diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 74b5d4f69d790..c36eaadfb132d 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -857,7 +857,7 @@ jobs: run: | mkdir build cd build - cmake .. -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=ON + cmake .. -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=ON -DGGML_RPC=ON cmake --build . --config Release -j $((${env:NUMBER_OF_PROCESSORS} - 1)) -t ggml cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS} diff --git a/CMakePresets.json b/CMakePresets.json index ce627b4d39e0c..d22ffa4909a4a 100644 --- a/CMakePresets.json +++ b/CMakePresets.json @@ -32,8 +32,8 @@ { "name": "arm64-windows-msvc", "hidden": true, - "architecture": { "value": "arm64", "strategy": "external" }, - "toolset": { "value": "host=x86_64", "strategy": "external" }, + "architecture": { "value": "arm64", "strategy": "external" }, + "toolset": { "value": "host=x64", "strategy": "external" }, "cacheVariables": { "CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-msvc.cmake" } @@ -41,8 +41,8 @@ { "name": "arm64-windows-llvm", "hidden": true, - "architecture": { "value": "arm64", "strategy": "external" }, - "toolset": { "value": "host=x86_64", "strategy": "external" }, + "architecture": { "value": "arm64", "strategy": "external" }, + "toolset": { "value": "host=x64", "strategy": "external" }, "cacheVariables": { "CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-llvm.cmake" } diff --git a/common/common.cpp b/common/common.cpp index d28f918ef6dda..3694c12762a0c 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -2235,6 +2235,15 @@ std::vector gpt_params_parser_init(gpt_params & params, llama_example else { throw std::invalid_argument("invalid value"); } } ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); + add_opt(llama_arg( + {"--output-format"}, "{md,jsonl}", + "output format for batched-bench results (default: md)", + [¶ms](std::string value) { + /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; } + else if (value == "md") { params.batched_bench_output_jsonl = false; } + else { std::invalid_argument("invalid value"); } + } + ).set_examples({LLAMA_EXAMPLE_BENCH})); #ifndef LOG_DISABLE_LOGS // TODO: make this looks less weird add_opt(llama_arg( diff --git a/common/common.h b/common/common.h index a8aa6fe144a30..e8dd040e9d994 100644 --- a/common/common.h +++ b/common/common.h @@ -298,6 +298,9 @@ struct gpt_params { bool spm_infill = false; // suffix/prefix/middle pattern for infill std::string lora_outfile = "ggml-lora-merged-f16.gguf"; + + // batched-bench params + bool batched_bench_output_jsonl = false; }; struct llama_arg { diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 27ac34b810acd..0a9bbc8294ef7 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -308,6 +308,20 @@ def prepare_tensors(self): ): data_qtype = gguf.GGMLQuantizationType.F32 + if data_qtype is False and any( + self.match_model_tensor_name(new_name, key, bid) + for key in ( + gguf.MODEL_TENSOR.TOKEN_EMBD, + gguf.MODEL_TENSOR.OUTPUT, + ) + ): + if self.ftype in ( + gguf.LlamaFileType.MOSTLY_TQ1_0, + gguf.LlamaFileType.MOSTLY_TQ2_0, + ): + # TODO: use Q4_K and Q6_K + data_qtype = gguf.GGMLQuantizationType.F16 + # No override (data_qtype is False), or wants to be quantized (data_qtype is True) if isinstance(data_qtype, bool): if self.ftype == gguf.LlamaFileType.ALL_F32: @@ -318,6 +332,10 @@ def prepare_tensors(self): data_qtype = gguf.GGMLQuantizationType.BF16 elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0: data_qtype = gguf.GGMLQuantizationType.Q8_0 + elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0: + data_qtype = gguf.GGMLQuantizationType.TQ1_0 + elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0: + data_qtype = gguf.GGMLQuantizationType.TQ2_0 else: raise ValueError(f"Unknown file type: {self.ftype.name}") @@ -1623,15 +1641,16 @@ def set_gguf_parameters(self): self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) self.gguf_writer.add_rope_scaling_factor(1.0) - def weight_quant(self, weight): + def weight_quant(self, weight: Tensor) -> Tensor: dtype = weight.dtype weight = weight.float() - s = 1 / weight.abs().mean().clamp(min=1e-5) - weight = (weight * s).round().clamp(-1, 1) / s - scale = weight.abs().max().unsqueeze(0) - weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype) - weight = torch.sign(weight).type(dtype) - return weight.type(dtype), scale.type(torch.float32) + scale = weight.abs().mean().clamp(min=1e-5) + iscale = 1 / scale + # TODO: multiply by the scale directly instead of inverting it twice + # (this is also unnecessarily doubly inverted upstream) + # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10 + result = (weight * iscale).round().clamp(-1, 1) / iscale + return result.type(dtype) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: new_name = self.map_tensor_name(name) @@ -1646,11 +1665,9 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter gguf.MODEL_TENSOR.FFN_GATE, ]): # transform weight into 1/0/-1 (in fp32) - weight_torch, scale_torch = self.weight_quant(data_torch) - yield (new_name, weight_torch) - yield (new_name.removesuffix(".weight") + ".scale", scale_torch) - else: - yield (new_name, data_torch) + data_torch = self.weight_quant(data_torch) + + yield (new_name, data_torch) @Model.register("GrokForCausalLM") @@ -4011,8 +4028,8 @@ def parse_args() -> argparse.Namespace: help="path to write to; default: based on input. {ftype} will be replaced by the outtype.", ) parser.add_argument( - "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16", - help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type", + "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16", + help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type", ) parser.add_argument( "--bigendian", action="store_true", @@ -4099,6 +4116,8 @@ def main() -> None: "f16": gguf.LlamaFileType.MOSTLY_F16, "bf16": gguf.LlamaFileType.MOSTLY_BF16, "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0, + "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0, + "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0, "auto": gguf.LlamaFileType.GUESSED, } diff --git a/examples/batched-bench/README.md b/examples/batched-bench/README.md index 4a07fe6bbf268..df67c47e378cf 100644 --- a/examples/batched-bench/README.md +++ b/examples/batched-bench/README.md @@ -49,3 +49,12 @@ There are 2 modes of operation: | 128 | 256 | 8 | 3072 | 0.751 | 1363.92 | 15.110 | 135.54 | 15.861 | 193.69 | | 128 | 256 | 16 | 6144 | 1.569 | 1304.93 | 18.073 | 226.64 | 19.642 | 312.80 | | 128 | 256 | 32 | 12288 | 3.409 | 1201.35 | 19.223 | 426.15 | 22.633 | 542.93 | + +### JSONL output + +Pass `--output-format jsonl` to output JSONL instead of Markdown, รก la + +```json lines +{"n_kv_max": 2048, "n_batch": 2048, "n_ubatch": 512, "flash_attn": 0, "is_pp_shared": 0, "n_gpu_layers": 99, "n_threads": 8, "n_threads_batch": 8, "pp": 128, "tg": 128, "pl": 1, "n_kv": 256, "t_pp": 0.233810, "speed_pp": 547.453064, "t_tg": 3.503684, "speed_tg": 36.532974, "t": 3.737494, "speed": 68.495094} +{"n_kv_max": 2048, "n_batch": 2048, "n_ubatch": 512, "flash_attn": 0, "is_pp_shared": 0, "n_gpu_layers": 99, "n_threads": 8, "n_threads_batch": 8, "pp": 128, "tg": 128, "pl": 2, "n_kv": 512, "t_pp": 0.422602, "speed_pp": 605.770935, "t_tg": 11.106112, "speed_tg": 23.050371, "t": 11.528713, "speed": 44.410854} +``` diff --git a/examples/batched-bench/batched-bench.cpp b/examples/batched-bench/batched-bench.cpp index 0d6076108eac8..b8ae6b2123e63 100644 --- a/examples/batched-bench/batched-bench.cpp +++ b/examples/batched-bench/batched-bench.cpp @@ -120,12 +120,13 @@ int main(int argc, char ** argv) { } } - LOG_TEE("\n"); - LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); - LOG_TEE("\n"); - - LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s"); - LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------"); + if (!params.batched_bench_output_jsonl) { + LOG_TEE("\n"); + LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); + LOG_TEE("\n"); + LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s"); + LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------"); + } for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) { for ( int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) { @@ -193,7 +194,16 @@ int main(int argc, char ** argv) { const float speed_tg = pl*tg / t_tg; const float speed = n_kv / t; - LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed); + if(params.batched_bench_output_jsonl) { + LOG_TEE( + "{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"is_pp_shared\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, " + "\"pp\": %d, \"tg\": %d, \"pl\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f, \"t\": %f, \"speed\": %f}\n", + n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch, + pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed + ); + } else { + LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed); + } } } } diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index 2023463100c8b..a23bfb86b350f 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -26,6 +26,8 @@ static const std::vector QUANT_OPTIONS = { { "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", }, { "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", }, { "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", }, + { "TQ1_0", LLAMA_FTYPE_MOSTLY_TQ1_0, " 1.69 bpw ternarization", }, + { "TQ2_0", LLAMA_FTYPE_MOSTLY_TQ2_0, " 2.06 bpw ternarization", }, { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.96G, +3.5199 ppl @ Llama-3-8B", }, { "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.96G, +3.1836 ppl @ Llama-3-8B", }, { "IQ3_XXS", LLAMA_FTYPE_MOSTLY_IQ3_XXS, " 3.06 bpw quantization", }, diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 099b224cf9c5f..1709cac53e803 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -412,6 +412,7 @@ struct server_queue { // multi-task version of post() int post(std::vector & tasks, bool front = false) { + std::unique_lock lock(mutex_tasks); for (auto & task : tasks) { if (task.id == -1) { task.id = id++; diff --git a/ggml/CMakeLists.txt b/ggml/CMakeLists.txt index cc16858849783..532534bcb97e3 100644 --- a/ggml/CMakeLists.txt +++ b/ggml/CMakeLists.txt @@ -135,6 +135,7 @@ option(GGML_VULKAN "ggml: use Vulkan" option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF) option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF) option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug output" OFF) +option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF) option(GGML_VULKAN_PERF "ggml: enable Vulkan perf output" OFF) option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF) option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF) diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index 3fb680360c383..09c72b09586df 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -395,6 +395,8 @@ extern "C" { GGML_TYPE_Q4_0_4_4 = 31, GGML_TYPE_Q4_0_4_8 = 32, GGML_TYPE_Q4_0_8_8 = 33, + GGML_TYPE_TQ1_0 = 34, + GGML_TYPE_TQ2_0 = 35, GGML_TYPE_COUNT, }; diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt index ec7d308253b59..cd2dcd0660d3a 100644 --- a/ggml/src/CMakeLists.txt +++ b/ggml/src/CMakeLists.txt @@ -612,6 +612,10 @@ if (GGML_VULKAN) add_compile_definitions(GGML_VULKAN_MEMORY_DEBUG) endif() + if (GGML_VULKAN_SHADER_DEBUG_INFO) + add_compile_definitions(GGML_VULKAN_SHADER_DEBUG_INFO) + endif() + if (GGML_VULKAN_PERF) add_compile_definitions(GGML_VULKAN_PERF) endif() diff --git a/ggml/src/ggml-common.h b/ggml/src/ggml-common.h index e40057632fc5a..050161393456e 100644 --- a/ggml/src/ggml-common.h +++ b/ggml/src/ggml-common.h @@ -227,6 +227,25 @@ typedef struct { } block_q8_0x8; static_assert(sizeof(block_q8_0x8) == 8 * sizeof(ggml_half) + QK8_0 * 8, "wrong q8_0x8 block size/padding"); +// +// Ternary quantization +// + +// 1.6875 bpw +typedef struct { + uint8_t qs[(QK_K - 4 * QK_K / 64) / 5]; // 5 elements per byte (3^5 = 243 < 256) + uint8_t qh[QK_K/64]; // 4 elements per byte + ggml_half d; +} block_tq1_0; +static_assert(sizeof(block_tq1_0) == sizeof(ggml_half) + QK_K / 64 + (QK_K - 4 * QK_K / 64) / 5, "wrong tq1_0 block size/padding"); + +// 2.0625 bpw +typedef struct { + uint8_t qs[QK_K/4]; // 2 bits per element + ggml_half d; +} block_tq2_0; +static_assert(sizeof(block_tq2_0) == sizeof(ggml_half) + QK_K / 4, "wrong tq2_0 block size/padding"); + // // Super-block quantization structures // @@ -361,6 +380,7 @@ typedef struct { } block_iq3_s; static_assert(sizeof(block_iq3_s) == sizeof(ggml_half) + 13*(QK_K/32) + IQ3S_N_SCALE, "wrong iq3_s block size/padding"); +// 1.5625 bpw typedef struct { ggml_half d; uint8_t qs[QK_K/8]; diff --git a/ggml/src/ggml-impl.h b/ggml/src/ggml-impl.h index 190af081031da..961f3c67bdbd9 100644 --- a/ggml/src/ggml-impl.h +++ b/ggml/src/ggml-impl.h @@ -175,7 +175,7 @@ typedef __fp16 ggml_fp16_internal_t; // 32-bit ARM compatibility -// vaddvq_s16 +// vaddlvq_s16 // vpaddq_s16 // vpaddq_s32 // vaddvq_s32 @@ -185,12 +185,9 @@ typedef __fp16 ggml_fp16_internal_t; // vzip1_u8 // vzip2_u8 -inline static int32_t vaddvq_s16(int16x8_t v) { - return - (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) + - (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) + - (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) + - (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7); +inline static int32_t vaddlvq_s16(int16x8_t v) { + int32x4_t v0 = vreinterpretq_s32_s64(vpaddlq_s32(vpaddlq_s16(v))); + return vgetq_lane_s32(v0, 0) + vgetq_lane_s32(v0, 2); } inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) { diff --git a/ggml/src/ggml-quants.c b/ggml/src/ggml-quants.c index 48b90f01b5a0a..8c31e2ccabda0 100644 --- a/ggml/src/ggml-quants.c +++ b/ggml/src/ggml-quants.c @@ -1630,7 +1630,7 @@ void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int6 // ===================== Helper functions // static inline int nearest_int(float fval) { - assert(fval <= 4194303.f); + assert(fabsf(fval) <= 4194303.f); float val = fval + 12582912.f; int i; memcpy(&i, &val, sizeof(int)); return (i & 0x007fffff) - 0x00400000; @@ -3306,6 +3306,191 @@ size_t quantize_q8_0(const float * restrict src, void * restrict dst, int64_t nr return nrow * row_size; } +// ====================== Ternary (de)-quantization (BitNet b1.58 and TriLMs) + +void quantize_row_tq1_0_ref(const float * restrict x, block_tq1_0 * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int64_t nb = k / QK_K; + + for (int64_t i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + + for (int j = 0; j < QK_K; j++) { + const float v = x[j]; + amax = MAX(amax, fabsf(v)); + } + + const float d = amax; + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + + // 5 elements per byte, along 32 bytes + for (size_t j = 0; j < sizeof(y->qs) - sizeof(y->qs) % 32; j += 32) { + for (size_t m = 0; m < 32; ++m) { + uint8_t q = 0; + for (size_t n = 0; n < 5; ++n) { + int xi = lroundf(x[m + n*32] * id) + 1; // -1, 0, 1 -> 0, 1, 2 + q *= 3; + q += xi; + } + // ceiling division (243 == pow(3, 5)) + q = ((uint16_t)q * 256 + (243 - 1)) / 243; + y[i].qs[j + m] = q; + } + x += 5*32; + } + // along 16 bytes + for (size_t j = sizeof(y->qs) - sizeof(y->qs) % 32; j < sizeof(y->qs); j += 16) { + for (size_t m = 0; m < 16; ++m) { + uint8_t q = 0; + for (size_t n = 0; n < 5; ++n) { + int xi = lroundf(x[m + n*16] * id) + 1; // -1, 0, 1 -> 0, 1, 2 + q *= 3; + q += xi; + } + // ceiling division (243 == pow(3, 5)) + q = ((uint16_t)q * 256 + (243 - 1)) / 243; + y[i].qs[j + m] = q; + } + x += 5*16; + } + // 4 elements per byte + for (size_t j = 0; j < sizeof(y->qh); ++j) { + uint8_t q = 0; + for (size_t m = 0; m < 4; ++m) { + // -1, 0, 1 -> 0, 1, 2 + int xi = lroundf(x[j + m*sizeof(y->qh)] * id) + 1; + q *= 3; + q += xi; + } + // shift the first value to the most significant trit + q *= 3; + // ceiling division (243 == pow(3, 5)) + q = ((uint16_t)q * 256 + (243 - 1)) / 243; + y[i].qh[j] = q; + } + x += 4*sizeof(y->qh); + } +} + +void quantize_row_tq2_0_ref(const float * restrict x, block_tq2_0 * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int64_t nb = k / QK_K; + + for (int64_t i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + + for (int j = 0; j < QK_K; j++) { + const float v = x[j]; + amax = MAX(amax, fabsf(v)); + } + + const float d = amax; + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + + for (size_t j = 0; j < sizeof(y->qs); j += 32) { + for (size_t m = 0; m < 32; ++m) { + uint8_t q = 0; + for (size_t n = 0; n < 4; ++n) { + // -1, 0, 1 -> 0, 1, 2 + int xi = lroundf(x[m + n*32] * id) + 1; + q += (xi & 3) << (2*n); + } + y[i].qs[j + m] = q; + } + x += 4*32; + } + } +} + +void quantize_row_tq1_0(const float * restrict x, void * restrict vy, int64_t k) { + assert(k % QK_K == 0); + block_tq1_0 * restrict y = vy; + quantize_row_tq1_0_ref(x, y, k); +} + +void quantize_row_tq2_0(const float * restrict x, void * restrict vy, int64_t k) { + assert(k % QK_K == 0); + block_tq2_0 * restrict y = vy; + quantize_row_tq2_0_ref(x, y, k); +} + +size_t quantize_tq1_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + (void)quant_weights; // not used + const size_t row_size = ggml_row_size(GGML_TYPE_TQ1_0, n_per_row); + quantize_row_tq1_0(src, dst, (int64_t)nrow*n_per_row); + return nrow * row_size; +} + +size_t quantize_tq2_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + (void)quant_weights; // not used + const size_t row_size = ggml_row_size(GGML_TYPE_TQ2_0, n_per_row); + quantize_row_tq2_0(src, dst, (int64_t)nrow*n_per_row); + return nrow * row_size; +} + + +void dequantize_row_tq1_0(const block_tq1_0 * restrict x, float * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int64_t nb = k / QK_K; + + const uint8_t pow3[6] = {1, 3, 9, 27, 81, 243}; + + for (int64_t i = 0; i < nb; ++i) { + + const float d = GGML_FP16_TO_FP32(x[i].d); + + for (size_t j = 0; j < sizeof(x->qs) - sizeof(x->qs) % 32; j += 32) { + for (size_t n = 0; n < 5; ++n) { + for (size_t m = 0; m < 32; ++m) { + uint8_t q = x[i].qs[j + m] * pow3[n]; + int16_t xi = ((uint16_t) q * 3) >> 8; + *y++ = (float) (xi - 1) * d; + } + } + } + for (size_t j = sizeof(x->qs) - sizeof(x->qs) % 32; j < sizeof(x->qs); j += 16) { + for (size_t n = 0; n < 5; ++n) { + for (size_t m = 0; m < 16; ++m) { + uint8_t q = x[i].qs[j + m] * pow3[n]; + int16_t xi = ((uint16_t) q * 3) >> 8; + *y++ = (float) (xi - 1) * d; + } + } + } + + for (size_t n = 0; n < 4; ++n) { + for (size_t j = 0; j < sizeof(x->qh); ++j) { + uint8_t q = x[i].qh[j] * pow3[n]; + int16_t xi = ((uint16_t) q * 3) >> 8; + *y++ = (float) (xi - 1) * d; + } + } + } +} + +void dequantize_row_tq2_0(const block_tq2_0 * restrict x, float * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int64_t nb = k / QK_K; + + for (int64_t i = 0; i < nb; ++i) { + + const float d = GGML_FP16_TO_FP32(x[i].d); + + for (size_t j = 0; j < sizeof(x->qs); j += 32) { + for (size_t l = 0; l < 4; ++l) { + for (size_t m = 0; m < 32; ++m) { + int8_t q = (x[i].qs[j + m] >> (l*2)) & 3; + *y++ = (float) (q - 1) * d; + } + } + } + } +} + // ====================== "True" 2-bit (de)-quantization void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int64_t k) { @@ -5470,6 +5655,501 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * r *s = sumf; } +void ggml_vec_dot_tq1_0_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_tq1_0 * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#if defined(__ARM_NEON) + float sumf = 0.0f; + + uint8_t k_shift[16] = {1, 1, 1, 1, 3, 3, 3, 3, 9, 9, 9, 9, 27, 27, 27, 27}; + + const uint8x16_t shift = vld1q_u8(k_shift); + + for (int i = 0; i < nb; ++i) { +#if defined(__ARM_FEATURE_DOTPROD) + int32x4_t sumi0 = vdupq_n_s32(0); + int32x4_t sumi1 = vdupq_n_s32(0); +#else + int16x8_t sumi0 = vdupq_n_s16(0); + int16x8_t sumi1 = vdupq_n_s16(0); +#endif + + // first 32 bytes of 5 elements + { + uint8x16_t qx0 = vld1q_u8(x[i].qs + 0); + uint8x16_t qx1 = vld1q_u8(x[i].qs + 16); + uint8x16_t qx2 = vmulq_u8(qx0, vdupq_n_u8(3)); + uint8x16_t qx3 = vmulq_u8(qx1, vdupq_n_u8(3)); + uint8x16_t qx4 = vmulq_u8(qx0, vdupq_n_u8(9)); + uint8x16_t qx5 = vmulq_u8(qx1, vdupq_n_u8(9)); + uint8x16_t qx6 = vmulq_u8(qx0, vdupq_n_u8(27)); + uint8x16_t qx7 = vmulq_u8(qx1, vdupq_n_u8(27)); + uint8x16_t qx8 = vmulq_u8(qx0, vdupq_n_u8(81)); + uint8x16_t qx9 = vmulq_u8(qx1, vdupq_n_u8(81)); + + // multiply by 3 and keep the 2 bits above 8 bits + int8x16_t sqx0 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx0, vshrq_n_u8(qx0, 1)), 6)); + int8x16_t sqx1 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx1, vshrq_n_u8(qx1, 1)), 6)); + int8x16_t sqx2 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx2, vshrq_n_u8(qx2, 1)), 6)); + int8x16_t sqx3 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx3, vshrq_n_u8(qx3, 1)), 6)); + int8x16_t sqx4 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx4, vshrq_n_u8(qx4, 1)), 6)); + int8x16_t sqx5 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx5, vshrq_n_u8(qx5, 1)), 6)); + int8x16_t sqx6 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx6, vshrq_n_u8(qx6, 1)), 6)); + int8x16_t sqx7 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx7, vshrq_n_u8(qx7, 1)), 6)); + int8x16_t sqx8 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx8, vshrq_n_u8(qx8, 1)), 6)); + int8x16_t sqx9 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx9, vshrq_n_u8(qx9, 1)), 6)); + + const int8x16_t qy0 = vld1q_s8(y[i].qs + 0); + const int8x16_t qy1 = vld1q_s8(y[i].qs + 16); + const int8x16_t qy2 = vld1q_s8(y[i].qs + 32); + const int8x16_t qy3 = vld1q_s8(y[i].qs + 48); + const int8x16_t qy4 = vld1q_s8(y[i].qs + 64); + const int8x16_t qy5 = vld1q_s8(y[i].qs + 80); + const int8x16_t qy6 = vld1q_s8(y[i].qs + 96); + const int8x16_t qy7 = vld1q_s8(y[i].qs + 112); + const int8x16_t qy8 = vld1q_s8(y[i].qs + 128); + const int8x16_t qy9 = vld1q_s8(y[i].qs + 144); + +#if defined(__ARM_FEATURE_DOTPROD) + sumi0 = vdotq_s32(sumi0, sqx0, qy0); + sumi1 = vdotq_s32(sumi1, sqx1, qy1); + sumi0 = vdotq_s32(sumi0, sqx2, qy2); + sumi1 = vdotq_s32(sumi1, sqx3, qy3); + sumi0 = vdotq_s32(sumi0, sqx4, qy4); + sumi1 = vdotq_s32(sumi1, sqx5, qy5); + sumi0 = vdotq_s32(sumi0, sqx6, qy6); + sumi1 = vdotq_s32(sumi1, sqx7, qy7); + sumi0 = vdotq_s32(sumi0, sqx8, qy8); + sumi1 = vdotq_s32(sumi1, sqx9, qy9); +#else + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx6), vget_low_s8(qy6)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx6), vget_high_s8(qy6)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx7), vget_low_s8(qy7)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx7), vget_high_s8(qy7)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx8), vget_low_s8(qy8)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx8), vget_high_s8(qy8)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx9), vget_low_s8(qy9)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx9), vget_high_s8(qy9)); +#endif + } + + // last 16 bytes of 5-element, along with the 4 bytes of 4 elements + { + uint8x16_t qx0 = vld1q_u8(x[i].qs + 32); + uint8x16_t qx1 = vmulq_u8(qx0, vdupq_n_u8(3)); + uint8x16_t qx2 = vmulq_u8(qx0, vdupq_n_u8(9)); + uint8x16_t qx3 = vmulq_u8(qx0, vdupq_n_u8(27)); + uint8x16_t qx4 = vmulq_u8(qx0, vdupq_n_u8(81)); + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); // potentially unaligned + uint8x16_t qx5 = vreinterpretq_u8_u32(vdupq_n_u32(qh)); + qx5 = vmulq_u8(qx5, shift); + + // multiply by 3 and keep the 2 bits above 8 bits + int8x16_t sqx0 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx0, vshrq_n_u8(qx0, 1)), 6)); + int8x16_t sqx1 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx1, vshrq_n_u8(qx1, 1)), 6)); + int8x16_t sqx2 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx2, vshrq_n_u8(qx2, 1)), 6)); + int8x16_t sqx3 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx3, vshrq_n_u8(qx3, 1)), 6)); + int8x16_t sqx4 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx4, vshrq_n_u8(qx4, 1)), 6)); + int8x16_t sqx5 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx5, vshrq_n_u8(qx5, 1)), 6)); + + const int8x16_t qy0 = vld1q_s8(y[i].qs + 160); + const int8x16_t qy1 = vld1q_s8(y[i].qs + 176); + const int8x16_t qy2 = vld1q_s8(y[i].qs + 192); + const int8x16_t qy3 = vld1q_s8(y[i].qs + 208); + const int8x16_t qy4 = vld1q_s8(y[i].qs + 224); + const int8x16_t qy5 = vld1q_s8(y[i].qs + 240); + +#if defined(__ARM_FEATURE_DOTPROD) + sumi0 = vdotq_s32(sumi0, sqx0, qy0); + sumi1 = vdotq_s32(sumi1, sqx1, qy1); + sumi0 = vdotq_s32(sumi0, sqx2, qy2); + sumi1 = vdotq_s32(sumi1, sqx3, qy3); + sumi0 = vdotq_s32(sumi0, sqx4, qy4); + sumi1 = vdotq_s32(sumi1, sqx5, qy5); +#else + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5)); +#endif + } + + const int16x8_t ysum0 = vld1q_s16(y[i].bsums); + const int16x8_t ysum1 = vld1q_s16(y[i].bsums + 8); + + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + +#if defined(__ARM_FEATURE_DOTPROD) + sumi0 = vaddq_s32(sumi0, sumi1); + sumi0 = vsubq_s32(sumi0, vpaddlq_s16(vaddq_s16(ysum0, ysum1))); + + sumf += d * (float) vaddvq_s32(sumi0); +#else + sumi0 = vaddq_s16(sumi0, sumi1); + sumi0 = vsubq_s16(sumi0, vaddq_s16(ysum0, ysum1)); + + sumf += d * (float) vaddlvq_s16(sumi0); +#endif + } + + *s = sumf; + +#elif defined(__AVX2__) + __m256 sumf = _mm256_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + // 16-bit sums + __m256i sumi0 = _mm256_setzero_si256(); + __m256i sumi1 = _mm256_setzero_si256(); + __m256i sumi2 = _mm256_setzero_si256(); + + // first 32 bytes of 5 elements + { + __m256i qx0 = _mm256_loadu_si256((const __m256i *) (x[i].qs)); + // 8-bit multiplies with shifts, masks and adds + __m256i qx1 = _mm256_add_epi8(qx0, _mm256_add_epi8(qx0, qx0)); // 1 * 3 + __m256i qx2 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx0, 3), _mm256_set1_epi8(-8)), qx0); // 1 * 9 + __m256i qx3 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx1, 3), _mm256_set1_epi8(-8)), qx1); // 3 * 9 + __m256i qx4 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx2, 3), _mm256_set1_epi8(-8)), qx2); // 9 * 9 + + // TODO: can _mm256_mulhi_epu16 be faster even if 16-bits? + + // Cancel the +1 from avg so that it behaves like a halving add + qx0 = _mm256_subs_epu8(qx0, _mm256_set1_epi8(1)); + qx1 = _mm256_subs_epu8(qx1, _mm256_set1_epi8(1)); + qx2 = _mm256_subs_epu8(qx2, _mm256_set1_epi8(1)); + qx3 = _mm256_subs_epu8(qx3, _mm256_set1_epi8(1)); + qx4 = _mm256_subs_epu8(qx4, _mm256_set1_epi8(1)); + // Multiply by 3 and get the top 2 bits + qx0 = _mm256_avg_epu8(qx0, _mm256_avg_epu8(qx0, _mm256_setzero_si256())); + qx1 = _mm256_avg_epu8(qx1, _mm256_avg_epu8(qx1, _mm256_setzero_si256())); + qx2 = _mm256_avg_epu8(qx2, _mm256_avg_epu8(qx2, _mm256_setzero_si256())); + qx3 = _mm256_avg_epu8(qx3, _mm256_avg_epu8(qx3, _mm256_setzero_si256())); + qx4 = _mm256_avg_epu8(qx4, _mm256_avg_epu8(qx4, _mm256_setzero_si256())); + qx0 = _mm256_and_si256(_mm256_srli_epi16(qx0, 6), _mm256_set1_epi8(3)); + qx1 = _mm256_and_si256(_mm256_srli_epi16(qx1, 6), _mm256_set1_epi8(3)); + qx2 = _mm256_and_si256(_mm256_srli_epi16(qx2, 6), _mm256_set1_epi8(3)); + qx3 = _mm256_and_si256(_mm256_srli_epi16(qx3, 6), _mm256_set1_epi8(3)); + qx4 = _mm256_and_si256(_mm256_srli_epi16(qx4, 6), _mm256_set1_epi8(3)); + + const __m256i qy0 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 0)); + const __m256i qy1 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 32)); + const __m256i qy2 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 64)); + const __m256i qy3 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 96)); + const __m256i qy4 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 128)); + + qx0 = _mm256_maddubs_epi16(qx0, qy0); + qx1 = _mm256_maddubs_epi16(qx1, qy1); + qx2 = _mm256_maddubs_epi16(qx2, qy2); + qx3 = _mm256_maddubs_epi16(qx3, qy3); + qx4 = _mm256_maddubs_epi16(qx4, qy4); + + sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(qx0, qx1)); + sumi1 = _mm256_add_epi16(sumi1, _mm256_add_epi16(qx2, qx3)); + sumi2 = _mm256_add_epi16(sumi2, qx4); + } + + // last 16 bytes of 5-element, along with the 4 bytes of 4 elements + { + __m128i qx0 = _mm_loadu_si128((const __m128i *) (x[i].qs + 32)); + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); // potentially unaligned + __m256i qx5_l = _mm256_cvtepu8_epi16(_mm_set1_epi32(qh)); + __m128i qx1 = _mm_add_epi8(qx0, _mm_add_epi8(qx0, qx0)); // 1 * 3 + __m128i qx2 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx0, 3), _mm_set1_epi8(-8)), qx0); // 1 * 9 + __m128i qx3 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx1, 3), _mm_set1_epi8(-8)), qx1); // 3 * 9 + __m128i qx4 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx2, 3), _mm_set1_epi8(-8)), qx2); // 9 * 9 + __m256i qx01 = MM256_SET_M128I(qx1, qx0); + __m256i qx23 = MM256_SET_M128I(qx3, qx2); + + // avx2 does not have 8-bit multiplies, so 16-bit it is. + qx5_l = _mm256_mullo_epi16(qx5_l, _mm256_set_epi16(27, 27, 27, 27, 9, 9, 9, 9, 3, 3, 3, 3, 1, 1, 1, 1)); + qx5_l = _mm256_and_si256(qx5_l, _mm256_set1_epi16(0xFF)); + __m128i qx5 = _mm_packus_epi16(_mm256_castsi256_si128(qx5_l), _mm256_extracti128_si256(qx5_l, 1)); + + __m256i qx45 = MM256_SET_M128I(qx5, qx4); + + // Cancel the +1 from avg so that it behaves like a halving add + qx01 = _mm256_subs_epu8(qx01, _mm256_set1_epi8(1)); + qx23 = _mm256_subs_epu8(qx23, _mm256_set1_epi8(1)); + qx45 = _mm256_subs_epu8(qx45, _mm256_set1_epi8(1)); + // Multiply by 3 and get the top 2 bits + qx01 = _mm256_avg_epu8(qx01, _mm256_avg_epu8(qx01, _mm256_setzero_si256())); + qx23 = _mm256_avg_epu8(qx23, _mm256_avg_epu8(qx23, _mm256_setzero_si256())); + qx45 = _mm256_avg_epu8(qx45, _mm256_avg_epu8(qx45, _mm256_setzero_si256())); + qx01 = _mm256_and_si256(_mm256_srli_epi16(qx01, 6), _mm256_set1_epi8(3)); + qx23 = _mm256_and_si256(_mm256_srli_epi16(qx23, 6), _mm256_set1_epi8(3)); + qx45 = _mm256_and_si256(_mm256_srli_epi16(qx45, 6), _mm256_set1_epi8(3)); + + const __m256i qy01 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 160)); + const __m256i qy23 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 192)); + const __m256i qy45 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 224)); + + qx01 = _mm256_maddubs_epi16(qx01, qy01); + qx23 = _mm256_maddubs_epi16(qx23, qy23); + qx45 = _mm256_maddubs_epi16(qx45, qy45); + + sumi0 = _mm256_add_epi16(sumi0, qx01); + sumi1 = _mm256_add_epi16(sumi1, qx23); + sumi2 = _mm256_add_epi16(sumi2, qx45); + } + + const __m256i ysum = _mm256_loadu_si256((const __m256i *) y[i].bsums); + const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d)); + + sumi0 = _mm256_sub_epi16(sumi0, ysum); + sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(sumi1, sumi2)); + sumi0 = _mm256_madd_epi16(sumi0, _mm256_set1_epi16(1)); + + sumf = _mm256_add_ps(_mm256_mul_ps(_mm256_cvtepi32_ps(sumi0), d), sumf); + } + + *s = hsum_float_8(sumf); + +#else + const uint8_t pow3[6] = {1, 3, 9, 27, 81, 243}; + + float sumf = 0.0f; + + for (int i = 0; i < nb; ++i) { + int sum = 0; + + for (size_t j = 0; j < sizeof(x->qs) - sizeof(x->qs) % 32; j += 32) { + for (size_t l = 0; l < 5; ++l) { + for (size_t m = 0; m < 32; ++m) { + uint8_t q = x[i].qs[j + m] * pow3[l]; + uint16_t xi = ((uint16_t) q * 3) >> 8; + sum += (xi - 1) * y[i].qs[j*5 + l*32 + m]; + } + } + } + for (size_t j = sizeof(x->qs) - sizeof(x->qs) % 32; j < sizeof(x->qs); j += 16) { + for (size_t l = 0; l < 5; ++l) { + for (size_t m = 0; m < 16; ++m) { + uint8_t q = x[i].qs[j + m] * pow3[l]; + uint16_t xi = ((uint16_t) q * 3) >> 8; + sum += (xi - 1) * y[i].qs[j*5 + l*16 + m]; + } + } + } + + for (size_t l = 0; l < 4; ++l) { + for (size_t j = 0; j < sizeof(x->qh); ++j) { + uint8_t q = x[i].qh[j] * pow3[l]; + uint16_t xi = ((uint16_t) q * 3) >> 8; + sum += (xi - 1) * y[i].qs[sizeof(x->qs)*5 + l*sizeof(x->qh) + j]; + } + } + + sumf += (float) sum * (GGML_FP16_TO_FP32(x[i].d) * y[i].d); + } + + *s = sumf; +#endif +} + +void ggml_vec_dot_tq2_0_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_tq2_0 * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#if defined(__ARM_NEON) + float sumf = 0.0f; + + const uint8x16_t m3 = vdupq_n_u8(3); + + for (int i = 0; i < nb; ++i) { +#if defined(__ARM_FEATURE_DOTPROD) + int32x4_t sumi0 = vdupq_n_s32(0); + int32x4_t sumi1 = vdupq_n_s32(0); +#else + int16x8_t sumi0 = vdupq_n_s16(0); + int16x8_t sumi1 = vdupq_n_s16(0); +#endif + + for (size_t j = 0; j < sizeof(x->qs); j += 32) { + uint8x16_t qx0 = vld1q_u8(x[i].qs + j); + uint8x16_t qx1 = vld1q_u8(x[i].qs + j + 16); + uint8x16_t qx2 = vshrq_n_u8(qx0, 2); + uint8x16_t qx3 = vshrq_n_u8(qx1, 2); + uint8x16_t qx4 = vshrq_n_u8(qx0, 4); + uint8x16_t qx5 = vshrq_n_u8(qx1, 4); + uint8x16_t qx6 = vshrq_n_u8(qx0, 6); + uint8x16_t qx7 = vshrq_n_u8(qx1, 6); + + int8x16_t sqx0 = vreinterpretq_s8_u8(vandq_u8(qx0, m3)); + int8x16_t sqx1 = vreinterpretq_s8_u8(vandq_u8(qx1, m3)); + int8x16_t sqx2 = vreinterpretq_s8_u8(vandq_u8(qx2, m3)); + int8x16_t sqx3 = vreinterpretq_s8_u8(vandq_u8(qx3, m3)); + int8x16_t sqx4 = vreinterpretq_s8_u8(vandq_u8(qx4, m3)); + int8x16_t sqx5 = vreinterpretq_s8_u8(vandq_u8(qx5, m3)); + int8x16_t sqx6 = vreinterpretq_s8_u8(vandq_u8(qx6, m3)); + int8x16_t sqx7 = vreinterpretq_s8_u8(vandq_u8(qx7, m3)); + + const int8x16_t qy0 = vld1q_s8(y[i].qs + j*4 + 0); + const int8x16_t qy1 = vld1q_s8(y[i].qs + j*4 + 16); + const int8x16_t qy2 = vld1q_s8(y[i].qs + j*4 + 32); + const int8x16_t qy3 = vld1q_s8(y[i].qs + j*4 + 48); + const int8x16_t qy4 = vld1q_s8(y[i].qs + j*4 + 64); + const int8x16_t qy5 = vld1q_s8(y[i].qs + j*4 + 80); + const int8x16_t qy6 = vld1q_s8(y[i].qs + j*4 + 96); + const int8x16_t qy7 = vld1q_s8(y[i].qs + j*4 + 112); + +#if defined(__ARM_FEATURE_DOTPROD) + sumi0 = vdotq_s32(sumi0, sqx0, qy0); + sumi1 = vdotq_s32(sumi1, sqx1, qy1); + sumi0 = vdotq_s32(sumi0, sqx2, qy2); + sumi1 = vdotq_s32(sumi1, sqx3, qy3); + sumi0 = vdotq_s32(sumi0, sqx4, qy4); + sumi1 = vdotq_s32(sumi1, sqx5, qy5); + sumi0 = vdotq_s32(sumi0, sqx6, qy6); + sumi1 = vdotq_s32(sumi1, sqx7, qy7); +#else + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx6), vget_low_s8(qy6)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx6), vget_high_s8(qy6)); + sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx7), vget_low_s8(qy7)); + sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx7), vget_high_s8(qy7)); +#endif + } + + const int16x8_t ysum0 = vld1q_s16(y[i].bsums); + const int16x8_t ysum1 = vld1q_s16(y[i].bsums + 8); + + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + +#if defined(__ARM_FEATURE_DOTPROD) + sumi0 = vaddq_s32(sumi0, sumi1); + sumi0 = vsubq_s32(sumi0, vpaddlq_s16(vaddq_s16(ysum0, ysum1))); + + sumf += d * (float) vaddvq_s32(sumi0); +#else + sumi0 = vaddq_s16(sumi0, sumi1); + sumi0 = vsubq_s16(sumi0, vaddq_s16(ysum0, ysum1)); + + sumf += d * (float) vaddlvq_s16(sumi0); +#endif + } + + *s = sumf; + +#elif defined(__AVX2__) + __m256 sumf = _mm256_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + // 16-bit sums, because 256*127 still fits + __m256i sumi0 = _mm256_setzero_si256(); + __m256i sumi1 = _mm256_setzero_si256(); + + for (size_t j = 0; j < sizeof(x->qs); j += 32) { + __m256i qx0 = _mm256_loadu_si256((const __m256i *) (x[i].qs + j)); + __m256i qx1 = _mm256_srli_epi16(qx0, 2); + __m256i qx2 = _mm256_srli_epi16(qx0, 4); + __m256i qx3 = _mm256_srli_epi16(qx0, 6); + + // 0, 1, 2 (should not be 3) + qx0 = _mm256_and_si256(qx0, _mm256_set1_epi8(3)); + qx1 = _mm256_and_si256(qx1, _mm256_set1_epi8(3)); + qx2 = _mm256_and_si256(qx2, _mm256_set1_epi8(3)); + qx3 = _mm256_and_si256(qx3, _mm256_set1_epi8(3)); + + const __m256i qy0 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 0)); + const __m256i qy1 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 32)); + const __m256i qy2 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 64)); + const __m256i qy3 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 96)); + + qx0 = _mm256_maddubs_epi16(qx0, qy0); + qx1 = _mm256_maddubs_epi16(qx1, qy1); + qx2 = _mm256_maddubs_epi16(qx2, qy2); + qx3 = _mm256_maddubs_epi16(qx3, qy3); + + sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(qx0, qx1)); + sumi1 = _mm256_add_epi16(sumi1, _mm256_add_epi16(qx2, qx3)); + } + + const __m256i ysum = _mm256_loadu_si256((const __m256i *) y[i].bsums); + const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d)); + + sumi0 = _mm256_add_epi16(sumi0, sumi1); + sumi0 = _mm256_sub_epi16(sumi0, ysum); + sumi0 = _mm256_madd_epi16(sumi0, _mm256_set1_epi16(1)); + + sumf = _mm256_add_ps(_mm256_mul_ps(_mm256_cvtepi32_ps(sumi0), d), sumf); + } + + *s = hsum_float_8(sumf); + +#else + float sumf = 0.0f; + + for (int i = 0; i < nb; ++i) { + int32_t sumi = 0; + + for (size_t j = 0; j < sizeof(x->qs); j += 32) { + for (size_t l = 0; l < 4; ++l) { + for (size_t k = 0; k < 32; ++k) { + sumi += y[i].qs[j*4 + l*32 + k] * (((x[i].qs[j + k] >> (l*2)) & 3) - 1); + } + } + } + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + + sumf += (float) sumi * d; + } + + *s = sumf; +#endif +} + void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(nrc == 1); UNUSED(nrc); @@ -14800,6 +15480,14 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte } } } break; + case GGML_TYPE_TQ1_0: + { + VALIDATE_ROW_DATA_D_F16_IMPL(block_tq1_0, data, nb); + } break; + case GGML_TYPE_TQ2_0: + { + VALIDATE_ROW_DATA_D_F16_IMPL(block_tq2_0, data, nb); + } break; case GGML_TYPE_IQ1_S: { VALIDATE_ROW_DATA_D_F16_IMPL(block_iq1_s, data, nb); diff --git a/ggml/src/ggml-quants.h b/ggml/src/ggml-quants.h index 525d5ee30d8de..e96ce2b5e5c4e 100644 --- a/ggml/src/ggml-quants.h +++ b/ggml/src/ggml-quants.h @@ -26,6 +26,9 @@ void quantize_row_q5_K_ref(const float * GGML_RESTRICT x, block_q5_K * GGML_REST void quantize_row_q6_K_ref(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int64_t k); void quantize_row_q8_K_ref(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int64_t k); +void quantize_row_tq1_0_ref(const float * GGML_RESTRICT x, block_tq1_0 * GGML_RESTRICT y, int64_t k); +void quantize_row_tq2_0_ref(const float * GGML_RESTRICT x, block_tq2_0 * GGML_RESTRICT y, int64_t k); + void quantize_row_iq3_xxs_ref(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int64_t k); void quantize_row_iq4_nl_ref (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int64_t k); void quantize_row_iq4_xs_ref (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int64_t k); @@ -46,6 +49,9 @@ void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, in void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_tq1_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_tq2_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); + void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); @@ -67,6 +73,9 @@ void dequantize_row_q5_K(const block_q5_K * GGML_RESTRICT x, float * GGML_RESTRI void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_tq1_0(const block_tq1_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_tq2_0(const block_tq2_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); + void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); @@ -90,6 +99,9 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_tq1_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_tq2_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); + void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); @@ -111,6 +123,9 @@ size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT ds size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); size_t quantize_iq3_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_tq1_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_tq2_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); + size_t quantize_q2_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); size_t quantize_q3_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); size_t quantize_q4_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); diff --git a/ggml/src/ggml-vulkan.cpp b/ggml/src/ggml-vulkan.cpp index ca4f44cf75615..0b7a5b6e2fca1 100644 --- a/ggml/src/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan.cpp @@ -2480,7 +2480,7 @@ static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context* ctx, vk_context& const uint32_t wg2 = CEIL_DIV(elements[2], pipeline->wg_denoms[2]); VK_LOG_DEBUG("ggml_vk_dispatch_pipeline(" << pipeline->name << ", {"; for (auto& buffer : descriptor_buffer_infos) { - std::cerr << "(" << buffer << ", " << buffer.offset << ", " << buffer.size << "), "; + std::cerr << "(" << buffer.buffer << ", " << buffer.offset << ", " << buffer.range << "), "; } std::cerr << "}, (" << wg0 << "," << wg1 << "," << wg2 << "))"); GGML_ASSERT(pipeline->descriptor_set_idx < pipeline->descriptor_sets.size()); diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 6e2ebf283aed9..c98ca32bd45bf 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -1054,7 +1054,31 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .ncols = 8, .gemv = ggml_gemv_q4_0_8x8_q8_0, .gemm = ggml_gemm_q4_0_8x8_q8_0, - } + }, + [GGML_TYPE_TQ1_0] = { + .type_name = "tq1_0", + .blck_size = QK_K, + .type_size = sizeof(block_tq1_0), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_tq1_0, + .from_float = quantize_row_tq1_0, + .from_float_ref = (ggml_from_float_t) quantize_row_tq1_0_ref, + .vec_dot = ggml_vec_dot_tq1_0_q8_K, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + }, + [GGML_TYPE_TQ2_0] = { + .type_name = "tq2_0", + .blck_size = QK_K, + .type_size = sizeof(block_tq2_0), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_tq2_0, + .from_float = quantize_row_tq2_0, + .from_float_ref = (ggml_from_float_t) quantize_row_tq2_0_ref, + .vec_dot = ggml_vec_dot_tq2_0_q8_K, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + }, }; // For internal test use @@ -9897,6 +9921,8 @@ static void ggml_compute_forward_add( case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: + case GGML_TYPE_TQ1_0: + case GGML_TYPE_TQ2_0: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: @@ -10275,6 +10301,8 @@ static void ggml_compute_forward_add1( case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: + case GGML_TYPE_TQ1_0: + case GGML_TYPE_TQ2_0: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: @@ -10403,6 +10431,8 @@ static void ggml_compute_forward_acc( case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: + case GGML_TYPE_TQ1_0: + case GGML_TYPE_TQ2_0: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: @@ -13386,6 +13416,8 @@ static void ggml_compute_forward_out_prod( case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: + case GGML_TYPE_TQ1_0: + case GGML_TYPE_TQ2_0: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: @@ -13574,6 +13606,8 @@ static void ggml_compute_forward_set( case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: + case GGML_TYPE_TQ1_0: + case GGML_TYPE_TQ2_0: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: @@ -13836,6 +13870,8 @@ static void ggml_compute_forward_get_rows( case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: + case GGML_TYPE_TQ1_0: + case GGML_TYPE_TQ2_0: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: @@ -14425,6 +14461,8 @@ static void ggml_compute_forward_clamp( case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: + case GGML_TYPE_TQ1_0: + case GGML_TYPE_TQ2_0: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: @@ -21868,6 +21906,8 @@ size_t ggml_quantize_chunk( case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_TQ1_0: result = quantize_tq1_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_TQ2_0: result = quantize_tq2_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; diff --git a/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp b/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp index 0c5b7b2794ad0..1bd1b6f67dd0a 100644 --- a/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp @@ -200,6 +200,11 @@ void string_to_spv(const std::string& _name, const std::string& in_fname, const #else std::vector cmd = {GLSLC, "-fshader-stage=compute", "--target-env=vulkan1.2", "-O", in_path, "-o", out_fname}; #endif + + #ifdef GGML_VULKAN_SHADER_DEBUG_INFO + cmd.push_back("-g"); + #endif + for (const auto& define : defines) { cmd.push_back("-D" + define.first + "=" + define.second); } diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index a48c4fb676a46..c87d087822a9a 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -1291,6 +1291,8 @@ class GGMLQuantizationType(IntEnum): Q4_0_4_4 = 31 Q4_0_4_8 = 32 Q4_0_8_8 = 33 + TQ1_0 = 34 + TQ2_0 = 35 # TODO: add GGMLFileType from ggml_ftype in ggml.h @@ -1335,6 +1337,8 @@ class LlamaFileType(IntEnum): MOSTLY_Q4_0_4_4 = 33 # except 1d tensors MOSTLY_Q4_0_4_8 = 34 # except 1d tensors MOSTLY_Q4_0_8_8 = 35 # except 1d tensors + MOSTLY_TQ1_0 = 36 # except 1d tensors + MOSTLY_TQ2_0 = 37 # except 1d tensors GUESSED = 1024 # not specified in the model file @@ -1411,6 +1415,8 @@ def get_type(val: Any) -> GGUFValueType: GGMLQuantizationType.Q4_0_4_4:(32, 2 + 16), GGMLQuantizationType.Q4_0_4_8:(32, 2 + 16), GGMLQuantizationType.Q4_0_8_8:(32, 2 + 16), + GGMLQuantizationType.TQ1_0: (256, 2 + 4 * 13), + GGMLQuantizationType.TQ2_0: (256, 2 + 64), } diff --git a/gguf-py/gguf/quants.py b/gguf-py/gguf/quants.py index ff589b85245e5..3c8ba82e19d3d 100644 --- a/gguf-py/gguf/quants.py +++ b/gguf-py/gguf/quants.py @@ -574,6 +574,87 @@ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: return (d * q).reshape((n_blocks, QK_K)) +class TQ1_0(__Quant, qtype=GGMLQuantizationType.TQ1_0): + @classmethod + def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d = abs(blocks).max(axis=-1, keepdims=True) + with np.errstate(divide="ignore"): + id = np.where(d == 0, 0, 1 / d) + qs = np_roundf(blocks * id) + qs = (qs.astype(np.int8) + np.int8(1)).astype(np.uint8) + + qs0, qs1, qh = qs[..., :(32 * 5)], qs[..., (32 * 5):(48 * 5)], qs[..., (48 * 5):] + qs0 = qs0.reshape((n_blocks, -1, 5, 32)) * np.array([81, 27, 9, 3, 1], dtype=np.uint8).reshape((1, 1, 5, 1)) + qs0 = np.sum(qs0, axis=-2).reshape((n_blocks, -1)) + qs1 = qs1.reshape((n_blocks, -1, 5, 16)) * np.array([81, 27, 9, 3, 1], dtype=np.uint8).reshape((1, 1, 5, 1)) + qs1 = np.sum(qs1, axis=-2).reshape((n_blocks, -1)) + qh = qh.reshape((n_blocks, -1, 4, 4)) * np.array([81, 27, 9, 3], dtype=np.uint8).reshape((1, 1, 4, 1)) + qh = np.sum(qh, axis=-2).reshape((n_blocks, -1)) + qs = np.concatenate([qs0, qs1, qh], axis=-1) + qs = (qs.astype(np.uint16) * 256 + (243 - 1)) // 243 + + qs = qs.astype(np.uint8) + d = d.astype(np.float16).view(np.uint8) + + return np.concatenate([qs, d], axis=-1) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + qs, rest = np.hsplit(blocks, [(QK_K - 4 * QK_K // 64) // 5]) + qh, d = np.hsplit(rest, [QK_K // 64]) + + d = d.view(np.float16).astype(np.float32) + + qs0, qs1 = qs[..., :32], qs[..., 32:] + qs0 = qs0.reshape((n_blocks, -1, 1, 32)) * np.array([1, 3, 9, 27, 81], dtype=np.uint8).reshape((1, 1, 5, 1)) + qs0 = qs0.reshape((n_blocks, -1)) + qs1 = qs1.reshape((n_blocks, -1, 1, 16)) * np.array([1, 3, 9, 27, 81], dtype=np.uint8).reshape((1, 1, 5, 1)) + qs1 = qs1.reshape((n_blocks, -1)) + qh = qh.reshape((n_blocks, -1, 1, 4)) * np.array([1, 3, 9, 27], dtype=np.uint8).reshape((1, 1, 4, 1)) + qh = qh.reshape((n_blocks, -1)) + qs = np.concatenate([qs0, qs1, qh], axis=-1) + qs = ((qs.astype(np.uint16) * 3) >> 8).astype(np.int8) - np.int8(1) + + return (d * qs.astype(np.float32)) + + +class TQ2_0(__Quant, qtype=GGMLQuantizationType.TQ2_0): + @classmethod + def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d = abs(blocks).max(axis=-1, keepdims=True) + with np.errstate(divide="ignore"): + id = np.where(d == 0, 0, 1 / d) + qs = np_roundf(blocks * id) + qs = (qs.astype(np.int8) + np.int8(1)).astype(np.uint8) + + qs = qs.reshape((n_blocks, -1, 4, 32)) << np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1)) + qs = qs[..., 0, :] | qs[..., 1, :] | qs[..., 2, :] | qs[..., 3, :] + qs = qs.reshape((n_blocks, -1)) + + d = d.astype(np.float16).view(np.uint8) + + return np.concatenate([qs, d], axis=-1) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + qs, d = np.hsplit(blocks, [QK_K // 4]) + + d = d.view(np.float16).astype(np.float32) + + qs = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1)) + qs = (qs & 0x03).reshape((n_blocks, -1)).astype(np.int8) - np.int8(1) + + return (d * qs.astype(np.float32)) + + class IQ2_XXS(__Quant, qtype=GGMLQuantizationType.IQ2_XXS): ksigns: bytes = ( b"\x00\x81\x82\x03\x84\x05\x06\x87\x88\x09\x0a\x8b\x0c\x8d\x8e\x0f" diff --git a/gguf-py/tests/test_quants.py b/gguf-py/tests/test_quants.py index 8b7a85c2c36d7..762067814224e 100755 --- a/gguf-py/tests/test_quants.py +++ b/gguf-py/tests/test_quants.py @@ -66,6 +66,7 @@ def __init__(self, libggml: Path): for t in ( "q4_0", "q4_1", "q5_0", "q5_1", "q8_0", "q2_K", "q3_K", "q4_K", "q5_K", "q6_K", + "tq1_0", "tq2_0", "iq2_xxs", "iq2_xs", "iq2_s", "iq3_xxs", "iq3_s", "iq1_s", "iq1_m", "iq4_nl", "iq4_xs", ): diff --git a/include/llama.h b/include/llama.h index bfc37e88bbb74..a495e866d5a1a 100644 --- a/include/llama.h +++ b/include/llama.h @@ -167,6 +167,8 @@ extern "C" { LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors + LLAMA_FTYPE_MOSTLY_TQ1_0 = 36, // except 1d tensors + LLAMA_FTYPE_MOSTLY_TQ2_0 = 37, // except 1d tensors LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file }; diff --git a/src/llama.cpp b/src/llama.cpp index c3669eb2809ae..1a78112a3a84d 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -4444,6 +4444,8 @@ struct llama_model_loader { case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break; case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break; case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break; + case GGML_TYPE_TQ1_0: ftype = LLAMA_FTYPE_MOSTLY_TQ1_0; break; + case GGML_TYPE_TQ2_0: ftype = LLAMA_FTYPE_MOSTLY_TQ2_0; break; case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break; case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break; case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break; @@ -5137,6 +5139,8 @@ static std::string llama_model_ftype_name(llama_ftype ftype) { case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small"; case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K"; + case LLAMA_FTYPE_MOSTLY_TQ1_0: return "TQ1_0 - 1.69 bpw ternary"; + case LLAMA_FTYPE_MOSTLY_TQ2_0: return "TQ2_0 - 2.06 bpw ternary"; case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw"; @@ -8118,23 +8122,23 @@ static bool llm_load_tensors( layer.attn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}); layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wq_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}); + layer.wq_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wk_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "scale", i), {1}); + layer.wk_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wv_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "scale", i), {1}); + layer.wv_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.wo_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}); + layer.wo_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}); layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_gate_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}); + layer.ffn_gate_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}); + layer.ffn_down_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "scale", i), {1}); + layer.ffn_up_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); } } break; case LLM_ARCH_T5: @@ -14177,7 +14181,9 @@ struct llm_build_context { { // compute Q and K and RoPE them struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur); - Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale); + if (model.layers[il].wq_scale) { + Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale); + } cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); @@ -14186,7 +14192,9 @@ struct llm_build_context { // B1.K struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur); - Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale); + if (model.layers[il].wk_scale) { + Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale); + } cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); @@ -14195,7 +14203,9 @@ struct llm_build_context { // B1.V struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur); - Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale); + if (model.layers[il].wv_scale) { + Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale); + } cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); @@ -14226,7 +14236,9 @@ struct llm_build_context { cb(cur, "attn_sub_norm", il); cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur); - cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale); + if (model.layers[il].wo_scale) { + cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale); + } if (model.layers[il].bo) { cur = ggml_add(ctx0, cur, model.layers[il].bo); } @@ -14263,7 +14275,9 @@ struct llm_build_context { cb(cur, "ffn_sub_norm", il); cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].ffn_down, cur); - cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale); + if (model.layers[il].ffn_down_scale) { + cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale); + } cb(cur, "ffn_down", il); cur = ggml_add(ctx0, cur, ffn_inp); @@ -16933,6 +16947,9 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n new_type == GGML_TYPE_Q4_0_8_8) { new_type = GGML_TYPE_Q4_0; } + else if (ftype == LLAMA_FTYPE_MOSTLY_TQ1_0 || ftype == LLAMA_FTYPE_MOSTLY_TQ2_0) { + new_type = GGML_TYPE_Q4_K; + } } } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { @@ -17132,6 +17149,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n } if (convert_incompatible_tensor) { switch (new_type) { + case GGML_TYPE_TQ1_0: + case GGML_TYPE_TQ2_0: new_type = GGML_TYPE_Q4_0; break; // TODO: use a symmetric type instead case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ2_S: @@ -17237,6 +17256,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s case LLAMA_FTYPE_MOSTLY_Q5_K_S: case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break; case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break; + case LLAMA_FTYPE_MOSTLY_TQ1_0: default_type = GGML_TYPE_TQ1_0; break; + case LLAMA_FTYPE_MOSTLY_TQ2_0: default_type = GGML_TYPE_TQ2_0; break; case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break; case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break; case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break; diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index c832bc9569bbf..bd65e8cb36ba7 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -2200,6 +2200,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op GGML_TYPE_Q2_K, GGML_TYPE_Q3_K, GGML_TYPE_Q4_K, GGML_TYPE_Q5_K, GGML_TYPE_Q6_K, + // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M, GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS, @@ -2219,6 +2220,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op GGML_TYPE_Q2_K, GGML_TYPE_Q3_K, GGML_TYPE_Q5_K, GGML_TYPE_Q6_K, + // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M, GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS, diff --git a/tests/test-quantize-fns.cpp b/tests/test-quantize-fns.cpp index c97458d1df2b8..ccf5721a3ab83 100644 --- a/tests/test-quantize-fns.cpp +++ b/tests/test-quantize-fns.cpp @@ -15,11 +15,13 @@ constexpr float MAX_QUANTIZATION_REFERENCE_ERROR = 0.0001f; constexpr float MAX_QUANTIZATION_TOTAL_ERROR = 0.002f; +constexpr float MAX_QUANTIZATION_TOTAL_ERROR_TERNARY = 0.01f; constexpr float MAX_QUANTIZATION_TOTAL_ERROR_2BITS = 0.0075f; constexpr float MAX_QUANTIZATION_TOTAL_ERROR_3BITS = 0.0040f; constexpr float MAX_QUANTIZATION_TOTAL_ERROR_3BITS_XXS = 0.0050f; constexpr float MAX_DOT_PRODUCT_ERROR = 0.02f; constexpr float MAX_DOT_PRODUCT_ERROR_LOWBIT = 0.04f; +constexpr float MAX_DOT_PRODUCT_ERROR_TERNARY = 0.15f; static const char* RESULT_STR[] = {"ok", "FAILED"}; @@ -144,6 +146,8 @@ int main(int argc, char * argv[]) { if (qfns.from_float && qfns.to_float) { const float total_error = total_quantization_error(qfns, test_size, test_data.data()); const float max_quantization_error = + type == GGML_TYPE_TQ1_0 ? MAX_QUANTIZATION_TOTAL_ERROR_TERNARY : + type == GGML_TYPE_TQ2_0 ? MAX_QUANTIZATION_TOTAL_ERROR_TERNARY : type == GGML_TYPE_Q2_K ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS : type == GGML_TYPE_IQ2_S ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS : type == GGML_TYPE_Q3_K ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS : @@ -166,6 +170,8 @@ int main(int argc, char * argv[]) { const float max_allowed_error = type == GGML_TYPE_Q2_K || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ3_XXS || type == GGML_TYPE_IQ3_S || type == GGML_TYPE_IQ2_S ? MAX_DOT_PRODUCT_ERROR_LOWBIT + : type == GGML_TYPE_TQ1_0 || type == GGML_TYPE_TQ2_0 + ? MAX_DOT_PRODUCT_ERROR_TERNARY : MAX_DOT_PRODUCT_ERROR; failed = !(vec_dot_error < max_allowed_error); num_failed += failed;