-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_extra.py
99 lines (74 loc) · 2.95 KB
/
utils_extra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# Author: Zylo117
import math
from torch import nn
import torch.nn.functional as F
class Conv2dStaticSamePadding(nn.Module):
"""
created by Zylo117
The real keras/tensorflow conv2d with same padding
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True, groups=1, dilation=1, **kwargs):
super().__init__()
if isinstance(stride, int):
self.stride = [stride] * 2
elif len(stride) == 1:
self.stride = [stride[0]] * 2
if isinstance(kernel_size, int):
self.kernel_size = [kernel_size] * 2
elif len(kernel_size) == 1:
self.kernel_size = [kernel_size[0]] * 2
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=self.kernel_size, stride=self.stride,
bias=bias, groups=groups)
self.stride = self.conv.stride
self.kernel_size = self.conv.kernel_size
self.dilation = self.conv.dilation
def forward(self, x):
# h, w = x.shape[-2:]
h, w = x.cpu().detach().numpy().shape[-2:]
h_step = math.ceil(w / self.stride[1])
v_step = math.ceil(h / self.stride[0])
h_cover_len = self.stride[1] * (h_step - 1) + 1 + (self.kernel_size[1] - 1)
v_cover_len = self.stride[0] * (v_step - 1) + 1 + (self.kernel_size[0] - 1)
extra_h = h_cover_len - w
extra_v = v_cover_len - h
left = extra_h // 2
right = extra_h - left
top = extra_v // 2
bottom = extra_v - top
x = F.pad(x, [left, right, top, bottom])
x = self.conv(x)
return x
class MaxPool2dStaticSamePadding(nn.Module):
"""
created by Zylo117
The real keras/tensorflow MaxPool2d with same padding
"""
def __init__(self, *args, **kwargs):
super().__init__()
self.pool = nn.MaxPool2d(*args, **kwargs)
self.stride = self.pool.stride
self.kernel_size = self.pool.kernel_size
if isinstance(self.stride, int):
self.stride = [self.stride] * 2
elif len(self.stride) == 1:
self.stride = [self.stride[0]] * 2
if isinstance(self.kernel_size, int):
self.kernel_size = [self.kernel_size] * 2
elif len(self.kernel_size) == 1:
self.kernel_size = [self.kernel_size[0]] * 2
def forward(self, x):
# h, w = x.shape[-2:]
h, w = x.cpu().detach().numpy().shape[-2:]
h_step = math.ceil(w / self.stride[1])
v_step = math.ceil(h / self.stride[0])
h_cover_len = self.stride[1] * (h_step - 1) + 1 + (self.kernel_size[1] - 1)
v_cover_len = self.stride[0] * (v_step - 1) + 1 + (self.kernel_size[0] - 1)
extra_h = h_cover_len - w
extra_v = v_cover_len - h
left = extra_h // 2
right = extra_h - left
top = extra_v // 2
bottom = extra_v - top
x = F.pad(x, [left, right, top, bottom])
x = self.pool(x)
return x