_LIBS=OFF -DCMAKE_PREFIX_PATH="C:/CLBlast/lib/cmake/CLBlast;C:/LlamaCPP/lib/cmake/Llama" -G "Visual Studio 17 2022" -A x64 +cmake -B build -DBUILD_SHARED_LIBS=OFF -DCMAKE_PREFIX_PATH="C:/LlamaCPP/lib/cmake/Llama" -G "Visual Studio 17 2022" -A x64 cmake --build build --config Release cmake --install build --prefix C:/MyLlamaApp ``` diff --git a/flake.nix b/flake.nix index 9cd3756e53e51..0a52ea52ea9d9 100644 --- a/flake.nix +++ b/flake.nix @@ -159,7 +159,6 @@ windows = config.legacyPackages.llamaPackagesWindows.llama-cpp; } // lib.optionalAttrs pkgs.stdenv.isLinux { - opencl = config.packages.default.override { useOpenCL = true; }; cuda = config.legacyPackages.llamaPackagesCuda.llama-cpp; mpi-cpu = config.packages.default.override { useMpi = true; }; diff --git a/ggml-metal.h b/ggml-metal.h index a5c542189c295..e7543ae795d28 100644 --- a/ggml-metal.h +++ b/ggml-metal.h @@ -1,7 +1,7 @@ // An interface allowing to compute ggml_cgraph with Metal // // This is a fully functional interface that extends ggml with GPU support for Apple devices. -// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.) +// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, etc.) // // How it works? // diff --git a/ggml-opencl.cpp b/ggml-opencl.cpp deleted file mode 100644 index e28566a7bdbd7..0000000000000 --- a/ggml-opencl.cpp +++ /dev/null @@ -1,2305 +0,0 @@ -#include "ggml.h" -#include "ggml-opencl.h" -#include "ggml-backend-impl.h" - -#include -#include -#include -#include -#include -#include -#include -#include - -#define CL_TARGET_OPENCL_VERSION 120 -#include - -#if defined(_MSC_VER) -#pragma warning(disable: 4244 4267) // possible loss of data -#endif - -#define CL_DMMV_LOCAL_SIZE 32 - -#ifndef K_QUANTS_PER_ITERATION -#define K_QUANTS_PER_ITERATION 1 -#else -static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2"); -#endif - -#define MULTILINE_QUOTE(...) #__VA_ARGS__ -static std::string program_source = MULTILINE_QUOTE( - -typedef char int8_t; -typedef uchar uint8_t; -typedef short int16_t; -typedef ushort uint16_t; -typedef int int32_t; -typedef uint uint32_t; - -struct __attribute__ ((packed)) block_q4_0 -{ - half d; - uint8_t qs[QK4_0 / 2]; -}; - -struct __attribute__ ((packed)) block_q4_1 -{ - half d; - half m; - uint8_t qs[QK4_1 / 2]; -}; - -struct __attribute__ ((packed)) block_q5_0 -{ - half d; - uint32_t qh; - uint8_t qs[QK5_0 / 2]; -}; - -struct __attribute__ ((packed)) block_q5_1 -{ - half d; - half m; - uint32_t qh; - uint8_t qs[QK5_1 / 2]; -}; - -struct __attribute__ ((packed)) block_q8_0 -{ - half d; - int8_t qs[QK8_0]; -}; - -struct __attribute__((packed)) block_q2_K -{ - uint8_t scales[16]; - uint8_t qs[64]; - half d; - half dmin; -}; - -struct __attribute__((packed)) block_q3_K -{ - uint8_t hmask[32]; - uint8_t qs[64]; - uint8_t scales[12]; - half d; -}; - -struct __attribute__((packed)) block_q4_K -{ - half d; - half dmin; - uint8_t scales[12]; - uint8_t qs[128]; -}; - -struct __attribute__((packed)) block_q5_K -{ - half d; - half dmin; - uint8_t scales[12]; - uint8_t qh[32]; - uint8_t qs[128]; -}; - -struct __attribute__((packed)) block_q6_K -{ - uint8_t ql[128]; - uint8_t qh[64]; - int8_t scales[16]; - half d; -}; - -__kernel void convert_fp16_to_fp32(__global half* x, __global float* y) { - const uint i = get_global_id(0); - - y[i] = vload_half(0, &x[i]); -} - -void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) { - const float d = vload_half(0, &x[ib].d); - - const uint8_t vui = x[ib].qs[iqs]; - - const int8_t vi0 = vui & 0xF; - const int8_t vi1 = vui >> 4; - - *v0 = (vi0 - 8)*d; - *v1 = (vi1 - 8)*d; -} -void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) { - const float d = vload_half(0, &x[ib].d); - const float m = vload_half(0, &x[ib].m); - - const uint8_t vui = x[ib].qs[iqs]; - - const int8_t vi0 = vui & 0xF; - const int8_t vi1 = vui >> 4; - - *v0 = vi0*d + m; - *v1 = vi1*d + m; -} -void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) { - const float d = vload_half(0, &x[ib].d); - - uint32_t qh = x[ib].qh; - - const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; - const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; - - const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16; - const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16; - - *v0 = x0*d; - *v1 = x1*d; -} -void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) { - const float d = vload_half(0, &x[ib].d); - const float m = vload_half(0, &x[ib].m); - - uint32_t qh = x[ib].qh; - - const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; - const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; - - const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0); - const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1); - - *v0 = x0*d + m; - *v1 = x1*d + m; -} -void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) { - const float d = vload_half(0, &x[ib].d); - - const int8_t vi0 = x[ib].qs[iqs + 0]; - const int8_t vi1 = x[ib].qs[iqs + 1]; - - *v0 = vi0*d; - *v1 = vi1*d; -} -void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){ - *v0 = vload_half(0, &x[ib + 0]); - *v1 = vload_half(0, &x[ib + 1]); -} -); - -static std::string k_quants_source = MULTILINE_QUOTE( -inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8_t *m) -{ - if (j < 4) - { - *d = q[j] & 63; - *m = q[j + 4] & 63; - } - else - { - *d = (q[j + 4] & 0xF) | ((q[j - 4] >> 6) << 4); - *m = (q[j + 4] >> 4) | ((q[j - 0] >> 6) << 4); - } -} - -__kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy) -{ - const int i = get_group_id(0) + get_global_offset(0); - const int tid = get_local_id(0); - const int n = tid / 32; - const int l = tid - 32 * n; - const int is = 8 * n + l / 16; - - const uint8_t q = x[i].qs[32 * n + l]; - __global float *y = yy + get_group_id(0) * QK_K + 128 * n; - - const float dall = vload_half(0, &x[i].d); - const float dmin = vload_half(0, &x[i].dmin); - - y[l + 0] = dall * (x[i].scales[is + 0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is + 0] >> 4); - y[l + 32] = dall * (x[i].scales[is + 2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is + 2] >> 4); - y[l + 64] = dall * (x[i].scales[is + 4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is + 4] >> 4); - y[l + 96] = dall * (x[i].scales[is + 6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is + 6] >> 4); -} - -__kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy) -{ - int r = get_local_id(0) / 4; - int i = get_group_id(0) + get_global_offset(0); - int tid = r / 2; - int is0 = r % 2; - int l0 = 16 * is0 + 4 * (get_local_id(0) % 4); - int n = tid / 4; - int j = tid - 4 * n; - - uint8_t m = 1 << (4 * n + j); - int is = 8 * n + 2 * j + is0; - int shift = 2 * j; - - int8_t us = is < 4 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 8] >> 0) & 3) << 4) - : is < 8 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 4] >> 2) & 3) << 4) - : is < 12 ? (x[i].scales[is - 8] >> 4) | (((x[i].scales[is + 0] >> 4) & 3) << 4) - : (x[i].scales[is - 8] >> 4) | (((x[i].scales[is - 4] >> 6) & 3) << 4); - float d_all = vload_half(0, &x[i].d); - float dl = d_all * (us - 32); - - __global float *y = yy + get_group_id(0) * QK_K + 128 * n + 32 * j; - const __global uint8_t *q = x[i].qs + 32 * n; - const __global uint8_t *hm = x[i].hmask; - - for (int l = l0; l < l0 + 4; ++l) - y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4)); -} - -__kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy) -{ - const int i = get_group_id(0) + get_global_offset(0); - const int tid = get_local_id(0); - const int il = tid / 8; - const int ir = tid % 8; - const int is = 2 * il; - const int n = 4; - - __global float *y = yy + get_group_id(0) * QK_K + 64 * il + n * ir; - - const float dall = vload_half(0, &x[i].d); - const float dmin = vload_half(0, &x[i].dmin); - - __global const uint8_t *q = x[i].qs + 32 * il + n * ir; - - uint8_t sc, m; - get_scale_min_k4(is + 0, x[i].scales, &sc, &m); - float d1 = dall * sc; - float m1 = dmin * m; - get_scale_min_k4(is + 1, x[i].scales, &sc, &m); - float d2 = dall * sc; - float m2 = dmin * m; - for (int l = 0; l < n; ++l) - { - y[l + 0] = d1 * (q[l] & 0xF) - m1; - y[l + 32] = d2 * (q[l] >> 4) - m2; - } -} - -__kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy) -{ - const int i = get_group_id(0) + get_global_offset(0); - const int tid = get_local_id(0); - const int il = tid / 16; - const int ir = tid % 16; - const int is = 2 * il; - - __global float *y = yy + get_group_id(0) * QK_K + 64 * il + 2 * ir; - - const float dall = vload_half(0, &x[i].d); - const float dmin = vload_half(0, &x[i].dmin); - - __global const uint8_t *ql = x[i].qs + 32 * il + 2 * ir; - __global const uint8_t *qh = x[i].qh + 2 * ir; - - uint8_t sc, m; - get_scale_min_k4(is + 0, x[i].scales, &sc, &m); - const float d1 = dall * sc; - const float m1 = dmin * m; - get_scale_min_k4(is + 1, x[i].scales, &sc, &m); - const float d2 = dall * sc; - const float m2 = dmin * m; - - uint8_t hm = 1 << (2 * il); - y[0] = d1 * ((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0)) - m1; - y[1] = d1 * ((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0)) - m1; - hm <<= 1; - y[32] = d2 * ((ql[0] >> 4) + (qh[0] & hm ? 16 : 0)) - m2; - y[33] = d2 * ((ql[1] >> 4) + (qh[1] & hm ? 16 : 0)) - m2; -} - -__kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy) -{ - const int i = get_group_id(0) + get_global_offset(0); - const int tid = get_local_id(0); - const int ip = tid / 32; - const int il = tid - 32 * ip; - const int is = 8 * ip + il / 16; - - __global float *y = yy + get_group_id(0) * QK_K + 128 * ip + il; - - const float d = vload_half(0, &x[i].d); - - __global const uint8_t *ql = x[i].ql + 64 * ip + il; - const uint8_t qh = x[i].qh[32 * ip + il]; - __global const int8_t *sc = x[i].scales + is; - - y[0] = d * sc[0] * ((int8_t)((ql[0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32); - y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32); - y[64] = d * sc[4] * ((int8_t)((ql[0] >> 4) | (((qh >> 4) & 3) << 4)) - 32); - y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32); -} - -__kernel void dequantize_mul_mat_vec_q2_K(__global const struct block_q2_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) { - - const int row = get_group_id(0); - - const int num_blocks_per_row = ncols / QK_K; - const int ib0 = row*num_blocks_per_row + get_global_offset(0); - - __global const struct block_q2_K * x = xx + ib0; - - const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...15 - const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0,1 - - const int step = 16/K_QUANTS_PER_ITERATION; - - const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... - const int in = tid - step*im; // 0...15 or 0...7 - - const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2 - const int q_offset = 32*im + l0; - const int s_offset = 8*im; - const int y_offset = 128*im + l0; - - tmp[16 * ix + tid] = 0; - - uint32_t aux[4]; - const uint8_t * d = (const uint8_t *)aux; - const uint8_t * m = (const uint8_t *)(aux + 2); - - for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { - - __global const float * y = yy + i * QK_K + y_offset; - __global const uint8_t * q = x[i].qs + q_offset; - - const float dall = vload_half(0, &x[i].d); - const float dmin = vload_half(0, &x[i].dmin); - - __global const uint32_t * a = (__global const uint32_t *)(x[i].scales + s_offset); - aux[0] = a[0] & 0x0f0f0f0f; - aux[1] = a[1] & 0x0f0f0f0f; - aux[2] = (a[0] >> 4) & 0x0f0f0f0f; - aux[3] = (a[1] >> 4) & 0x0f0f0f0f; - - float sum1 = 0, sum2 = 0; - for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { - sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3) - + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3) - + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3) - + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3) - + y[l+16] * d[1] * ((q[l+16] >> 0) & 3) - + y[l+48] * d[3] * ((q[l+16] >> 2) & 3) - + y[l+80] * d[5] * ((q[l+16] >> 4) & 3) - +y[l+112] * d[7] * ((q[l+16] >> 6) & 3); - sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6] - + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7]; - - } - tmp[16 * ix + tid] += dall * sum1 - dmin * sum2; - - } - - // sum up partial sums and write back result - barrier(CLK_LOCAL_MEM_FENCE); - for (int s=16; s>0; s>>=1) { - if (tid < s) { - tmp[tid] += tmp[tid + s]; - } - barrier(CLK_LOCAL_MEM_FENCE); - } - if (tid == 0) { - dst[row] = tmp[0]; - } -} - -__kernel void dequantize_mul_mat_vec_q3_K(__global const struct block_q3_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) { - const uint16_t kmask1 = 0x0303; - const uint16_t kmask2 = 0x0f0f; - - const int row = get_group_id(0); - - const int num_blocks_per_row = ncols / QK_K; - const int ib0 = row*num_blocks_per_row + get_global_offset(0); - - __global const struct block_q3_K * x = xx + ib0; - - const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 - const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0,1 - - const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop - const int step = 16/K_QUANTS_PER_ITERATION; - const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... - const int in = tid - step*im; // 0....15 or 0...7 - - const uint8_t m = 1 << (4*im); - - const int l0 = n*in; // 0...15 or 0...14 in steps of 2 - const int q_offset = 32*im + l0; - const int y_offset = 128*im + l0; - - uint16_t utmp[4]; - const int8_t * s = (const int8_t *)utmp; - - const uint16_t s_shift = 4*im; - - tmp[16 * ix + tid] = 0; - - for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { - - __global const float * y = yy + i * QK_K + y_offset; - __global const uint8_t * q = x[i].qs + q_offset; - __global const uint8_t * h = x[i].hmask + l0; - - __global const uint16_t * a = (__global const uint16_t *)x[i].scales; - utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4); - utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4); - utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4); - utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4); - - const float d = vload_half(0, &x[i].d); - - float sum = 0; - for (int l = 0; l < n; ++l) { - sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4)) - + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4)) - + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4)) - + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4)); - sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4)) - + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4)) - + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4)) - + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4)); - } - tmp[16 * ix + tid] += d * sum; - - } - - // sum up partial sums and write back result - barrier(CLK_LOCAL_MEM_FENCE); - for (int s=16; s>0; s>>=1) { - if (tid < s) { - tmp[tid] += tmp[tid + s]; - } - barrier(CLK_LOCAL_MEM_FENCE); - } - if (tid == 0) { - dst[row] = tmp[0]; - } -} - -__kernel void dequantize_mul_mat_vec_q4_K(__global const struct block_q4_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) { - - //to rename it later, just to test now - const uint16_t kmask1 = 0x3f3f; - const uint16_t kmask2 = 0x0f0f; - const uint16_t kmask3 = 0xc0c0; - - const int row = get_group_id(0); - const int num_blocks_per_row = ncols / QK_K; - const int ib0 = row*num_blocks_per_row + get_global_offset(0); - - const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...15 - const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; - - const int step = 8/K_QUANTS_PER_ITERATION; - - const int il = tid/step; // 0...3 - const int ir = tid - step*il;// 0...3 - const int n = 2*K_QUANTS_PER_ITERATION; - - const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 - const int in = il%2; - - const int l0 = n*(2*ir + in); - const int q_offset = 32*im + l0; - const int y_offset = 64*im + l0; - - uint16_t aux[4]; - const uint8_t * sc = (const uint8_t *)aux; - - __global const struct block_q4_K * x = xx + ib0; - - tmp[16 * ix + tid] = 0; - - for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { - - __global const uint8_t * q1 = x[i].qs + q_offset; - __global const uint8_t * q2 = q1 + 64; - __global const float * y1 = yy + i*QK_K + y_offset; - __global const float * y2 = y1 + 128; - - const float dall = vload_half(0, &x[i].d); - const float dmin = vload_half(0, &x[i].dmin); - - __global const uint16_t * a = (__global const uint16_t *)x[i].scales; - aux[0] = a[im+0] & kmask1; - aux[1] = a[im+2] & kmask1; - aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2); - aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2); - - float4 s = (float4)(0.f); - float smin = 0; - for (int l = 0; l < n; ++l) { - s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4); - s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4); - smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7]; - } - tmp[16 * ix + tid] += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin; - - } - - // sum up partial sums and write back result - barrier(CLK_LOCAL_MEM_FENCE); - for (int s=16; s>0; s>>=1) { - if (tid < s) { - tmp[tid] += tmp[tid + s]; - } - barrier(CLK_LOCAL_MEM_FENCE); - } - if (tid == 0) { - dst[row] = tmp[0]; - } -} - -__kernel void dequantize_mul_mat_vec_q5_K(__global const struct block_q5_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) { - - const uint16_t kmask1 = 0x3f3f; - const uint16_t kmask2 = 0x0f0f; - const uint16_t kmask3 = 0xc0c0; - - const int row = get_group_id(0); - const int num_blocks_per_row = ncols / QK_K; - const int ib0 = row*num_blocks_per_row + get_global_offset(0); - - const int tid = get_local_id(0)/2; // 0...15 - const int ix = get_local_id(0)%2; - - const int il = tid/4; // 0...3 - const int ir = tid - 4*il;// 0...3 - const int n = 2; - - const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 - const int in = il%2; - - const int l0 = n*(2*ir + in); - const int q_offset = 32*im + l0; - const int y_offset = 64*im + l0; - - const uint8_t hm1 = 1 << (2*im); - const uint8_t hm2 = hm1 << 4; - - uint16_t aux[4]; - const uint8_t * sc = (const uint8_t *)aux; - - __global const struct block_q5_K * x = xx + ib0; - - tmp[16 * ix + tid] = 0; - - for (int i = ix; i < num_blocks_per_row; i += 2) { - - __global const uint8_t * ql1 = x[i].qs + q_offset; - __global const uint8_t * ql2 = ql1 + 64; - __global const uint8_t * qh = x[i].qh + l0; - __global const float * y1 = yy + i*QK_K + y_offset; - __global const float * y2 = y1 + 128; - - const float dall = vload_half(0, &x[i].d); - const float dmin = vload_half(0, &x[i].dmin); - - __global const uint16_t * a = (__global const uint16_t *)x[i].scales; - aux[0] = a[im+0] & kmask1; - aux[1] = a[im+2] & kmask1; - aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2); - aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2); - - float4 sum = (float4)(0.f); - float smin = 0; - for (int l = 0; l < n; ++l) { - sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0)) - + y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0)); - sum.y += y1[l+32] * ((ql1[l+ 0] >> 4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0)) - + y1[l+48] * ((ql1[l+16] >> 4) + (qh[l+16] & (hm1 << 1) ? 16 : 0)); - sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0)) - + y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0)); - sum.w += y2[l+32] * ((ql2[l+ 0] >> 4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0)) - + y2[l+48] * ((ql2[l+16] >> 4) + (qh[l+16] & (hm2 << 1) ? 16 : 0)); - smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3] - + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7]; - } - tmp[16 * ix + tid] += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin; - - } - - // sum up partial sums and write back result - barrier(CLK_LOCAL_MEM_FENCE); - for (int s=16; s>0; s>>=1) { - if (tid < s) { - tmp[tid] += tmp[tid + s]; - } - barrier(CLK_LOCAL_MEM_FENCE); - } - if (tid == 0) { - dst[row] = tmp[0]; - } -} - -__kernel void dequantize_mul_mat_vec_q6_K(__global const struct block_q6_K * xx, __local float* tmp, __global const float * yy, __global float * dst, const int ncols) { - - const int row = get_group_id(0); - - const int num_blocks_per_row = ncols / QK_K; - const int ib0 = row*num_blocks_per_row + get_global_offset(0); - - __global const struct block_q6_K * x = xx + ib0; - - const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 - const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0, 1 - - const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8 - - const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... - const int in = tid - step*im; // 0...15 or 0...7 - -\n#if K_QUANTS_PER_ITERATION == 1\n - const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 - const int is = 0; - -\n#else\n - - const int l0 = 4 * in; // 0, 4, 8, ..., 28 - const int is = in / 4; - -\n#endif\n - - const int ql_offset = 64*im + l0; - const int qh_offset = 32*im + l0; - const int s_offset = 8*im + is; - const int y_offset = 128*im + l0; - - tmp[16 * ix + tid] = 0; // partial sum for thread in warp - - for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { - - __global const float * y = yy + i * QK_K + y_offset; - __global const uint8_t * ql = x[i].ql + ql_offset; - __global const uint8_t * qh = x[i].qh + qh_offset; - __global const int8_t * s = x[i].scales + s_offset; - - const float d = vload_half(0, &x[i].d); - -\n#if K_QUANTS_PER_ITERATION == 1\n - float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32) - + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32) - + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32) - + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32) - + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32) - + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32) - + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32) - +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32); - tmp[16 * ix + tid] += sum; -\n#else\n - float sum = 0; - for (int l = 0; l < 4; ++l) { - sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32) - + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32) - + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32) - + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32); - } - tmp[16 * ix + tid] += sum; -\n#endif\n - - } - - // sum up partial sums and write back result - barrier(CLK_LOCAL_MEM_FENCE); - for (int s=16; s>0; s>>=1) { - if (tid < s) { - tmp[tid] += tmp[tid + s]; - } - barrier(CLK_LOCAL_MEM_FENCE); - } - if (tid == 0) { - dst[row] = tmp[0]; - } -} -); - - -std::string dequant_template = MULTILINE_QUOTE( -__kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) { - const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2; - - if (i >= get_global_size(0)) { - return; - } - - const uint qk = QUANT_K; - const uint qr = QUANT_R; - - const int ib = i/qk + get_global_offset(0); // block index - const int iqs = (i%qk)/qr; // quant index - const int iybs = i - i%qk; // y block start index - const int y_offset = qr == 1 ? 1 : qk/2; - - // dequantize - float v0, v1; - DEQUANT_FUNC(x, ib, iqs, &v0, &v1); - y[iybs + iqs + 0] = v0; - y[iybs + iqs + y_offset] = v1; -} -); - -std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE( -__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) { - const int local_size = get_local_size(0); - const int row = get_group_id(0); - const int tid = get_local_id(0); - - const uint qk = QUANT_K; - const uint qr = QUANT_R; - - const int col_step = local_size * 2; - const int y_offset = qr == 1 ? 1 : qk/2; - - x += get_global_offset(0); - - tmp[tid] = 0; - - for (int col = tid*2; col < ncols; col += col_step) { - const int ib = (row*ncols + col)/qk; // block index - const int iqs = (col%qk)/qr; // quant index - const int iybs = col - col%qk; // y block start index - - // dequantize - float v0, v1; - DEQUANT_FUNC(x, ib, iqs, &v0, &v1); - - // matrix multiplication - tmp[tid] += v0 * y[iybs + iqs + 0]; - tmp[tid] += v1 * y[iybs + iqs + y_offset]; - } - - // sum up partial sums and write back result - barrier(CLK_LOCAL_MEM_FENCE); - for (int s=local_size/2; s>0; s>>=1) { - if (tid < s) { - tmp[tid] += tmp[tid + s]; - } - barrier(CLK_LOCAL_MEM_FENCE); - } - if (tid == 0) { - dst[row] = tmp[0]; - } -} - -); - - -std::string mul_template = MULTILINE_QUOTE( -__kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) { - const int i = get_group_id(0)*get_local_size(0) + get_local_id(0); - - if (i >= get_global_size(0)) { - return; - } - - dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky]; -} -); - -std::string add_template = MULTILINE_QUOTE( -__kernel void add_f32(__global float * x, const int x_offset, __global float * y, const int y_offset, __global float * dst, const int dst_offset, const int ky) { - const int i = get_group_id(0)*get_local_size(0) + get_local_id(0); - - if (i >= get_global_size(0)) { - return; - } - - dst[dst_offset + i] = x[x_offset + i] + y[y_offset + i%ky]; -} -); - -#define CL_CHECK(err) \ - do { \ - cl_int err_ = (err); \ - if (err_ != CL_SUCCESS) { \ - fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \ - #err, err_, __FILE__, __LINE__); \ - exit(1); \ - } \ - } while (0) - -#define CLBLAST_CHECK(err) \ - do { \ - CLBlastStatusCode err_ = (err); \ - if (err_ != CLBlastSuccess) { \ - fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \ - #err, err_, __FILE__, __LINE__); \ - exit(1); \ - } \ - } while (0) - -std::array dequant_str_keys = { - "KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC" -}; - -std::array dequant_str_values = { - "dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0", - "dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1", - "dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0", - "dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1", - "dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0", - "convert_row_f16", "half", "1", "1", "convert_f16" -}; - -std::array dequant_mul_mat_vec_str_values = { - "dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0", - "dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1", - "dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0", - "dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1", - "dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0", - "convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16" -}; - -std::array mul_str_keys = { - "KERNEL_NAME", "TYPE" -}; -std::array mul_str_values = { - "mul_f32", "float" -}; - -static std::string& replace(std::string& s, const std::string& from, const std::string& to) { - size_t pos = 0; - while ((pos = s.find(from, pos)) != std::string::npos) { - s.replace(pos, from.length(), to); - pos += to.length(); - } - return s; -} - -static std::string generate_kernels() { - std::stringstream src; - src << program_source << '\n'; - src << k_quants_source << '\n'; - for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) { - std::string dequant_kernel = dequant_template; - std::string dmmv_kernel = dequant_mul_mat_vec_template; - for (size_t j = 0; j < dequant_str_keys.size(); j++) { - replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]); - replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]); - } - src << dequant_kernel << '\n'; - src << dmmv_kernel << '\n'; - } - for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) { - std::string mul_kernel = mul_template; - for (size_t j = 0; j < mul_str_keys.size(); j++) { - replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]); - } - src << mul_kernel << '\n'; - } - src << add_template << '\n'; - - return src.str(); -} - -static cl_platform_id platform; -static cl_device_id device; -static cl_context context; -static cl_command_queue queue; -static cl_program program; -static cl_kernel convert_row_f16_cl; -static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl; -static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl; -static cl_kernel dequantize_block_q2_k_cl, dequantize_block_q3_k_cl, dequantize_block_q4_k_cl, dequantize_block_q5_k_cl, dequantize_block_q6_k_cl; -static cl_kernel dequantize_mul_mat_vec_q2_K_cl, dequantize_mul_mat_vec_q3_K_cl, dequantize_mul_mat_vec_q4_K_cl, dequantize_mul_mat_vec_q5_K_cl, dequantize_mul_mat_vec_q6_K_cl; -static cl_kernel mul_f32_cl; -static cl_kernel add_f32_cl; -static bool fp16_support; - -static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) { - cl_program p; - char *program_log; - size_t program_size; - size_t log_size; - int err; - - program_size = strlen(program_buffer); - - p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err); - if(err < 0) { - fprintf(stderr, "OpenCL error creating program"); - exit(1); - } - - std::string compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math " - "-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1 " - "-DQK_K=256 -DK_QUANTS_PER_ITERATION=" + std::to_string(K_QUANTS_PER_ITERATION); - - err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL); - if(err < 0) { - - clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); - program_log = (char*) malloc(log_size + 1); - program_log[log_size] = '\0'; - clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL); - fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log); - free(program_log); - exit(1); - } - - return p; -} - -void ggml_cl_init(void) { - static bool initialized = false; - if (initialized) { - return; - } - initialized = true; - - cl_int err; - - struct cl_device; - struct cl_platform { - cl_platform_id id; - unsigned number; - char name[128]; - char vendor[128]; - struct cl_device * devices; - unsigned n_devices; - struct cl_device * default_device; - }; - - struct cl_device { - struct cl_platform * platform; - cl_device_id id; - unsigned number; - cl_device_type type; - char name[128]; - }; - - enum { NPLAT = 16, NDEV = 16 }; - - struct cl_platform platforms[NPLAT]; - unsigned n_platforms = 0; - struct cl_device devices[NDEV]; - unsigned n_devices = 0; - struct cl_device * default_device = NULL; - - platform = NULL; - device = NULL; - - cl_platform_id platform_ids[NPLAT]; - CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms)); - - for (unsigned i = 0; i < n_platforms; i++) { - struct cl_platform * p = &platforms[i]; - p->number = i; - p->id = platform_ids[i]; - CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL)); - CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL)); - - cl_device_id device_ids[NDEV]; - cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices); - if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) { - p->n_devices = 0; - } else { - CL_CHECK(clGetDeviceIDsError); - } - p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL; - p->default_device = NULL; - - for (unsigned j = 0; j < p->n_devices; j++) { - struct cl_device * d = &devices[n_devices]; - d->number = n_devices++; - d->id = device_ids[j]; - d->platform = p; - CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL)); - CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL)); - - if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) { - p->default_device = d; - } - } - - if (default_device == NULL && p->default_device != NULL) { - default_device = p->default_device; - } - } - - if (n_devices == 0) { - fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n"); - exit(1); - } - - char * user_platform_string = getenv("GGML_OPENCL_PLATFORM"); - char * user_device_string = getenv("GGML_OPENCL_DEVICE"); - int user_platform_number = -1; - int user_device_number = -1; - - unsigned n; - if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) { - user_platform_number = (int)n; - } - if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) { - user_device_number = (int)n; - } - if (user_platform_number != -1 && user_device_number != -1) { - cl_platform* platform = &platforms[user_platform_number]; - if ((unsigned)user_device_number >= platform->n_devices) { - fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number); - exit(1); - } - default_device = &platform->devices[user_device_number]; - } else { - - struct cl_device * selected_devices = devices; - unsigned n_selected_devices = n_devices; - - if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) { - for (unsigned i = 0; i < n_platforms; i++) { - struct cl_platform * p = &platforms[i]; - if (strstr(p->name, user_platform_string) != NULL || - strstr(p->vendor, user_platform_string) != NULL) { - user_platform_number = (int)i; - break; - } - } - if (user_platform_number == -1) { - fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string); - exit(1); - } - } - if (user_platform_number != -1) { - struct cl_platform * p = &platforms[user_platform_number]; - selected_devices = p->devices; - n_selected_devices = p->n_devices; - default_device = p->default_device; - if (n_selected_devices == 0) { - fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name); - exit(1); - } - } - - if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) { - for (unsigned i = 0; i < n_selected_devices; i++) { - struct cl_device * d = &selected_devices[i]; - if (strstr(d->name, user_device_string) != NULL) { - user_device_number = d->number; - break; - } - } - if (user_device_number == -1) { - fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string); - exit(1); - } - } - if (user_device_number != -1) { - selected_devices = &devices[user_device_number]; - n_selected_devices = 1; - default_device = &selected_devices[0]; - } - - GGML_ASSERT(n_selected_devices > 0); - - if (default_device == NULL) { - default_device = &selected_devices[0]; - } - } - - fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name); - fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name); - if (default_device->type != CL_DEVICE_TYPE_GPU) { - fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name); - } - - platform = default_device->platform->id; - device = default_device->id; - - size_t ext_str_size; - clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size); - char *ext_buffer = (char *)alloca(ext_str_size + 1); - clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL); - ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated - // Disabled due to faulty outputs - // Check if ext_buffer contains cl_khr_fp16 - fp16_support = false; // strstr(ext_buffer, "cl_khr_fp16") != NULL; - // fprintf(stderr, "ggml_opencl: device FP16 support: %s\n", fp16_support ? "true" : "false"); - - cl_context_properties properties[] = { - (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0 - }; - - CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err)); - - CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err), - (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err : - (queue = clCreateCommandQueue(context, device, 0, &err), err) - ))); - - const std::string kernel_src = generate_kernels(); - - program = build_program_from_source(context, device, kernel_src.c_str()); - - // FP16 to FP32 kernel - CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err)); - - // Dequantize kernels - CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err)); - CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err)); - CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err)); - CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err)); - CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err)); - CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err)); - CL_CHECK((dequantize_block_q2_k_cl = clCreateKernel(program, "dequantize_block_q2_K", &err), err)); - CL_CHECK((dequantize_block_q3_k_cl = clCreateKernel(program, "dequantize_block_q3_K", &err), err)); - CL_CHECK((dequantize_block_q4_k_cl = clCreateKernel(program, "dequantize_block_q4_K", &err), err)); - CL_CHECK((dequantize_block_q5_k_cl = clCreateKernel(program, "dequantize_block_q5_K", &err), err)); - CL_CHECK((dequantize_block_q6_k_cl = clCreateKernel(program, "dequantize_block_q6_K", &err), err)); - - // dequant mul mat kernel - CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err)); - CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err)); - CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err)); - CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err)); - CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err)); - CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err)); - CL_CHECK((dequantize_mul_mat_vec_q2_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q2_K", &err), err)); - CL_CHECK((dequantize_mul_mat_vec_q3_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q3_K", &err), err)); - CL_CHECK((dequantize_mul_mat_vec_q4_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_K", &err), err)); - CL_CHECK((dequantize_mul_mat_vec_q5_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_K", &err), err)); - CL_CHECK((dequantize_mul_mat_vec_q6_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q6_K", &err), err)); - - // mul kernel - CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err)); - - CL_CHECK((add_f32_cl = clCreateKernel(program, "add_f32", &err), err)); -} - -static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) { - switch (type) { - case GGML_TYPE_Q4_0: - return &dequantize_row_q4_0_cl; - case GGML_TYPE_Q4_1: - return &dequantize_row_q4_1_cl; - case GGML_TYPE_Q5_0: - return &dequantize_row_q5_0_cl; - case GGML_TYPE_Q5_1: - return &dequantize_row_q5_1_cl; - case GGML_TYPE_Q8_0: - return &dequantize_row_q8_0_cl; - case GGML_TYPE_Q2_K: - return &dequantize_block_q2_k_cl; - case GGML_TYPE_Q3_K: - return &dequantize_block_q3_k_cl; - case GGML_TYPE_Q4_K: - return &dequantize_block_q4_k_cl; - case GGML_TYPE_Q5_K: - return &dequantize_block_q5_k_cl; - case GGML_TYPE_Q6_K: - return &dequantize_block_q6_k_cl; - case GGML_TYPE_F16: - return &convert_row_f16_cl; - default: - return nullptr; - } -} - -static size_t ggml_cl_global_denom(ggml_type type) { - switch (type) { - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q5_0: - case GGML_TYPE_Q5_1: - case GGML_TYPE_Q8_0: - return 1; - case GGML_TYPE_Q2_K: - case GGML_TYPE_Q3_K: - return 4; - case GGML_TYPE_Q4_K: - return 8; - case GGML_TYPE_Q5_K: - case GGML_TYPE_Q6_K: - return 4; - case GGML_TYPE_F16: - default: - return 1; - } -} - -static size_t ggml_cl_local_size(ggml_type type) { - switch (type) { - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q5_0: - case GGML_TYPE_Q5_1: - case GGML_TYPE_Q8_0: - return 0; - case GGML_TYPE_Q2_K: - case GGML_TYPE_Q3_K: - return 64; - case GGML_TYPE_Q4_K: - return 32; - case GGML_TYPE_Q5_K: - case GGML_TYPE_Q6_K: - return 64; - case GGML_TYPE_F16: - default: - return 0; - } -} - -static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) { - switch (type) { - case GGML_TYPE_Q4_0: - return &dequantize_mul_mat_vec_q4_0_cl; - case GGML_TYPE_Q4_1: - return &dequantize_mul_mat_vec_q4_1_cl; - case GGML_TYPE_Q5_0: - return &dequantize_mul_mat_vec_q5_0_cl; - case GGML_TYPE_Q5_1: - return &dequantize_mul_mat_vec_q5_1_cl; - case GGML_TYPE_Q8_0: - return &dequantize_mul_mat_vec_q8_0_cl; - case GGML_TYPE_F16: - return &convert_mul_mat_vec_f16_cl; - case GGML_TYPE_Q2_K: - return &dequantize_mul_mat_vec_q2_K_cl; - case GGML_TYPE_Q3_K: - return &dequantize_mul_mat_vec_q3_K_cl; - case GGML_TYPE_Q4_K: - return &dequantize_mul_mat_vec_q4_K_cl; - case GGML_TYPE_Q5_K: - return &dequantize_mul_mat_vec_q5_K_cl; - case GGML_TYPE_Q6_K: - return &dequantize_mul_mat_vec_q6_K_cl; - default: - return nullptr; - } -} - -// buffer pool for cl -#define MAX_CL_BUFFERS 256 - -struct scoped_spin_lock { - std::atomic_flag& lock; - scoped_spin_lock(std::atomic_flag& lock) : lock(lock) { - while (lock.test_and_set(std::memory_order_acquire)) { - ; // spin - } - } - ~scoped_spin_lock() { - lock.clear(std::memory_order_release); - } - scoped_spin_lock(const scoped_spin_lock&) = delete; - scoped_spin_lock& operator=(const scoped_spin_lock&) = delete; -}; - -struct cl_buffer { - cl_mem mem; - size_t size = 0; -}; - -static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS]; -static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT; - -static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size) { - scoped_spin_lock lock(g_cl_pool_lock); - cl_int err; - - int best_i = -1; - size_t best_size = std::numeric_limits::max(); //smallest unused buffer that fits our needs - int worst_i = -1; - size_t worst_size = 0; //largest unused buffer seen so far - for (int i = 0; i < MAX_CL_BUFFERS; ++i) { - cl_buffer &b = g_cl_buffer_pool[i]; - if (b.size > 0 && b.size >= size && b.size < best_size) - { - best_i = i; - best_size = b.size; - } - if (b.size > 0 && b.size > worst_size) - { - worst_i = i; - worst_size = b.size; - } - } - if(best_i!=-1) //found the smallest buffer that fits our needs - { - cl_buffer& b = g_cl_buffer_pool[best_i]; - cl_mem mem = b.mem; - *actual_size = b.size; - b.size = 0; - return mem; - } - if(worst_i!=-1) //no buffer that fits our needs, resize largest one to save memory - { - cl_buffer& b = g_cl_buffer_pool[worst_i]; - cl_mem mem = b.mem; - b.size = 0; - clReleaseMemObject(mem); - } - cl_mem mem; - CL_CHECK((mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err), err)); - *actual_size = size; - return mem; -} - -static void ggml_cl_pool_free(cl_mem mem, size_t size) { - scoped_spin_lock lock(g_cl_pool_lock); - - for (int i = 0; i < MAX_CL_BUFFERS; ++i) { - cl_buffer& b = g_cl_buffer_pool[i]; - if (b.size == 0) { - b.mem = mem; - b.size = size; - return; - } - } - fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n"); - clReleaseMemObject(mem); -} - -void ggml_cl_free_data(const struct ggml_tensor* tensor) { - if (tensor->backend != GGML_BACKEND_TYPE_GPU) { - return; - } - - cl_mem mem = (cl_mem)tensor->extra; - clReleaseMemObject(mem); -} - -static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) { - cl_int err; - const uint64_t ne0 = src->ne[0]; - const uint64_t ne1 = src->ne[1]; - const uint64_t nb0 = src->nb[0]; - const uint64_t nb1 = src->nb[1]; - const uint64_t nb2 = src->nb[2]; - const uint64_t nb3 = src->nb[3]; - const enum ggml_type type = src->type; - const size_t ts = ggml_type_size(type); - const size_t bs = ggml_blck_size(type); - const uint64_t row_size = ts*ne0/bs; - - const char * x = (const char *) src->data + i2*nb2 + i3*nb3; - if (nb0 == ts && nb1 == row_size) { - return clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*row_size, x, 0, NULL, ev); - } - if (nb0 == ts) { - const size_t buffer_origin[3] = { offset, 0, 0 }; - const size_t host_origin[3] = { 0, 0, 0 }; - const size_t region[3] = { row_size, ne1, 1 }; - return clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, row_size, 0, nb1, 0, x, 0, NULL, ev); - } - std::vector events; - if (ev && ne1>1) events.reserve(ne1-1); - for (uint64_t i1 = 0; i1 < ne1; i1++) { - // pretend the row is a matrix with cols=1 - const size_t buffer_origin[3] = { offset + i1*row_size, 0, 0 }; - const size_t host_origin[3] = { 0, 0, 0 }; - const size_t region[3] = { ts, ne0/bs, 1 }; - // if an event is requested, make the last write wait for all previous writes to complete - if (ev && i1) { - events.push_back(*ev); - } - cl_uint nevents = i1 == ne1-1 ? events.size() : 0U; - err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts, 0, nb0, 0, x + i1*nb1, nevents, nevents ? events.data() : nullptr, ev); - if (err != CL_SUCCESS) { - for (auto event : events) { - clReleaseEvent(event); - } - return err; - } - } - for (auto event : events) { - CL_CHECK(clReleaseEvent(event)); - } - return CL_SUCCESS; -} - -static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; - size_t x_size; - size_t d_size; - - cl_mem d_X = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &x_size); // src0 - cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted. - cl_mem d_D = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &d_size); // dst - - - for (int64_t i03 = 0; i03 < ne03; i03++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - cl_event ev; - - // copy src0 to device - CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, &ev)); - - const int64_t i13 = i03%ne13; - const int64_t i12 = i02%ne12; - const int i1 = i13*ne12*ne11 + i12*ne11; - - cl_int x_offset = 0; - cl_int y_offset = i1*ne10; - cl_int d_offset = 0; - - size_t global = ne00 * ne01; - cl_int ky = ne10 * ne11; - - CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X)); - CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset)); - CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y)); - CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset)); - CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D)); - CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset)); - CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky)); - CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL)); - - CL_CHECK(clReleaseEvent(ev)); - CL_CHECK(clFinish(queue)); - - // copy dst to host - float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); - CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL)); - } - } - ggml_cl_pool_free(d_X, x_size); - ggml_cl_pool_free(d_D, d_size); -} - -void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { - GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cl_mul_f32(src0, src1, dst); -} - -static void ggml_cl_add_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; - size_t x_size; - size_t d_size; - - cl_mem d_X = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &x_size); // src0 - cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted. - cl_mem d_D = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &d_size); // dst - - - for (int64_t i03 = 0; i03 < ne03; i03++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - cl_event ev; - - // copy src0 to device - CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, &ev)); - - const int64_t i13 = i03%ne13; - const int64_t i12 = i02%ne12; - const int i1 = i13*ne12*ne11 + i12*ne11; - - cl_int x_offset = 0; - cl_int y_offset = i1*ne10; - cl_int d_offset = 0; - - size_t global = ne00 * ne01; - cl_int ky = ne10 * ne11; - - CL_CHECK(clSetKernelArg(add_f32_cl, 0, sizeof(cl_mem), &d_X)); - CL_CHECK(clSetKernelArg(add_f32_cl, 1, sizeof(cl_int), &x_offset)); - CL_CHECK(clSetKernelArg(add_f32_cl, 2, sizeof(cl_mem), &d_Y)); - CL_CHECK(clSetKernelArg(add_f32_cl, 3, sizeof(cl_int), &y_offset)); - CL_CHECK(clSetKernelArg(add_f32_cl, 4, sizeof(cl_mem), &d_D)); - CL_CHECK(clSetKernelArg(add_f32_cl, 5, sizeof(cl_int), &d_offset)); - CL_CHECK(clSetKernelArg(add_f32_cl, 6, sizeof(cl_int), &ky)); - CL_CHECK(clEnqueueNDRangeKernel(queue, add_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL)); - - CL_CHECK(clReleaseEvent(ev)); - CL_CHECK(clFinish(queue)); - - // copy dst to host - float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); - CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL)); - } - } - ggml_cl_pool_free(d_X, x_size); - ggml_cl_pool_free(d_D, d_size); -} - -void ggml_cl_add(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { - GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cl_add_f32(src0, src1, dst); -} - -static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; - - const int64_t r2 = ne12 / ne02; - const int64_t r3 = ne13 / ne03; - - const float alpha = 1.0f; - const float beta = 0.0f; - const int x_ne = ne01 * ne00; - const int y_ne = ne11 * ne10; - const int d_ne = ne11 * ne01; - - size_t x_size; - size_t y_size; - size_t d_size; - cl_mem d_X; - if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT - d_X = (cl_mem) src0->extra; - } else { - d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size); - } - cl_mem d_Y = src1->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size); - cl_mem d_D = dst->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size); - - size_t x_offset = 0; - - for (int64_t i03 = 0; i03 < ne03; i03++) { - // TODO: copy src0 here when r3>1 - for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - if (src0->backend == GGML_BACKEND_TYPE_GPU) { - x_offset = (i03 * ne02 + i02) * x_ne; - } else { - // copy src0 to device - CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); - } - - for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) { - // copy src1 to device - if (src1->backend == GGML_BACKEND_TYPE_CPU) { - CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL)); - } - - CL_CHECK(clFinish(queue)); - - // compute - cl_event ev_sgemm; - clblast::StatusCode status = clblast::Gemm(clblast::Layout::kColMajor, - clblast::Transpose::kYes, clblast::Transpose::kNo, - ne01, ne11, ne10, - alpha, - d_X, x_offset, ne00, - d_Y, 0, ne10, - beta, - d_D, 0, ne01, - &queue, &ev_sgemm); - - if (status != clblast::StatusCode::kSuccess) { - GGML_ASSERT(false); - } - - // copy dst to host - if (dst->backend == GGML_BACKEND_TYPE_CPU) { - float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); - CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL)); - } - } - } - } - } - - if (src0->backend != GGML_BACKEND_TYPE_GPU) { - ggml_cl_pool_free(d_X, x_size); - } - if (src1->backend != GGML_BACKEND_TYPE_GPU) { - ggml_cl_pool_free(d_Y, y_size); - } - if (dst->backend != GGML_BACKEND_TYPE_GPU) { - ggml_cl_pool_free(d_D, d_size); - } -} - -static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) { - GGML_ASSERT(fp16_support); - - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const int nb10 = src1->nb[0]; - const int nb11 = src1->nb[1]; - const int nb12 = src1->nb[2]; - const int nb13 = src1->nb[3]; - - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; - - const int64_t r2 = ne12 / ne02; - const int64_t r3 = ne13 / ne03; - - const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f); - const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f); - const int x_ne = ne01 * ne00; - const int y_ne = ne11 * ne10; - const int d_ne = ne11 * ne01; - - GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * y_ne); - GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * d_ne); - ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata; - - size_t x_size; - size_t y_size; - size_t d_size; - cl_mem d_X; - if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT - d_X = (cl_mem) src0->extra; - } else { - d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size); - } - cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size); - cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size); - - bool src1_cont_rows = nb10 == sizeof(float); - bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float); - - size_t x_offset = 0; - - for (int64_t i03 = 0; i03 < ne03; i03++) { - // TODO: copy src0 here when r3>1 - for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - if (src0->backend == GGML_BACKEND_TYPE_GPU) { - x_offset = (i03 * ne02 + i02) * x_ne; - } else { - // copy src0 to device - CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); - } - - // FIXME: convert on device - - for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) { - // convert src1 to fp16 - // TODO: use multiple threads - char * src1i = (char *) src1->data + i13*nb13 + i12*nb12; - if (src1_cont_rows) { - if (src1_cont_cols) { - ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11); - } - else { - for (int64_t i11 = 0; i11 < ne11; i11++) { - ggml_fp32_to_fp16_row((float *) (src1i + i11*nb11), tmp + i11*ne10, ne10); - } - } - } - else { - for (int64_t i11 = 0; i11 < ne11; i11++) { - for (int64_t i10 = 0; i10 < ne10; i10++) { - // very slow due to no inlining - tmp[i11*ne10 + i10] = ggml_fp32_to_fp16(*(float *) (src1i + i11*nb11 + i10*nb10)); - } - } - } - - // copy src1 to device - CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL)); - - CL_CHECK(clFinish(queue)); - - // compute - cl_event ev_sgemm; - clblast::StatusCode status = clblast::Gemm(clblast::Layout::kColMajor, - clblast::Transpose::kYes, clblast::Transpose::kNo, - ne01, ne11, ne10, - alpha, - d_X, x_offset, ne00, - d_Y, 0, ne10, - beta, - d_D, 0, ne01, - &queue, &ev_sgemm); - - if (status != clblast::StatusCode::kSuccess) { - GGML_ASSERT(false); - } - - // copy dst to host, then convert to float - if (dst->backend == GGML_BACKEND_TYPE_CPU) { - CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL)); - float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); - ggml_fp16_to_fp32_row(tmp, d, d_ne); - } else { - // FIXME: convert dst to fp32 on device - } - } - } - } - } - - if (src0->backend != GGML_BACKEND_TYPE_GPU) { - ggml_cl_pool_free(d_X, x_size); - } - ggml_cl_pool_free(d_Y, y_size); - ggml_cl_pool_free(d_D, d_size); -} - -static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; - const ggml_type type = src0->type; - const bool mul_mat_vec = ne11 == 1 && ne00%2 == 0; - - const int64_t r2 = ne12 / ne02; - const int64_t r3 = ne13 / ne03; - - const float alpha = 1.0f; - const float beta = 0.0f; - const int x_ne = ne01 * ne00; - const int y_ne = ne11 * ne10; - const int d_ne = ne11 * ne01; - const int x_bps = x_ne / ggml_blck_size(type); // blocks per 2D slice - const size_t q_sz = ggml_type_size(type) * x_bps; - - size_t x_size; - size_t y_size; - size_t d_size; - size_t q_size; - cl_mem d_X; - if (!mul_mat_vec) { - d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size); - } - cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size); - cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size); - cl_mem d_Q; - if (src0->backend == GGML_BACKEND_TYPE_CPU) { - d_Q = ggml_cl_pool_malloc(q_sz, &q_size); - } - - cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type); - cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type); - GGML_ASSERT(to_fp32_cl != nullptr); - - const size_t global_denom = ggml_cl_global_denom(type); - const size_t local = mul_mat_vec ? CL_DMMV_LOCAL_SIZE : ggml_cl_local_size(type); - - size_t ev_idx = 0; - std::vector events; - - for (int64_t i03 = 0; i03 < ne03; i03++) { - // TODO: copy and dequantize src0 here when r3>1 - for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - // copy src0 to device if necessary - if (src0->backend == GGML_BACKEND_TYPE_CPU) { - events.emplace_back(); - CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++)); - } else if (src0->backend == GGML_BACKEND_TYPE_GPU) { - d_Q = (cl_mem) src0->extra; - } else { - GGML_ASSERT(false); - } - - if (!mul_mat_vec) { - // convert src0 to fp32 on device - const size_t global = x_ne / global_denom; - const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0; - CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q)); - CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X)); - CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL)); - } - - int64_t i12 = i02 * r2; - int64_t e12 = i12 + r2; - events.reserve(e12 - i12); - for (; i12 < e12; i12++) { - if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel - // copy src1 to device - events.emplace_back(); - CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, events.data() + ev_idx++)); - - // compute - const size_t global = ne01 * local; - const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0; - const cl_int ncols = ne00; - events.emplace_back(); - CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q)); - CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL)); - CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y)); - CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D)); - CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols)); - CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, &offset, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++)); - } else { // CLBlast matrix matrix multiplication - // copy src1 to device - CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL)); - - // wait for conversion - CL_CHECK(clFinish(queue)); - - // compute - events.emplace_back(); - clblast::StatusCode status = clblast::Gemm(clblast::Layout::kColMajor, - clblast::Transpose::kYes, clblast::Transpose::kNo, - ne01, ne11, ne10, - alpha, - d_X, 0, ne00, - d_Y, 0, ne10, - beta, - d_D, 0, ne01, - &queue, events.data() + ev_idx++); - - if (status != clblast::StatusCode::kSuccess) { - GGML_ASSERT(false); - } - } - - // copy dst to host - float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); - CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL)); - for (auto *event : events) { - clReleaseEvent(event); - } - - ev_idx = 0; - events.clear(); - } - } - } - } - - if (!mul_mat_vec) { - ggml_cl_pool_free(d_X, x_size); - } - ggml_cl_pool_free(d_Y, y_size); - ggml_cl_pool_free(d_D, d_size); - if (src0->backend == GGML_BACKEND_TYPE_CPU) { - ggml_cl_pool_free(d_Q, q_size); - } -} - - -bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst) { - const int64_t ne10 = src1->ne[0]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - - // TODO: find the optimal values for these - if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && - src1->type == GGML_TYPE_F32 && - dst->type == GGML_TYPE_F32 && - ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_TYPE_GPU)) { - return true; - } - - return false; -} - -static bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) { - // If device doesn't support FP16 - if (!fp16_support) { - return false; - } - - size_t src0_sz = ggml_nbytes(src0); - size_t src1_sz = ggml_nbytes(src1); - - // mul_mat_q: src0 is converted to fp32 on device - size_t mul_mat_q_transfer = src0_sz + src1_sz; - - // mul_mat_f16: src1 is converted to fp16 on cpu - size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1); - - // choose the smaller one to transfer to the device - // TODO: this is not always the best choice due to the overhead of converting to fp16 - return mul_mat_f16_transfer < mul_mat_q_transfer; -} - -void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) { - GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst)); - - if (src0->type == GGML_TYPE_F32) { - ggml_cl_mul_mat_f32(src0, src1, dst); - } - else if (src0->type == GGML_TYPE_F16) { - if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) { - ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize); - } - else { - ggml_cl_mul_mat_q_f32(src0, src1, dst); - } - } - else if (ggml_is_quantized(src0->type)) { - ggml_cl_mul_mat_q_f32(src0, src1, dst); - } - else { - GGML_ASSERT(false); - } -} - -size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { - if (src0->type == GGML_TYPE_F16 && ggml_cl_mul_mat_use_f16(src0, src1, dst)) { - return sizeof(ggml_fp16_t) * std::max(src1->ne[0] * src1->ne[1], dst->ne[0] * dst->ne[1]); - } - return 0; -} - -void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) { - const int64_t ne0 = tensor->ne[0]; - const int64_t ne1 = tensor->ne[1]; - const int64_t ne2 = tensor->ne[2]; - const int64_t ne3 = tensor->ne[3]; - - const ggml_type type = tensor->type; - const size_t s_sz = ggml_type_size(type) * (size_t) (ne0 * ne1 / ggml_blck_size(type)); - const size_t q_sz = s_sz * (size_t) (ne2 * ne3); - - size_t q_size; - cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size); - - tensor->data = data; - // copy tensor to device - size_t offset = 0; - for (int64_t i3 = 0; i3 < ne3; i3++) { - for (int64_t i2 = 0; i2 < ne2; i2++) { - CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, offset, tensor, i3, i2, NULL)); - offset += s_sz; - } - } - - CL_CHECK(clFinish(queue)); - - tensor->extra = dst; - GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); -} - -// ggml-backend - -// buffer - -struct ggml_backend_opencl_buffer_context { - ~ggml_backend_opencl_buffer_context() { - if (buffer) { - clReleaseMemObject(buffer); - } - for (auto * sub_buffer : sub_buffers) { - clReleaseMemObject(sub_buffer); - } - } - - cl_mem buffer; - std::vector sub_buffers; -}; - -static void * const cl_ptr_base = (void *)(uintptr_t) 0x1000; - -static const char * ggml_backend_opencl_buffer_get_name(ggml_backend_buffer_t buffer) { - return "OpenCL"; - - GGML_UNUSED(buffer); -} - -static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) { - ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context; - delete ctx; -} - -static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) { - return cl_ptr_base; - - GGML_UNUSED(buffer); -} - -static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { - if (tensor->view_src != NULL && tensor->view_offs == 0) { - tensor->extra = tensor->view_src->extra; - } else { - ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context; - cl_buffer_region region = {(size_t)((char *)tensor->data - (char *)cl_ptr_base), ggml_nbytes(tensor)}; - cl_int err; - cl_mem sub_buffer = clCreateSubBuffer(ctx->buffer, CL_MEM_READ_WRITE, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err); - CL_CHECK(err); - ctx->sub_buffers.push_back(sub_buffer); - tensor->extra = sub_buffer; - } - tensor->backend = GGML_BACKEND_TYPE_GPU; -} - -static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { - cl_mem tensor_buffer = (cl_mem) tensor->extra; - CL_CHECK(clEnqueueWriteBuffer(queue, tensor_buffer, true, offset, size, data, 0, NULL, NULL)); - CL_CHECK(clFinish(queue)); - - GGML_UNUSED(buffer); -} - -static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { - cl_mem tensor_buffer = (cl_mem) tensor->extra; - CL_CHECK(clEnqueueReadBuffer(queue, tensor_buffer, true, offset, size, data, 0, NULL, NULL)); - CL_CHECK(clFinish(queue)); - - GGML_UNUSED(buffer); -} - -static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { - ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context; - CL_CHECK(clEnqueueFillBuffer(queue, ctx->buffer, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL)); - CL_CHECK(clFinish(queue)); -} - -static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) { - ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context; - for (auto * sub_buffer : ctx->sub_buffers) { - clReleaseMemObject(sub_buffer); - } - ctx->sub_buffers.clear(); -} - -static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = { - /* .get_name = */ ggml_backend_opencl_buffer_get_name, - /* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer, - /* .get_base = */ ggml_backend_opencl_buffer_get_base, - /* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor, - /* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor, - /* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor, - /* .cpy_tensor = */ NULL, - /* .clear = */ ggml_backend_opencl_buffer_clear, - /* .reset = */ ggml_backend_opencl_buffer_reset, -}; - -// buffer type - -static const char * ggml_backend_opencl_buffer_type_name(ggml_backend_buffer_type_t buffer_type) { - return "OpenCL"; - - GGML_UNUSED(buffer_type); -} - -static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) { - ggml_cl_init(); - - cl_int err; - cl_mem mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err); - if (err != CL_SUCCESS) { - fprintf(stderr, "%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0); - return nullptr; - } - - ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context{mem, {}}; - - return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size); -} - -static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) { - // FIXME: not thread safe, device may not be initialized yet - static cl_uint alignment = -1; - if (alignment == (cl_uint)-1) { - ggml_cl_init(); - clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &alignment, NULL); - alignment /= 8; // bits to bytes - } - return alignment; - - GGML_UNUSED(buffer_type); -} - -static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) { - static size_t max_size = -1; - if (max_size == (size_t)-1) { - ggml_cl_init(); - clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &max_size, NULL); - } - return max_size; -} - -static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buffer_type, ggml_backend_t backend) { - //return ggml_backend_is_opencl(backend); // opencl must be used through the cpu backend - return ggml_backend_is_cpu(backend); - - GGML_UNUSED(buffer_type); -} - -static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = { - /* .get_name = */ ggml_backend_opencl_buffer_type_name, - /* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer, - /* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment, - /* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size, - /* .get_alloc_size = */ NULL, - /* .supports_backend = */ ggml_backend_opencl_buffer_type_supports_backend, - /* .is_host = */ NULL, -}; - - -ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type() { - static ggml_backend_buffer_type buffer_type = { - /* .iface = */ ggml_backend_opencl_buffer_type_interface, - /* .context = */ nullptr, - }; - - return &buffer_type; -} - -#if 0 -// host buffer type - -static const char * ggml_backend_opencl_host_buffer_type_name(ggml_backend_buffer_type_t buft) { - return "CL_Host"; - - GGML_UNUSED(buft); -} - -static const char * ggml_backend_opencl_host_buffer_name(ggml_backend_buffer_t buffer) { - return "CL_Host"; - - GGML_UNUSED(buffer); -} - -static void ggml_backend_opencl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) { - ggml_cl_host_free(buffer->context); -} - -static ggml_backend_buffer_t ggml_backend_opencl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { - void * ptr = ggml_cl_host_malloc(size); - - if (ptr == nullptr) { - // fallback to cpu buffer - return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size); - } - - ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size); - buffer->buft = buft; - buffer->iface.get_name = ggml_backend_opencl_host_buffer_name; - buffer->iface.free_buffer = ggml_backend_opencl_host_buffer_free_buffer; - - return buffer; -} - -ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type() { - static struct ggml_backend_buffer_type ggml_backend_opencl_buffer_type_host = { - /* .iface = */ { - /* .get_name = */ ggml_backend_opencl_host_buffer_type_name, - /* .alloc_buffer = */ ggml_backend_opencl_host_buffer_type_alloc_buffer, - /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment, - /* .get_max_size = */ NULL, // defaults to SIZE_MAX - /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size, - /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend, - /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host, - }, - /* .context = */ nullptr, - }; - - return &ggml_backend_opencl_buffer_type_host; -} - -// backend - -static const char * ggml_backend_opencl_name(ggml_backend_t backend) { - return "OpenCL"; - - GGML_UNUSED(backend); -} - -static void ggml_backend_opencl_free(ggml_backend_t backend) { - GGML_UNUSED(backend); -} - -static ggml_backend_buffer_type_t ggml_backend_opencl_get_default_buffer_type(ggml_backend_t backend) { - return ggml_backend_opencl_buffer_type(); - - GGML_UNUSED(backend); -} - -static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * graph) { - for (int i = 0; i < graph->n_nodes; ++i) { - ggml_tensor * node = graph->nodes[i]; - - if (ggml_is_empty(node)) { - continue; - } - - switch (node->op) { - case GGML_OP_MUL_MAT: - ggml_cl_mul_mat(node->src[0], node->src[1], node, nullptr, 0); - break; - case GGML_OP_MUL: - ggml_cl_mul(node->src[0], node->src[1], node); - break; - default: - GGML_ASSERT(false); - } - } - - return GGML_STATUS_SUCCESS; - - GGML_UNUSED(backend); -} - -static bool ggml_backend_opencl_supports_op(ggml_backend_t backend, const ggml_tensor * op) { - switch (op->op) { - case GGML_OP_MUL_MAT: - return ggml_cl_can_mul_mat(op->src[0], op->src[1], op); - case GGML_OP_MUL: - // return ggml_can_repeat_rows(op->src[1], op->src[0]); - return true; - default: - return false; - } - - GGML_UNUSED(backend); -} - -static ggml_backend_i opencl_backend_i = { - /* .get_name = */ ggml_backend_opencl_name, - /* .free = */ ggml_backend_opencl_free, - /* .get_default_buffer_type = */ ggml_backend_opencl_get_default_buffer_type, - /* .set_tensor_async = */ NULL, - /* .get_tensor_async = */ NULL, - /* .cpy_tensor_from_async = */ NULL, - /* .cpy_tensor_to_async = */ NULL, - /* .synchronize = */ NULL, - /* .graph_plan_create = */ NULL, - /* .graph_plan_free = */ NULL, - /* .graph_plan_compute = */ NULL, - /* .graph_compute = */ ggml_backend_opencl_graph_compute, - /* .supports_op = */ ggml_backend_opencl_supports_op, -}; - -ggml_backend_t ggml_backend_opencl_init() { - ggml_backend_t backend = new ggml_backend { - /* .interface = */ opencl_backend_i, - /* .context = */ nullptr - }; - - return backend; -} - -bool ggml_backend_is_opencl(ggml_backend_t backend) { - return backend && backend->iface.get_name == ggml_backend_opencl_name; -} -#endif diff --git a/ggml-opencl.h b/ggml-opencl.h deleted file mode 100644 index 257a6be6af5ec..0000000000000 --- a/ggml-opencl.h +++ /dev/null @@ -1,36 +0,0 @@ -#pragma once - -#include "ggml.h" -#include "ggml-backend.h" - -#ifdef __cplusplus -extern "C" { -#endif - -GGML_API void ggml_cl_init(void); - -GGML_API void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); -GGML_API void ggml_cl_add(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); -GGML_API bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst); -GGML_API size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); -GGML_API void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize); - -// GGML_API void * ggml_cl_host_malloc(size_t size); -// GGML_API void ggml_cl_host_free(void * ptr); - -GGML_API void ggml_cl_free_data(const struct ggml_tensor* tensor); - -GGML_API void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor); - -// backend API - -// GGML_API ggml_backend_t ggml_backend_opencl_init(void); - -// GGML_API bool ggml_backend_is_opencl(ggml_backend_t backend); - -GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type(void); -// GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type(void); - -#ifdef __cplusplus -} -#endif diff --git a/ggml.c b/ggml.c index 8869e146ab2b8..11e5c34ab56ad 100644 --- a/ggml.c +++ b/ggml.c @@ -297,17 +297,12 @@ inline static void * ggml_calloc(size_t num, size_t size) { #if defined(GGML_USE_ACCELERATE) #include -#if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions -#include "ggml-opencl.h" -#endif #elif defined(GGML_USE_OPENBLAS) #if defined(GGML_BLAS_USE_MKL) #include #else #include #endif -#elif defined(GGML_USE_CLBLAST) -#include "ggml-opencl.h" #endif // floating point type used to accumulate sums @@ -3380,10 +3375,6 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f); } -#if defined(GGML_USE_CLBLAST) - ggml_cl_init(); -#endif - ggml_setup_op_has_task_pass(); is_first_call = false; @@ -9053,17 +9044,6 @@ static void ggml_compute_forward_add_f32( const int ith = params->ith; const int nth = params->nth; -#ifdef GGML_USE_CLBLAST - if (src1->backend == GGML_BACKEND_TYPE_GPU) { - // TODO: OpenCL kernel support full broadcast - GGML_ASSERT(ggml_can_repeat_rows(src1, src0)); - if (ith == 0) { - ggml_cl_add(src0, src1, dst); - } - return; - } -#endif - const int nr = ggml_nrows(src0); GGML_TENSOR_BINARY_OP_LOCALS @@ -10171,17 +10151,6 @@ static void ggml_compute_forward_mul_f32( const int ith = params->ith; const int nth = params->nth; -#if defined(GGML_USE_CLBLAST) - if (src1->backend == GGML_BACKEND_TYPE_GPU) { - // TODO: OpenCL kernel support full broadcast - GGML_ASSERT(ggml_can_repeat_rows(src1, src0)); - if (ith == 0) { - ggml_cl_mul(src0, src1, dst); - } - return; - } -#endif - const int64_t nr = ggml_nrows(src0); GGML_TENSOR_BINARY_OP_LOCALS @@ -12417,15 +12386,6 @@ static void ggml_compute_forward_mul_mat( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows -#if defined(GGML_USE_CLBLAST) - if (ggml_cl_can_mul_mat(src0, src1, dst)) { - if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) { - ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize); - } - return; - } -#endif - #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) if (ggml_compute_forward_mul_mat_use_blas(dst)) { const int64_t ne_plane = ne01*ne00; @@ -12873,8 +12833,6 @@ static void ggml_compute_forward_out_prod_f32( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows - // TODO: #if defined(GGML_USE_CLBLAST) - #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) bool use_blas = ggml_is_matrix(src0) && ggml_is_matrix(src1) && @@ -13072,7 +13030,7 @@ static void ggml_compute_forward_out_prod_q_f32( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows - // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) + // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) if (params->type == GGML_TASK_TYPE_INIT) { if (ith != 0) { @@ -19546,11 +19504,6 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa { const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type; -#if defined(GGML_USE_CLBLAST) - if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) { - cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node); - } else -#endif #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) if (ggml_compute_forward_mul_mat_use_blas(node)) { if (node->src[0]->type != GGML_TYPE_F32) { @@ -22859,7 +22812,7 @@ int ggml_cpu_has_wasm_simd(void) { } int ggml_cpu_has_blas(void) { -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL) return 1; #else return 0; @@ -22874,14 +22827,6 @@ int ggml_cpu_has_cuda(void) { #endif } -int ggml_cpu_has_clblast(void) { -#if defined(GGML_USE_CLBLAST) - return 1; -#else - return 0; -#endif -} - int ggml_cpu_has_vulkan(void) { #if defined(GGML_USE_VULKAN) return 1; @@ -22915,8 +22860,7 @@ int ggml_cpu_has_rpc(void) { } int ggml_cpu_has_gpublas(void) { - return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || - ggml_cpu_has_sycl(); + return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl(); } int ggml_cpu_has_sse3(void) { diff --git a/ggml.h b/ggml.h index f38699698b1e9..addcf1bfef673 100644 --- a/ggml.h +++ b/ggml.h @@ -2425,7 +2425,6 @@ extern "C" { GGML_API int ggml_cpu_has_wasm_simd (void); GGML_API int ggml_cpu_has_blas (void); GGML_API int ggml_cpu_has_cuda (void); - GGML_API int ggml_cpu_has_clblast (void); GGML_API int ggml_cpu_has_vulkan (void); GGML_API int ggml_cpu_has_kompute (void); GGML_API int ggml_cpu_has_gpublas (void); diff --git a/llama.cpp b/llama.cpp index 92c33f53e03ad..c05e2bdb7ae44 100644 --- a/llama.cpp +++ b/llama.cpp @@ -13,8 +13,6 @@ #ifdef GGML_USE_CUDA # include "ggml-cuda.h" -#elif defined(GGML_USE_CLBLAST) -# include "ggml-opencl.h" #elif defined(GGML_USE_VULKAN) # include "ggml-vulkan.h" #elif defined(GGML_USE_SYCL) @@ -2406,8 +2404,6 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_ buft = ggml_backend_vk_buffer_type(gpu); #elif defined(GGML_USE_SYCL) buft = ggml_backend_sycl_buffer_type(gpu); -#elif defined(GGML_USE_CLBLAST) - buft = ggml_backend_opencl_buffer_type(); #elif defined(GGML_USE_KOMPUTE) buft = ggml_backend_kompute_buffer_type(gpu); if (buft == nullptr) { @@ -2530,10 +2526,6 @@ static bool llama_kv_cache_init( } } -#ifdef GGML_USE_CLBLAST - offload = false; -#endif - // count used buffer types std::map buft_layer_count; if (offload) { @@ -15921,7 +15913,7 @@ bool llama_supports_mlock(void) { } bool llama_supports_gpu_offload(void) { -#if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \ +#if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \ defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC) // Defined when llama.cpp is compiled with support for offloading model layers to GPU. return true; diff --git a/scripts/LlamaConfig.cmake.in b/scripts/LlamaConfig.cmake.in index 92e39708b7cf2..9311055d925d4 100644 --- a/scripts/LlamaConfig.cmake.in +++ b/scripts/LlamaConfig.cmake.in @@ -5,7 +5,6 @@ set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@) set(LLAMA_BLAS @LLAMA_BLAS@) set(LLAMA_CUDA @LLAMA_CUDA@) set(LLAMA_METAL @LLAMA_METAL@) -set(LLAMA_CLBLAST @LLAMA_CLBLAST@) set(LLAMA_HIPBLAS @LLAMA_HIPBLAS@) set(LLAMA_ACCELERATE @LLAMA_ACCELERATE@) @@ -36,10 +35,6 @@ if (LLAMA_METAL) find_library(METALKIT_FRAMEWORK MetalKit REQUIRED) endif() -if (LLAMA_CLBLAST) - find_package(CLBlast REQUIRED) -endif() - if (LLAMA_HIPBLAS) find_package(hip REQUIRED) find_package(hipblas REQUIRED) diff --git a/scripts/compare-llama-bench.py b/scripts/compare-llama-bench.py index 6016eb2c08f80..513dde5e13f93 100755 --- a/scripts/compare-llama-bench.py +++ b/scripts/compare-llama-bench.py @@ -19,17 +19,17 @@ # Properties by which to differentiate results per commit: KEY_PROPERTIES = [ - "cpu_info", "gpu_info", "n_gpu_layers", "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", + "cpu_info", "gpu_info", "n_gpu_layers", "cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas", "model_filename", "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "embeddings", "n_threads", "type_k", "type_v", "use_mmap", "no_kv_offload", "split_mode", "main_gpu", "tensor_split", "flash_attn", "n_prompt", "n_gen" ] # Properties that are boolean and are converted to Yes/No for the table: -BOOL_PROPERTIES = ["cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas", "embeddings", "use_mmap", "no_kv_offload", "flash_attn"] +BOOL_PROPERTIES = ["cuda", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas", "embeddings", "use_mmap", "no_kv_offload", "flash_attn"] # Header names for the table: PRETTY_NAMES = { - "cuda": "CUDA", "opencl": "OpenCL", "vulkan": "Vulkan", "kompute": "Kompute", "metal": "Metal", "sycl": "SYCL", "rpc": "RPC", + "cuda": "CUDA", "vulkan": "Vulkan", "kompute": "Kompute", "metal": "Metal", "sycl": "SYCL", "rpc": "RPC", "gpu_blas": "GPU BLAS", "blas": "BLAS", "cpu_info": "CPU", "gpu_info": "GPU", "model_filename": "File", "model_type": "Model", "model_size": "Model Size [GiB]", "model_n_params": "Num. of Par.", "n_batch": "Batch size", "n_ubatch": "Microbatch size", "n_threads": "Threads", "type_k": "K type", "type_v": "V type", "n_gpu_layers": "GPU layers", "split_mode": "Split mode", diff --git a/scripts/server-llm.sh b/scripts/server-llm.sh index eb6ce458e5399..b3715e204b691 100644 --- a/scripts/server-llm.sh +++ b/scripts/server-llm.sh @@ -3,7 +3,7 @@ # Helper script for deploying llama.cpp server with a single Bash command # # - Works on Linux and macOS -# - Supports: CPU, CUDA, Metal, OpenCL +# - Supports: CPU, CUDA, Metal # - Can run all GGUF models from HuggingFace # - Can serve requests in parallel # - Always builds latest llama.cpp from GitHub @@ -19,7 +19,7 @@ # --port: port number, default is 8888 # --repo: path to a repo containing GGUF model files # --wtype: weights type (f16, q8_0, q4_0, q4_1), default is user-input -# --backend: cpu, cuda, metal, opencl, depends on the OS +# --backend: cpu, cuda, metal, depends on the OS # --gpu-id: gpu id, default is 0 # --n-parallel: number of parallel requests, default is 8 # --n-kv: KV cache size, default is 4096 @@ -72,7 +72,7 @@ function print_usage { printf " --port: port number, default is 8888\n" printf " --repo: path to a repo containing GGUF model files\n" printf " --wtype: weights type (f16, q8_0, q4_0, q4_1), default is user-input\n" - printf " --backend: cpu, cuda, metal, opencl, depends on the OS\n" + printf " --backend: cpu, cuda, metal, depends on the OS\n" printf " --gpu-id: gpu id, default is 0\n" printf " --n-parallel: number of parallel requests, default is 8\n" printf " --n-kv: KV cache size, default is 4096\n" @@ -387,9 +387,6 @@ elif [[ "$backend" == "cpu" ]]; then elif [[ "$backend" == "metal" ]]; then printf "[+] Building with Metal backend\n" make -j server $log -elif [[ "$backend" == "opencl" ]]; then - printf "[+] Building with OpenCL backend\n" - LLAMA_CLBLAST=1 make -j server $log else printf "[-] Unknown backend: %s\n" "$backend" exit 1 @@ -407,8 +404,6 @@ elif [[ "$backend" == "cpu" ]]; then args="-ngl 0" elif [[ "$backend" == "metal" ]]; then args="-ngl 999" -elif [[ "$backend" == "opencl" ]]; then - args="-ngl 999" else printf "[-] Unknown backend: %s\n" "$backend" exit 1 diff --git a/scripts/sync-ggml-am.sh b/scripts/sync-ggml-am.sh index 3f8ddf37ba4a7..9e34dc8b9a590 100755 --- a/scripts/sync-ggml-am.sh +++ b/scripts/sync-ggml-am.sh @@ -106,8 +106,6 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then # src/ggml-kompute.h -> ggml-kompute.h # src/ggml-metal.h -> ggml-metal.h # src/ggml-metal.m -> ggml-metal.m - # src/ggml-opencl.cpp -> ggml-opencl.cpp - # src/ggml-opencl.h -> ggml-opencl.h # src/ggml-quants.c -> ggml-quants.c # src/ggml-quants.h -> ggml-quants.h # src/ggml-rpc.cpp -> ggml-rpc.cpp @@ -143,8 +141,6 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then -e 's/src\/ggml-kompute\.h/ggml-kompute.h/g' \ -e 's/src\/ggml-metal\.h/ggml-metal.h/g' \ -e 's/src\/ggml-metal\.m/ggml-metal.m/g' \ - -e 's/src\/ggml-opencl\.cpp/ggml-opencl.cpp/g' \ - -e 's/src\/ggml-opencl\.h/ggml-opencl.h/g' \ -e 's/src\/ggml-quants\.c/ggml-quants.c/g' \ -e 's/src\/ggml-quants\.h/ggml-quants.h/g' \ -e 's/src\/ggml-rpc\.cpp/ggml-rpc.cpp/g' \ diff --git a/scripts/sync-ggml.sh b/scripts/sync-ggml.sh index fbae6b7f8e3e4..4843f8a4ae05e 100755 --- a/scripts/sync-ggml.sh +++ b/scripts/sync-ggml.sh @@ -14,8 +14,6 @@ cp -rpv ../ggml/src/ggml-kompute.h ./ggml-kompute.h cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal -cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp -cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h cp -rpv ../ggml/src/ggml-quants.c ./ggml-quants.c cp -rpv ../ggml/src/ggml-quants.h ./ggml-quants.h cp -rpv ../ggml/src/ggml-rpc.cpp ./ggml-rpc.cpp