diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index ff7238abad76c..f10ed416122d4 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -52,7 +52,7 @@ jobs: id: cmake_test run: | cd build - ctest -L main --verbose --timeout 900 + ctest -L 'main|curl' --verbose --timeout 900 - name: Determine tag name id: tag @@ -209,21 +209,21 @@ jobs: id: depends run: | sudo apt-get update - sudo apt-get install build-essential + sudo apt-get install build-essential libcurl4-openssl-dev - name: Build id: cmake_build run: | mkdir build cd build - cmake .. -DLLAMA_FATAL_WARNINGS=ON + cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON cmake --build . --config Release -j $(nproc) - name: Test id: cmake_test run: | cd build - ctest -L main --verbose --timeout 900 + ctest -L 'main|curl' --verbose --timeout 900 - name: Test llama2c conversion id: llama2c_test diff --git a/.gitignore b/.gitignore index 9fb5b80c38e74..fdc5184a1e89b 100644 --- a/.gitignore +++ b/.gitignore @@ -48,6 +48,7 @@ models-mnt /convert-llama2c-to-ggml /embd-input-test /embedding +/eval-callback /gguf /gguf-llama-simple /gguf-split diff --git a/Makefile b/Makefile index 11b31c5c84182..2fd805a97501f 100644 --- a/Makefile +++ b/Makefile @@ -1,7 +1,7 @@ # Define the default target now so that it is always the first target BUILD_TARGETS = \ main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \ - simple batched batched-bench save-load-state server gguf gguf-split llama-bench libllava.a llava-cli baby-llama beam-search \ + simple batched batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli baby-llama beam-search \ retrieval speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm tests/test-c.o # Binaries only useful for tests @@ -800,6 +800,10 @@ gguf-split: examples/gguf-split/gguf-split.cpp ggml.o llama.o $(COMMON_DEPS) $(O $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) +eval-callback: examples/eval-callback/eval-callback.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) + $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) + $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) + train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) diff --git a/common/common.cpp b/common/common.cpp index 98fc8388cf3e0..dda514785171b 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -1745,6 +1745,8 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param cparams.yarn_orig_ctx = params.yarn_orig_ctx; cparams.pooling_type = params.pooling_type; cparams.defrag_thold = params.defrag_thold; + cparams.cb_eval = params.cb_eval; + cparams.cb_eval_user_data = params.cb_eval_user_data; cparams.offload_kqv = !params.no_kv_offload; cparams.type_k = kv_cache_type_from_str(params.cache_type_k); @@ -2192,7 +2194,7 @@ std::tuple llama_init_from_gpt_par params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY; } - { + if (params.warmup) { LOG("warming up the model with an empty run\n"); std::vector tmp = { llama_token_bos(model), llama_token_eos(model), }; diff --git a/common/common.h b/common/common.h index a7f476c1bf0cb..65272b0baaa41 100644 --- a/common/common.h +++ b/common/common.h @@ -80,6 +80,9 @@ struct gpt_params { int32_t yarn_orig_ctx = 0; // YaRN original context length float defrag_thold = -1.0f; // KV cache defragmentation threshold + ggml_backend_sched_eval_callback cb_eval = nullptr; + void * cb_eval_user_data = nullptr; + ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED; llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; @@ -156,6 +159,7 @@ struct gpt_params { bool infill = false; // use infill mode bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes bool no_kv_offload = false; // disable KV offloading + bool warmup = true; // warmup run std::string cache_type_k = "f16"; // KV cache data type for the K std::string cache_type_v = "f16"; // KV cache data type for the V diff --git a/docs/HOWTO-add-model.md b/docs/HOWTO-add-model.md index 3581f3e658bbe..a56b78344e313 100644 --- a/docs/HOWTO-add-model.md +++ b/docs/HOWTO-add-model.md @@ -100,6 +100,8 @@ Have a look to existing implementation like `build_llama`, `build_dbrx` or `buil When implementing a new graph, please note that the underlying `ggml` backends might not support them all, support of missing backend operations can be added in another PR. +Note: to debug the inference graph: you can use [eval-callback](../examples/eval-callback). + ## GGUF specification https://github.com/ggerganov/ggml/blob/master/docs/gguf.md diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index 76496bf06d135..f421769cc2f0a 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -19,6 +19,7 @@ else() add_subdirectory(benchmark) add_subdirectory(convert-llama2c-to-ggml) add_subdirectory(embedding) + add_subdirectory(eval-callback) add_subdirectory(finetune) add_subdirectory(gritlm) add_subdirectory(gguf-split) diff --git a/examples/eval-callback/CMakeLists.txt b/examples/eval-callback/CMakeLists.txt new file mode 100644 index 0000000000000..d53f374226b9a --- /dev/null +++ b/examples/eval-callback/CMakeLists.txt @@ -0,0 +1,9 @@ +set(TARGET eval-callback) +add_executable(${TARGET} eval-callback.cpp) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) + +set(TEST_TARGET test-eval-callback) +add_test(NAME ${TEST_TARGET} COMMAND eval-callback --hf-repo ggml-org/models --hf-file tinyllamas/stories260K.gguf --model stories260K.gguf --prompt hello --seed 42) +set_property(TEST ${TEST_TARGET} PROPERTY LABELS eval-callback curl) diff --git a/examples/eval-callback/README.md b/examples/eval-callback/README.md new file mode 100644 index 0000000000000..66a37e8783a9b --- /dev/null +++ b/examples/eval-callback/README.md @@ -0,0 +1,95 @@ +# llama.cpp/examples/eval-callback + +A simple example which demonstrates how to use callback during the inference. +It simply prints to the console all operations and tensor data. + +Usage: + +```shell +eval-callback \ + --hf-repo ggml-org/models \ + --hf-file phi-2/ggml-model-q4_0.gguf \ + --model phi-2-q4_0.gguf \ + --prompt hello \ + --seed 42 \ + -ngl 33 +``` + +Will print: + +```shell +llm_load_tensors: offloaded 33/33 layers to GPU +... +llama_new_context_with_model: n_ctx = 512 +... +llama_new_context_with_model: CUDA0 compute buffer size = 105.00 MiB +llama_new_context_with_model: CUDA_Host compute buffer size = 6.01 MiB +llama_new_context_with_model: graph nodes = 1225 +llama_new_context_with_model: graph splits = 2 +ggml_debug: inp_embd = (f32) GET_ROWS(token_embd.weight{2560, 51200, 1, 1}, inp_tokens{1, 1, 1, 1}}) = {2560, 1, 1, 1} + [ + [ + [ -0.0181, 0.0272, 0.0272, ...], + ], + ] +ggml_debug: norm-0 = (f32) NORM(CUDA0#inp_embd#0{2560, 1, 1, 1}, }) = {2560, 1, 1, 1} + [ + [ + [ -0.6989, 1.0636, 1.0636, ...], + ], + ] +ggml_debug: norm_w-0 = (f32) MUL(norm-0{2560, 1, 1, 1}, blk.0.attn_norm.weight{2560, 1, 1, 1}}) = {2560, 1, 1, 1} + [ + [ + [ -0.1800, 0.2817, 0.2632, ...], + ], + ] +ggml_debug: attn_norm-0 = (f32) ADD(norm_w-0{2560, 1, 1, 1}, blk.0.attn_norm.bias{2560, 1, 1, 1}}) = {2560, 1, 1, 1} + [ + [ + [ -0.1863, 0.2970, 0.2604, ...], + ], + ] +ggml_debug: wqkv-0 = (f32) MUL_MAT(blk.0.attn_qkv.weight{2560, 7680, 1, 1}, attn_norm-0{2560, 1, 1, 1}}) = {7680, 1, 1, 1} + [ + [ + [ -1.1238, 1.2876, -1.8086, ...], + ], + ] +ggml_debug: bqkv-0 = (f32) ADD(wqkv-0{7680, 1, 1, 1}, blk.0.attn_qkv.bias{7680, 1, 1, 1}}) = {7680, 1, 1, 1} + [ + [ + [ -1.1135, 1.4604, -1.9226, ...], + ], + ] +ggml_debug: bqkv-0 (view) = (f32) VIEW(bqkv-0{7680, 1, 1, 1}, }) = {2560, 1, 1, 1} + [ + [ + [ -1.1135, 1.4604, -1.9226, ...], + ], + ] +ggml_debug: Qcur-0 = (f32) CONT(bqkv-0 (view){2560, 1, 1, 1}, }) = {2560, 1, 1, 1} + [ + [ + [ -1.1135, 1.4604, -1.9226, ...], + ], + ] +ggml_debug: Qcur-0 (reshaped) = (f32) RESHAPE(Qcur-0{2560, 1, 1, 1}, }) = {80, 32, 1, 1} + [ + [ + [ -1.1135, 1.4604, -1.9226, ...], + [ -0.3608, 0.5076, -1.8866, ...], + [ 1.7643, 0.0273, -2.1065, ...], + ... + ], + ] +ggml_debug: Qcur-0 = (f32) ROPE(Qcur-0 (reshaped){80, 32, 1, 1}, CUDA0#inp_pos#0{1, 1, 1, 1}}) = {80, 32, 1, 1} + [ + [ + [ -1.1135, 1.4604, -1.9226, ...], + [ -0.3608, 0.5076, -1.8866, ...], + [ 1.7643, 0.0273, -2.1065, ...], + ... + ], + ] +``` diff --git a/examples/eval-callback/eval-callback.cpp b/examples/eval-callback/eval-callback.cpp new file mode 100644 index 0000000000000..f70d62128a8c8 --- /dev/null +++ b/examples/eval-callback/eval-callback.cpp @@ -0,0 +1,185 @@ +#include "common.h" +#include "llama.h" +#include "ggml.h" + +#include +#include +#include +#include +#include + +/** + * This the arbitrary data which will be passed to each callback. + * Later on we can for example add operation or tensor name filter from the CLI arg, or a file descriptor to dump the tensor. + */ +struct callback_data { + std::vector data; +}; + +static std::string ggml_ne_string(const ggml_tensor * t) { + std::string str; + for (int i = 0; i < GGML_MAX_DIMS; ++i) { + str += std::to_string(t->ne[i]); + if (i + 1 < GGML_MAX_DIMS) { + str += ", "; + } + } + return str; +} + +static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) { + float sum = 0; + for (int64_t i3 = 0; i3 < ne[3]; i3++) { + printf(" [\n"); + for (int64_t i2 = 0; i2 < ne[2] && i2 < n; i2++) { + printf(" [\n"); + for (int64_t i1 = 0; i1 < ne[1] && i1 < n; i1++) { + printf(" ["); + for (int64_t i0 = 0; i0 < ne[0] && i0 < n; i0++) { + size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0]; + float v; + if (type == GGML_TYPE_F16) { + v = ggml_fp16_to_fp32(*(ggml_fp16_t *) data + i); + } else if (type == GGML_TYPE_F32) { + v = *(float *) data + i; + } else if (type == GGML_TYPE_I32) { + v = (float) *(int32_t *) data + i; + } else if (type == GGML_TYPE_I16) { + v = (float) *(int16_t *) data + i; + } else if (type == GGML_TYPE_I8) { + v = (float) *(int8_t *) data + i; + } else { + GGML_ASSERT(false); + } + printf("%8.4f", v); + sum += v; + if (i0 < ne[0] - 1 && i0 < n - 1) printf(", "); + } + if (ne[0] > n) printf(", ..."); + printf("],\n"); + } + if (ne[1] > n) printf(" ...\n"); + printf(" ],\n"); + } + if (ne[2] > n) printf(" ...\n"); + printf(" ]\n"); + printf(" sum = %f\n", sum); + } +} + +/** + * GGML operations callback during the graph execution. + * + * @param t current tensor + * @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor + * if we return true, a follow-up call will be made with ask=false in which we can do the actual collection. + * see ggml_backend_sched_eval_callback + * @param user_data user data to pass at each call back + * @return true to receive data or continue the graph, false otherwise + */ +static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) { + auto * cb_data = (callback_data *) user_data; + + const struct ggml_tensor * src0 = t->src[0]; + const struct ggml_tensor * src1 = t->src[1]; + + if (ask) { + return true; // Always retrieve data + } + + char src1_str[128] = {0}; + if (src1) { + sprintf(src1_str, "%s{%s}", src1->name, ggml_ne_string(src1).c_str()); + } + + printf("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, + t->name, ggml_type_name(t->type), ggml_op_name(t->op), + src0->name, ggml_ne_string(src0).c_str(), + src1 ? src1_str : "", + ggml_ne_string(t).c_str()); + + + // copy the data from the GPU memory if needed + const bool is_host = ggml_backend_buffer_is_host(t->buffer); + + if (!is_host) { + auto n_bytes = ggml_nbytes(t); + cb_data->data.resize(n_bytes); + ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes); + } + + if (!ggml_is_quantized(t->type)) { + uint8_t * data = is_host ? (uint8_t *) t->data : cb_data->data.data(); + ggml_print_tensor(data, t->type, t->ne, t->nb, 3); + } + + return true; +} + +static bool run(llama_context * ctx, const gpt_params & params) { + const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); + + std::vector tokens = ::llama_tokenize(ctx, params.prompt, add_bos); + + if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) { + fprintf(stderr, "%s : failed to eval\n", __func__); + return false; + } + + return true; +} + +int main(int argc, char ** argv) { + + callback_data cb_data; + + gpt_params params; + if (!gpt_params_parse(argc, argv, params)) { + return 1; + } + + print_build_info(); + + std::mt19937 rng(params.seed); + if (params.random_prompt) { + params.prompt = gpt_random_prompt(rng); + } + + llama_backend_init(); + llama_numa_init(params.numa); + + // pass the callback to the backend scheduler + // it will be executed for each node during the graph computation + params.cb_eval = ggml_debug; + params.cb_eval_user_data = &cb_data; + params.warmup = false; + + // init + llama_model * model; + llama_context * ctx; + std::tie(model, ctx) = llama_init_from_gpt_params(params); + if (model == nullptr || ctx == nullptr) { + fprintf(stderr, "%s : failed to init\n", __func__); + return 1; + } + + // print system information + { + fprintf(stderr, "\n"); + fprintf(stderr, "%s\n", get_system_info(params).c_str()); + } + + bool OK = run(ctx, params); + if (!OK) { + return 1; + } + + llama_print_timings(ctx); + + llama_free(ctx); + llama_free_model(model); + + llama_backend_free(); + + return 0; +} diff --git a/examples/imatrix/imatrix.cpp b/examples/imatrix/imatrix.cpp index 1bf55f90c0f49..ff624c539b395 100644 --- a/examples/imatrix/imatrix.cpp +++ b/examples/imatrix/imatrix.cpp @@ -597,24 +597,18 @@ int main(int argc, char ** argv) { llama_backend_init(); llama_numa_init(params.numa); - llama_model_params mparams = llama_model_params_from_gpt_params(params); - - llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams); - if (model == NULL) { - fprintf(stderr, "%s: error: unable to load model\n", __func__); - return 1; - } - - llama_context_params cparams = llama_context_params_from_gpt_params(params); - // pass the callback to the backend scheduler // it will be executed for each node during the graph computation - cparams.cb_eval = ik_collect_imatrix; - cparams.cb_eval_user_data = NULL; - - llama_context * ctx = llama_new_context_with_model(model, cparams); - if (ctx == NULL) { - fprintf(stderr, "%s: error: unable to create context\n", __func__); + params.cb_eval = ik_collect_imatrix; + params.cb_eval_user_data = NULL; + params.warmup = false; + + // init + llama_model * model; + llama_context * ctx; + std::tie(model, ctx) = llama_init_from_gpt_params(params); + if (model == nullptr || ctx == nullptr) { + fprintf(stderr, "%s : failed to init\n", __func__); return 1; } diff --git a/llama.cpp b/llama.cpp index 9ad9b10cb72cb..b6e2ade9134d9 100644 --- a/llama.cpp +++ b/llama.cpp @@ -11121,7 +11121,7 @@ struct llm_tokenizer_bpe { add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol } - // add the fnished tokens to the final list keeping correct order for next and prev + // add the finished tokens to the final list keeping correct order for next and prev for (auto & sym : symbols) { if (sym.n > 0) { sym.prev = final_prev_index;