-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotting.py
171 lines (148 loc) · 5.08 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import matplotlib.pyplot as plt
import numpy as np
def plot_correlation_function_comparison(
correlation_NN_r1,
correlation_NN_r2,
correlation_NN_r3,
corellation_G=None,
figname="test.png",
dir=None,
hyperparameters=None,
delta=1,
t=1,
i=1,
):
r"""
Plots the comparison between the theoretical forward equation
and neural network corellation functions per layer.
Note that the correlation function per layer,
e.g. set \delta=1, t=1, i=1.
Input:
correlation_NN: np.ndarray, shape=(layers)
corellation_G: np.ndarray, shape=(layers), optional
"""
fig, ax = plt.subplots(3, 1, figsize=(10, 5))
layers = np.arange(correlation_NN_r1.shape[0])
ax[0].plot(layers, correlation_NN_r1)
ax[0].set_ylabel(f"r1_{delta},{t},{i}")
ax[0].set_xticks([])
ax[1].plot(layers, correlation_NN_r2, label="Neural Network")
ax[1].set_ylabel(f"r2_{delta},{t},{i}")
ax[1].set_yscale("log")
ax[1].set_xticks([])
ax[2].plot(layers, correlation_NN_r3)
ax[2].set_ylabel(f"r3_{delta},{t},{i}")
ax[2].set_xlabel("Layers")
if corellation_G is not None:
ax[1].plot(layers, corellation_G, label="Theoretical correlation function")
ax[1].legend()
# Add hyperparameters as text on the side
hyperparameters_text = "\n".join(
[
(f"{key}:\n {value}" if ("flag" in str(key)) else f"{key}: {value}")
for key, value in hyperparameters.items()
]
)
plt.gcf().text(
0.84, 0.5, hyperparameters_text, fontsize=10, verticalalignment="center"
)
# Set the title for the entire figure
fig.suptitle("Comparison of Correlation Functions", fontsize=16)
plt.tight_layout(
rect=[0, 0, 0.84, 1]
) # Adjust layout to make room for the text box
plt.savefig(dir + "/" + figname)
def f_gaussian(x, mu=0, sigma=1):
return np.exp(-0.5 * ((x - mu) / sigma) ** 2) / (sigma * np.sqrt(2 * np.pi))
def plot_histogram_comparison(
NN_result: np.ndarray,
x: np.ndarray,
var_theory: np.ndarray = None,
figname="histogram.png",
dir=None,
hyperparameters=None,
hist_bins=300,
):
r"""
Plots the theoretical and neural network histogram per layer.
Input:
NN_result: np.ndarray, shape=(layers,N_net)
x: np.ndarray, shape=(d, n_t, n)
var_theory: np.ndarray, shape=(layers)
figname: str, the name of the figure
dir: str, the directory to save the figure
hyperparameters: dict, the hyperparameters of the run
hist_bins: int, the number of bins for the histogram
"""
num_layers = NN_result.shape[0]
# Setup the figure to be a square grid
n_plots_per_side = int(np.sqrt(num_layers))
if np.sqrt(num_layers) % n_plots_per_side != 0:
n_plots_per_side += 1
fig, axs = plt.subplots(
n_plots_per_side,
n_plots_per_side,
figsize=(7 * n_plots_per_side, 7 * n_plots_per_side),
)
axs = axs.ravel()
# Loop over the layers
for l, ax in enumerate(axs):
if l - 1 >= num_layers:
ax.axis("off")
continue
elif l >= num_layers:
# ax.hist(x[0], bins=hist_bins, density=True, label="Input for batch 0")
# ax.legend(fontsize=13)
# ax.set_ylabel("Probability Density")
# ax.set_xlabel("Layers")
ax.axis("off")
continue
x_grid = np.linspace(
min(NN_result[l]),
max(NN_result[l]),
1000,
)
# Plot the leading order theoretical distribution, which is a Gaussian.
if var_theory is not None:
theoretical_sigma = np.sqrt(var_theory[l])
theoretical_gaussian = f_gaussian(x_grid, sigma=theoretical_sigma)
ax.plot(
x_grid,
theoretical_gaussian,
linestyle="--",
color="crimson",
markersize=0,
label=rf"LO Distribution layer {l+1}: mean=0 $\pm${theoretical_sigma:.5f}",
linewidth=3.5,
)
ax.set_ylim(top=np.max(theoretical_gaussian) * 1.3)
# Hisogram the numerical results
ax.hist(
NN_result[l],
bins=hist_bins,
density=True,
label=rf"NN layer {l+1}: mean={np.mean(NN_result[l]):.5f}$\pm${np.std(NN_result[l]):.5f}",
)
ax.legend(fontsize=13)
ax.set_ylabel("Probability Density")
ax.set_xlabel("Bin values")
# Add hyperparameters as text on the side
hyperparameters_text = "\n".join(
[
(f"{key}:\n {value}" if ("flag" in str(key)) else f"{key}: {value}")
for key, value in hyperparameters.items()
]
)
plt.gcf().text(
0.84,
0.5,
hyperparameters_text,
fontsize=4 * n_plots_per_side + 10,
verticalalignment="center",
)
# Set the title for the entire figure
fig.suptitle("Comparison of Correlation Functions", fontsize=16)
plt.tight_layout(
rect=[0, 0, 0.84, 1]
) # Adjust layout to make room for the text box
plt.savefig(dir + "/" + figname)