diff --git a/ggml/src/ggml-vulkan.cpp b/ggml/src/ggml-vulkan.cpp index 32fda32a879ba..3dd242df18a55 100644 --- a/ggml/src/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan.cpp @@ -785,6 +785,9 @@ static vk_submission ggml_vk_create_submission(vk_device& device, vk_queue& q, s static void ggml_vk_submit(vk_context& ctx, vk::Fence fence) { if (ctx->seqs.empty()) { + if (fence) { + ctx->q->queue.submit({}, fence); + } return; } VK_LOG_DEBUG("ggml_vk_submit(" << ctx << ", " << fence << ")"); @@ -5614,11 +5617,15 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) { } } -static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, int node_idx, bool last_node, bool dryrun){ +bool ggml_vk_compute_forward(ggml_backend_vk_context* ctx, ggml_tensor* tensor, int tensor_idx, bool use_fence); + +// Returns true if node has enqueued work into the queue, false otherwise +// If submit is true the current all operations queued so far are being submitted to Vulkan to overlap cmdlist creation and GPU execution. +static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, int node_idx, ggml_tensor *node_begin, int node_idx_begin, bool dryrun, bool submit){ ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra; if (ggml_is_empty(node) || extra == nullptr) { - return; + return false; } VK_LOG_DEBUG("ggml_vk_build_graph(" << node << ", " << ggml_op_name(node->op) << ")"); @@ -5635,7 +5642,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: case GGML_OP_NONE: - return; + return false; case GGML_OP_UNARY: switch (ggml_get_unary_op(node)) { case GGML_UNARY_OP_SILU: @@ -5645,7 +5652,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod case GGML_UNARY_OP_TANH: break; default: - return; + return false; } break; case GGML_OP_REPEAT: @@ -5680,7 +5687,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod default: std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(node->op) << std::endl; GGML_ABORT("fatal error"); - return; + return false; } vk_context compute_ctx; @@ -5772,7 +5779,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod ggml_vk_unary(ctx, compute_ctx, src0, node, dryrun); break; default: - return; + return false; } break; case GGML_OP_DIAG_MASK_INF: @@ -5816,11 +5823,11 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod break; default: - return; + return false; } if (dryrun) { - return; + return false; } ctx->tensor_ctxs[node_idx] = compute_ctx; @@ -5831,14 +5838,26 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod last_node = true; #endif - if (last_node) { + if (submit) { ggml_vk_ctx_end(compute_ctx); compute_ctx->exit_tensor_idx = node_idx; ctx->compute_ctx.reset(); + + bool ok = ggml_vk_compute_forward(ctx, node_begin, node_idx_begin, false); + if (!ok) { + if (node->op == GGML_OP_UNARY) { + std::cerr << __func__ << ": error: op not supported UNARY " << node->name << " (" << ggml_unary_op_name(static_cast(node->op_params[0])) << ")" << std::endl; + } + else { + std::cerr << __func__ << ": error: op not supported " << node->name << " (" << ggml_op_name(node->op) << ")" << std::endl; + } + } + } + return true; } -static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * tensor, int tensor_idx){ +static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * tensor, int tensor_idx, bool use_fence = true){ ggml_tensor_extra_gpu * extra = nullptr; switch (tensor->op) { @@ -5910,9 +5929,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * vk_context subctx = ctx->tensor_ctxs[tensor_idx].lock(); -#ifdef GGML_VULKAN_PERF - std::chrono::steady_clock::time_point start; -#endif // GGML_VULKAN_PERF + VkFence fence = use_fence ? ctx->fence : VkFence{}; // Only run if ctx hasn't been submitted yet if (!subctx->seqs.empty()) { @@ -5921,20 +5938,13 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * memcpy(cpy.dst, cpy.src, cpy.n); } -#ifdef GGML_VULKAN_PERF - start = std::chrono::steady_clock::now(); -#endif // GGML_VULKAN_PERF - - ggml_vk_submit(subctx, ctx->fence); + ggml_vk_submit(subctx, fence); } - if (tensor_idx == subctx->exit_tensor_idx) { - VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences"); + if (tensor_idx != 0 && tensor_idx == subctx->exit_tensor_idx) { + ggml_vk_submit(subctx, fence); -#ifdef GGML_VULKAN_PERF - auto duration = std::chrono::duration_cast(std::chrono::steady_clock::now() - start); - ctx->device->perf_logger->log_timing(tensor, duration.count()); -#endif // GGML_VULKAN_PERF + VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences"); ctx->device->device.resetFences({ ctx->fence }); @@ -6426,7 +6436,7 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; for (int i = 0; i < cgraph->n_nodes; i++) { - ggml_vk_build_graph(ctx, cgraph->nodes[i], i, 0, true); + ggml_vk_build_graph(ctx, cgraph->nodes[i], i, nullptr, 0, true, false); } ggml_vk_preallocate_buffers(ctx); ggml_pipeline_allocate_descriptor_sets(ctx->device); @@ -6441,33 +6451,40 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen // Reserve tensor context space for all nodes ctx->tensor_ctxs.resize(cgraph->n_nodes); - for (int i = 0; i < cgraph->n_nodes; i++) { - ggml_vk_build_graph(ctx, cgraph->nodes[i], i, i == last_node, false); - } + bool first_node_in_batch = true; // true if next node will be first node in a batch + int submit_node_idx = 0; // index to first node in a batch + // submit work every submit_count node to overlap CPU cmdbuffer generation with GPU execution + constexpr int submit_count = 50; for (int i = 0; i < cgraph->n_nodes; i++) { - ggml_tensor * node = cgraph->nodes[i]; - - if (ggml_vk_is_empty(node)) { - continue; + if (first_node_in_batch) { + submit_node_idx = i; } + + bool submit = ((i % submit_count) == 0) || (i == last_node); + bool enqueued = ggml_vk_build_graph(ctx, cgraph->nodes[i], i, cgraph->nodes[submit_node_idx], submit_node_idx, false, submit); - bool ok = ggml_vk_compute_forward(ctx, node, i); - if (!ok) { - if (node->op == GGML_OP_UNARY) { - std::cerr << __func__ << ": error: op not supported UNARY " << node->name << " (" << ggml_unary_op_name(static_cast(node->op_params[0])) << ")" << std::endl; - } else { - std::cerr << __func__ << ": error: op not supported " << node->name << " (" << ggml_op_name(node->op) << ")" << std::endl; - } + if (first_node_in_batch && enqueued) { + first_node_in_batch = false; } -#ifdef GGML_VULKAN_CHECK_RESULTS - else { - ggml_vk_check_results_1(node); + if (submit) { + first_node_in_batch = true; } -#endif - GGML_ASSERT(ok); } + // wait for work on the GPU to complete work + bool ok = ggml_vk_compute_forward(ctx, cgraph->nodes[cgraph->n_nodes-1], cgraph->n_nodes - 1, true); + + if (!ok) { + std::cerr << __func__ << ": error: failed to enqueue cmdbuffer" << std::endl; + } +#ifdef GGML_VULKAN_CHECK_RESULTS + else { + ggml_vk_check_results_1(node); + } +#endif + GGML_ASSERT(ok); + #ifdef GGML_VULKAN_PERF ctx->device->perf_logger->print_timings(); #endif