diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu index d6e4bfdd0d437..eb96beed23598 100644 --- a/ggml/src/ggml-cuda/ggml-cuda.cu +++ b/ggml/src/ggml-cuda/ggml-cuda.cu @@ -31,6 +31,8 @@ #include "ggml-cuda/rope.cuh" #include "ggml-cuda/scale.cuh" #include "ggml-cuda/softmax.cuh" +#include "ggml-cuda/ssm_conv.cuh" +#include "ggml-cuda/ssm_scan.cuh" #include "ggml-cuda/sum.cuh" #include "ggml-cuda/sumrows.cuh" #include "ggml-cuda/tsembd.cuh" @@ -2155,6 +2157,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg case GGML_OP_SUM_ROWS: ggml_cuda_op_sum_rows(ctx, dst); break; + case GGML_OP_SSM_CONV: + ggml_cuda_op_ssm_conv(ctx, dst); + break; + case GGML_OP_SSM_SCAN: + ggml_cuda_op_ssm_scan(ctx, dst); + break; case GGML_OP_ARGSORT: ggml_cuda_op_argsort(ctx, dst); break; @@ -2989,6 +2997,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g case GGML_OP_SIN: case GGML_OP_COS: case GGML_OP_CLAMP: + case GGML_OP_SSM_SCAN: + case GGML_OP_SSM_CONV: return true; case GGML_OP_CONT: return op->src[0]->type != GGML_TYPE_BF16; diff --git a/ggml/src/ggml-cuda/ssm_conv.cu b/ggml/src/ggml-cuda/ssm_conv.cu new file mode 100644 index 0000000000000..205344d3faaac --- /dev/null +++ b/ggml/src/ggml-cuda/ssm_conv.cu @@ -0,0 +1,151 @@ +#include "ssm_conv.cuh" + +template +static __global__ void ssm_conv_f32(const float * __restrict__ src0, const float * __restrict__ src1, + const int src0_nb0, const int src0_nb1, const int src0_nb2, const int src1_nb1, + float * __restrict__ dst, const int dst_nb0, const int dst_nb1, const int dst_nb2, + const int nc, const int ncs, const int nr, const int n_t, const int n_s) { + const int tid = threadIdx.x; + const int bidx = blockIdx.x; + const int bidy = blockIdx.y; + + const float * x_block = (const float *) ((char *) src0 + bidx * src0_nb2 + bidy * split_d_inner * src0_nb1); + const float * w_block = (const float *) ((char *) src1 + bidy * split_d_inner * src1_nb1); + float * y_block = (float *) ((char *) dst + bidx * dst_nb2 + bidy * split_d_inner * dst_nb0); + + const int stride_x = src0_nb1 / sizeof(float); + const int stride_w = src1_nb1 / sizeof(float); + const int stride_y = dst_nb1 / sizeof(float); + + float x[d_conv] = { 0.0f }; + float w[d_conv] = { 0.0f }; + +#pragma unroll + for (int j = 0; j < d_conv; j++) { + w[j] = w_block[tid * stride_w + j]; + } + + for (int i = 0; i < n_t; i++) { + float sumf = 0.0f; + + if (i == 0) { + for (int j = 0; j < d_conv; j++) { + x[j] = x_block[tid * stride_x + j]; + } + } else { + x[(i - 1) % d_conv] = x_block[tid * stride_x + i + d_conv - 1]; + } + +#pragma unroll + for (int j = 0; j < d_conv; j++) { + sumf += x[(i + j) % d_conv] * w[j]; + } + y_block[i * stride_y + tid] = sumf; + } +} + +template +static __global__ void ssm_conv_long_token_f32(const float * __restrict__ src0, const float * __restrict__ src1, + const int src0_nb0, const int src0_nb1, const int src0_nb2, + const int src1_nb1, float * __restrict__ dst, const int dst_nb0, + const int dst_nb1, const int dst_nb2, const int nc, const int ncs, + const int nr, const int n_t, const int n_s) { + const int tid = threadIdx.x; + const int bidx = blockIdx.x; + const int bidy = blockIdx.y; + const int bidz = blockIdx.z; + + const float * x_block = (const float *) ((char *) src0 + bidx * src0_nb2 + bidy * split_d_inner * src0_nb1 + + bidz * split_n_t * src0_nb0); + const float * w_block = (const float *) ((char *) src1 + bidy * split_d_inner * src1_nb1); + float * y_block = + (float *) ((char *) dst + bidx * dst_nb2 + bidz * split_n_t * dst_nb1 + bidy * split_d_inner * dst_nb0); + + const int stride_x = src0_nb1 / sizeof(float); + const int stride_w = src1_nb1 / sizeof(float); + const int stride_y = dst_nb1 / sizeof(float); + + float x[d_conv] = { 0.0f }; + float w[d_conv] = { 0.0f }; + +#pragma unroll + for (int j = 0; j < d_conv; j++) { + w[j] = w_block[tid * stride_w + j]; + } + +#pragma unroll + for (int i = 0; i < split_n_t; i++) { + if (bidz * split_n_t + i < n_t) { + float sumf = 0.0f; + + if (i == 0) { + for (int j = 0; j < d_conv; j++) { + x[j] = x_block[tid * stride_x + j]; + } + } else { + x[(i - 1) % d_conv] = x_block[tid * stride_x + i + d_conv - 1]; + } + +#pragma unroll + for (int j = 0; j < d_conv; j++) { + sumf += x[(i + j) % d_conv] * w[j]; + } + y_block[i * stride_y + tid] = sumf; + } + } +} + +static void ssm_conv_f32_cuda(const float * src0, const float * src1, const int src0_nb0, const int src0_nb1, + const int src0_nb2, const int src1_nb1, float * dst, const int dst_nb0, const int dst_nb1, + const int dst_nb2, const int nc, const int ncs, const int nr, const int n_t, + const int n_s, cudaStream_t stream) { + const int threads = 128; + GGML_ASSERT(nr % threads == 0); + + if (n_t <= 32) { + const dim3 blocks(n_s, (nr + threads - 1) / threads, 1); + if (nc == 4) { + ssm_conv_f32<<>>(src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1, + dst, dst_nb0, dst_nb1, dst_nb2, nc, ncs, nr, n_t, + n_s); + } else { + GGML_ABORT("Only support kernel size = 4 now."); + } + } else { + if (nc == 4) { + const int split_n_t = 32; + dim3 blocks(n_s, (nr + threads - 1) / threads, (n_t + split_n_t - 1) / split_n_t); + ssm_conv_long_token_f32 + <<>>(src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1, dst, dst_nb0, + dst_nb1, dst_nb2, nc, ncs, nr, n_t, n_s); + } else { + GGML_ABORT("Only support kernel size = 4 right now."); + } + } +} + +void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const struct ggml_tensor * src0 = dst->src[0]; // conv_x + const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight + + const int nc = src1->ne[0]; // d_conv + const int ncs = src0->ne[0]; // d_conv - 1 + n_t + const int nr = src0->ne[1]; // d_inner + const int n_t = dst->ne[1]; // tokens per sequence + const int n_s = dst->ne[2]; // number of sequences in the batch + + GGML_ASSERT(dst->ne[0] == nr); + GGML_ASSERT(src0->nb[0] == sizeof(float)); + GGML_ASSERT(src1->nb[0] == sizeof(float)); + GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float)); + + const float * src0_d = (const float *) src0->data; + const float * src1_d = (const float *) src1->data; + float * dst_d = (float *) dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + ssm_conv_f32_cuda(src0_d, src1_d, src0->nb[0], src0->nb[1], src0->nb[2], src1->nb[1], dst_d, dst->nb[0], dst->nb[1], + dst->nb[2], nc, ncs, nr, n_t, n_s, stream); +} diff --git a/ggml/src/ggml-cuda/ssm_conv.cuh b/ggml/src/ggml-cuda/ssm_conv.cuh new file mode 100644 index 0000000000000..8e6c1f00bfa03 --- /dev/null +++ b/ggml/src/ggml-cuda/ssm_conv.cuh @@ -0,0 +1,3 @@ +#include "common.cuh" + +void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/ggml/src/ggml-cuda/ssm_scan.cu b/ggml/src/ggml-cuda/ssm_scan.cu new file mode 100644 index 0000000000000..25dfd1eadcae4 --- /dev/null +++ b/ggml/src/ggml-cuda/ssm_scan.cu @@ -0,0 +1,155 @@ +#include "ssm_scan.cuh" + +// #include +// static __device__ void global_to_shared(const float *src, float *dst) { +// asm volatile("cp.async."); +// } + +template +__global__ void __launch_bounds__(splitD, 2) + ssm_scan_f32(const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2, + const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5, + const int src0_nb1, const int src0_nb2, const int src1_nb0, const int src1_nb1, const int src1_nb2, + const int src1_nb3, const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1, + const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2, + float * __restrict__ dst, const int D, const int L, const int B) { + const int bidx = blockIdx.x; // split along B + const int bidy = blockIdx.y; // split along D + const int tid = threadIdx.x; + const int wid = tid / 32; + const int wtid = tid % 32; + + extern __shared__ float smem[]; + const int stride_sA = N + 1; + const int stride_ss0 = N + 1; + float * smem_A = smem; + float * smem_s0 = smem_A + splitD * stride_sA; + + const float * s0_block = (const float *) ((char *) src0 + bidx * src0_nb2 + bidy * splitD * src0_nb1); + const float * x_block = (const float *) ((char *) src1 + (bidx * src1_nb2) + bidy * splitD * sizeof(float)); + const float * dt_block = (const float *) ((char *) src2 + (bidx * src2_nb2) + bidy * splitD * sizeof(float)); + const float * A_block = (const float *) ((char *) src3 + bidy * splitD * src3_nb1); + const float * B_block = (const float *) ((char *) src4 + (bidx * src4_nb2)); + const float * C_block = (const float *) ((char *) src5 + (bidx * src5_nb2)); + float * y_block = (float *) ((char *) dst + (bidx * src1_nb2) + bidy * splitD * sizeof(float)); + float * s_block = (float *) ((char *) dst + src1_nb3 + bidx * src0_nb2 + bidy * splitD * src0_nb1); + + const int stride_s0 = src0_nb1 / sizeof(float); + const int stride_x = src1_nb1 / sizeof(float); + const int stride_dt = src2_nb1 / sizeof(float); + const int stride_A = src3_nb1 / sizeof(float); + const int stride_B = src4_nb1 / sizeof(float); + const int stride_C = src5_nb1 / sizeof(float); + const int stride_s = stride_s0; + const int stride_y = stride_x; + + // can N not be 16? for example 32? + if (N == 16) { +#pragma unroll + for (int i = 0; i < splitD / 4; i += 2) { + float value = A_block[(wid * warpSize + i) * stride_A + wtid]; + // todo: bank conflict + // I am always confused with how to use the swizzling method to solve + // bank conflit. Hoping somebody can tell me. + smem_A[(wid * warpSize + i) * stride_sA + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value; + } +#pragma unroll + for (int i = 0; i < splitD / 4; i += 2) { + float value = s0_block[(wid * warpSize + i) * stride_s0 + wtid]; + smem_s0[(wid * warpSize + i) * stride_ss0 + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value; + } + } + + __syncthreads(); + + for (int i = 0; i < L; i++) { + float dt_soft_plus = dt_block[i * stride_dt + tid]; + if (dt_soft_plus <= 20.0f) { + dt_soft_plus = log1pf(exp(dt_soft_plus)); + } + float x_dt = x_block[i * stride_x + tid] * dt_soft_plus; + float sumf = 0.0f; +#pragma unroll + for (int j = 0; j < N; j++) { + float state = (smem_s0[tid * stride_ss0 + j] * expf(dt_soft_plus * smem_A[tid * stride_sA + j])) + + (B_block[i * stride_B + j] * x_dt); + sumf += state * C_block[i * stride_C + j]; + if (i == L - 1) { + s_block[tid * stride_s + j] = state; + } else { + smem_s0[tid * stride_ss0 + j] = state; + } + } + __syncthreads(); + y_block[i * stride_y + tid] = sumf; + } +} + +static void ssm_scan_f32_cuda(const float * src0, const float * src1, const float * src2, const float * src3, + const float * src4, const float * src5, const int src0_nb1, const int src0_nb2, + const int src1_nb0, const int src1_nb1, const int src1_nb2, const int src1_nb3, + const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1, + const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2, + float * dst, const int N, const int D, const int L, const int B, cudaStream_t stream) { + const int threads = 128; + // todo: consider D cannot be divided,does this situation exist? + GGML_ASSERT(D % threads == 0); + const dim3 blocks(B, (D + threads - 1) / threads, 1); + const int smem_size = (threads * (N + 1) * 2) * sizeof(float); + if (N == 16) { + ssm_scan_f32<128, 16><<>>( + src0, src1, src2, src3, src4, src5, src0_nb1, src0_nb2, src1_nb0, src1_nb1, src1_nb2, src1_nb3, src2_nb0, + src2_nb1, src2_nb2, src3_nb1, src4_nb1, src4_nb2, src5_nb1, src5_nb2, dst, D, L, B); + } else { + GGML_ABORT("doesn't support N!=16."); + } +} + +void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const struct ggml_tensor * src0 = dst->src[0]; // s + const struct ggml_tensor * src1 = dst->src[1]; // x + const struct ggml_tensor * src2 = dst->src[2]; // dt + const struct ggml_tensor * src3 = dst->src[3]; // A + const struct ggml_tensor * src4 = dst->src[4]; // B + const struct ggml_tensor * src5 = dst->src[5]; // C + + // const int64_t d_state = src0->ne[0]; + // const int64_t d_inner = src0->ne[1]; + // const int64_t l = src1->ne[1]; + // const int64_t b = src0->ne[2]; + + const int64_t nc = src0->ne[0]; // d_state + const int64_t nr = src0->ne[1]; // d_inner + const int64_t n_t = src1->ne[1]; // number of tokens per sequence + const int64_t n_s = src0->ne[2]; // number of sequences in the batch + + GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst)); + GGML_ASSERT(src0->nb[0] == sizeof(float)); + GGML_ASSERT(src1->nb[0] == sizeof(float)); + GGML_ASSERT(src2->nb[0] == sizeof(float)); + GGML_ASSERT(src3->nb[0] == sizeof(float)); + GGML_ASSERT(src4->nb[0] == sizeof(float)); + GGML_ASSERT(src5->nb[0] == sizeof(float)); + // required for the dot product between s and C + GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float)); + // required for per-sequence offsets for states + GGML_ASSERT(src0->nb[2] == src0->ne[0] * src0->ne[1] * sizeof(float)); + // required to get correct offset for state destination (i.e. src1->nb[3]) + GGML_ASSERT(src1->nb[3] == src1->ne[0] * src1->ne[1] * src1->ne[2] * sizeof(float)); + + const float * src0_d = (const float *) src0->data; + const float * src1_d = (const float *) src1->data; + const float * src2_d = (const float *) src2->data; + const float * src3_d = (const float *) src3->data; + const float * src4_d = (const float *) src4->data; + const float * src5_d = (const float *) src5->data; + float * dst_d = (float *) dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + + ssm_scan_f32_cuda(src0_d, src1_d, src2_d, src3_d, src4_d, src5_d, src0->nb[1], src0->nb[2], src1->nb[0], + src1->nb[1], src1->nb[2], src1->nb[3], src2->nb[0], src2->nb[1], src2->nb[2], src3->nb[1], + src4->nb[1], src4->nb[2], src5->nb[1], src5->nb[2], dst_d, nc, nr, n_t, n_s, stream); +} diff --git a/ggml/src/ggml-cuda/ssm_scan.cuh b/ggml/src/ggml-cuda/ssm_scan.cuh new file mode 100644 index 0000000000000..ee078f5ebb8c0 --- /dev/null +++ b/ggml/src/ggml-cuda/ssm_scan.cuh @@ -0,0 +1,3 @@ +#include "common.cuh" + +void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst);