-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrobot_utils.py
637 lines (544 loc) · 26.5 KB
/
robot_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
import os
import math
import random
import gepetto#.corbaserver
import time
import subprocess
import numpy as np
import pinocchio as pin
from numpy.linalg import norm
from pinocchio.robot_wrapper import RobotWrapper as PinocchioRobotWrapper
class Contact:
''' A contact between a contact-point and a contact-surface
'''
def __init__(self, contact_point, contact_surface):
self.cp = contact_point
self.cs = contact_surface
self.reset_contact_position()
def reset_contact_position(self):
# Initialize anchor point p0, that is the initial (0-load) position of the spring
self.p0 = self.cp.get_position()
self.in_contact = True
def compute_force(self):
self.f, self.p0 = self.cs.compute_force(self.cp, self.p0)
return self.f
def get_jacobian(self):
return self.cp.get_jacobian()
class RobotWrapper(PinocchioRobotWrapper):
@staticmethod
def BuildFromURDF(filename, package_dirs=None, root_joint=None, verbose=False, meshLoader=None):
robot = RobotWrapper()
robot.initFromURDF(filename, package_dirs, root_joint, verbose, meshLoader)
return robot
@property
def na(self):
if(self.model.joints[0].nq==7):
return self.model.nv-6
return self.model.nv
def mass(self, q, update=True):
if(update):
return pin.crba(self.model, self.data, q)
return self.data.M
def nle(self, q, v, update=True):
if(update):
return pin.nonLinearEffects(self.model, self.data, q, v)
return self.data.nle
def com(self, q=None, v=None, a=None, update=True):
if(update==False or q is None):
return PinocchioRobotWrapper.com(self, q)
if a is None:
if v is None:
return PinocchioRobotWrapper.com(self, q)
return PinocchioRobotWrapper.com(self, q, v)
return PinocchioRobotWrapper.com(self, q, v,a)
def Jcom(self, q, update=True):
if(update):
return pin.jacobianCenterOfMass(self.model, self.data, q)
return self.data.Jcom
def momentumJacobian(self, q, v, update=True):
if(update):
pin.ccrba(self.model, self.data, q, v)
return self.data.Ag
def computeAllTerms(self, q, v):
''' pin.computeAllTerms is equivalent to calling:
pinocchio::forwardKinematics
pinocchio::crba
pinocchio::nonLinearEffects
pinocchio::computeJointJacobians
pinocchio::centerOfMass
pinocchio::jacobianCenterOfMass
pinocchio::kineticEnergy
pinocchio::potentialEnergy
This is too much for our needs, so we call only the functions
we need, including those for the frame kinematics
'''
#pin.computeAllTerms(self.model, self.data, q, v);
pin.forwardKinematics(self.model, self.data, q, v, np.zeros(self.model.nv))
pin.computeJointJacobians(self.model, self.data)
pin.updateFramePlacements(self.model, self.data)
pin.crba(self.model, self.data, q)
pin.nonLinearEffects(self.model, self.data, q, v)
def forwardKinematics(self, q, v=None, a=None):
if v is not None:
if a is not None:
pin.forwardKinematics(self.model, self.data, q, v, a)
else:
pin.forwardKinematics(self.model, self.data, q, v)
else:
pin.forwardKinematics(self.model, self.data, q)
def inverseKinematics(self, ee_coords):
''' Inverse kinematics algorithm to compute a joint configuration given the EE coordinates'''
oMdes = pin.SE3(np.eye(3), np.array([ee_coords[0], ee_coords[1], 0.0]))
random.seed(123)
for j in range(100):
q = np.array([random.uniform(-math.pi,math.pi),random.uniform(-math.pi,math.pi),random.uniform(-math.pi,math.pi)])
# q = pin.neutral(self.model)
pin.forwardKinematics(self.model, self.data, q)
pin.updateFramePlacements(self.model, self.data)
eps = 1e-4
IT_MAX = 1000
DT = 1e-1
damp = 1e-12
frame_id = self.model.getFrameId('fixed_ee')
i=0
while True:
pin.forwardKinematics(self.model,self.data,q)
pin.updateFramePlacements(self.model, self.data)
dMi = oMdes.actInv(self.data.oMf[frame_id])
err = pin.log(dMi).vector
if norm(err) < eps:
success = True
break
if i >= IT_MAX:
success = False
break
J = pin.computeFrameJacobian(self.model,self.data,q,frame_id)
v = - J.T.dot(np.linalg.solve(J.dot(J.T) + damp * np.eye(6), err))
q = pin.integrate(self.model,q,v*DT)
if not i % 10:
print('%d: error = %s' % (i, err.T))
i += 1
if success:
print("Convergence achieved!")
break
else:
print("\nWarning: the iterative algorithm has not reached convergence to the desired precision. Retry ({}) with another initial configuration".format(j))
return q, success
def frameJacobian(self, q, index, update=True, ref_frame=pin.ReferenceFrame.LOCAL_WORLD_ALIGNED):
''' Call computeFrameJacobian if update is true. If not, user should call computeFrameJacobian first.
Then call getFrameJacobian and return the Jacobian matrix.
ref_frame can be: ReferenceFrame.LOCAL, ReferenceFrame.WORLD, ReferenceFrame.LOCAL_WORLD_ALIGNED
'''
if(update):
pin.computeFrameJacobian(self.model, self.data, q, index)
return pin.getFrameJacobian(self.model, self.data, index, ref_frame)
def frameVelocity(self, q, v, index, update_kinematics=True, ref_frame=pin.ReferenceFrame.LOCAL_WORLD_ALIGNED):
if update_kinematics:
pin.forwardKinematics(self.model, self.data, q, v)
v_local = pin.getFrameVelocity(self.model, self.data, index)
if ref_frame==pin.ReferenceFrame.LOCAL:
return v_local
H = self.data.oMf[index]
if ref_frame==pin.ReferenceFrame.WORLD:
v_world = H.act(v_local)
return v_world
Hr = pin.pin(H.rotation, np.zeros(3))
v = Hr.act(v_local)
return v
def frameAcceleration(self, q, v, a, index, update_kinematics=True, ref_frame=pin.ReferenceFrame.LOCAL_WORLD_ALIGNED):
if update_kinematics:
pin.forwardKinematics(self.model, self.data, q, v, a)
a_local = pin.getFrameAcceleration(self.model, self.data, index)
if ref_frame==pin.ReferenceFrame.LOCAL:
return a_local
H = self.data.oMf[index]
if ref_frame==pin.ReferenceFrame.WORLD:
a_world = H.act(a_local)
return a_world
Hr = pin.pin(H.rotation, np.zeros(3))
a = Hr.act(a_local)
return a
def frameClassicAcceleration(self, q, v, a, index, update_kinematics=True, ref_frame=pin.ReferenceFrame.LOCAL_WORLD_ALIGNED):
if update_kinematics:
pin.forwardKinematics(self.model, self.data, q, v, a)
v = pin.getFrameVelocity(self.model, self.data, index)
a_local = pin.getFrameAcceleration(self.model, self.data, index)
a_local.linear += np.cross(v.angular, v.linear, axis=0)
if ref_frame==pin.ReferenceFrame.LOCAL:
return a_local
H = self.data.oMf[index]
if ref_frame==pin.ReferenceFrame.WORLD:
a_world = H.act(a_local)
return a_world
Hr = pin.pin(H.rotation, np.zeros(3))
a = Hr.act(a_local)
return a
def deactivateCollisionPairs(self, collision_pair_indexes):
for i in collision_pair_indexes:
self.collision_data.deactivateCollisionPair(i)
def addAllCollisionPairs(self):
self.collision_model.addAllCollisionPairs()
self.collision_data = pin.GeometryData(self.collision_model)
def isInCollision(self, q, stop_at_first_collision=True):
return pin.computeCollisions(self.model, self.data, self.collision_model, self.collision_data, np.asmatrix(q).reshape((self.model.nq,1)), stop_at_first_collision)
def findFirstCollisionPair(self, consider_only_active_collision_pairs=True):
for i in range(len(self.collision_model.collisionPairs)):
if(not consider_only_active_collision_pairs or self.collision_data.activeCollisionPairs[i]):
if(pin.computeCollision(self.collision_model, self.collision_data, i)):
return (i, self.collision_model.collisionPairs[i])
return None
def findAllCollisionPairs(self, consider_only_active_collision_pairs=True):
res = []
for i in range(len(self.collision_model.collisionPairs)):
if(not consider_only_active_collision_pairs or self.collision_data.activeCollisionPairs[i]):
if(pin.computeCollision(self.collision_model, self.collision_data, i)):
res += [(i, self.collision_model.collisionPairs[i])]
return res
class RobotSimulator:
def __init__(self, robot, q0_init, v0_init, simulation_type, tau_coulomb_max, use_viewer=False, DISPLAY_T=None, CAMERA_TRANSFORM=None, show_floor=False):
self.robot = robot
self.model = self.robot.model
self.data = self.model.createData()
self.t = 0.0 # time
self.nv = nv = self.model.nv # Dimension of joint velocities vector
self.na = na = robot.na # number of actuated joints
self.S = np.hstack((np.zeros((na, nv-na)), np.eye(na, na))) # Matrix S used as filter of vector of inputs U
self.contacts = []
self.candidate_contact_points = [] # candidate contact points
self.contact_surfaces = []
self.DISPLAY_T = DISPLAY_T # refresh period for viewer
self.use_viewer = use_viewer
self.tau_coulomb_max = tau_coulomb_max
self.display_counter = self.DISPLAY_T
self.init(q0_init, v0_init, True)
self.tau_c = np.zeros(na) # Coulomb friction torque
self.simulation_type = simulation_type
self.set_coulomb_friction(tau_coulomb_max)
# for gepetto viewer
self.gui = None
if(use_viewer):
try:
prompt = subprocess.getstatusoutput("ps aux |grep 'gepetto-gui'|grep -v 'grep'|wc -l")
if int(prompt[1]) == 0:
os.system('gepetto-gui &')
time.sleep(1)
except:
pass
gepetto.corbaserver.Client()
gepetto.Client()
self.robot.initViewer(loadModel=True)
self.gui = self.robot.viewer.gui
if(show_floor):
self.robot.viewer.gui.createSceneWithFloor('world')
self.gui.setLightingMode('world/floor', 'OFF')
self.robot.displayCollisions(False)
self.robot.displayVisuals(True)
self.robot.display(self.q)
try:
self.gui.setCameraTransform("python-pinocchio", CAMERA_TRANSFORM)
except:
self.gui.setCameraTransform(0, CAMERA_TRANSFORM)
# Re-initialize the simulator
def init(self, q0=None, v0=None, reset_contact_positions=False):
self.first_iter = True
if q0 is not None:
self.q = q0.copy()
if(v0 is None):
self.v = np.zeros(self.robot.nv)
else:
self.v = v0.copy()
self.dv = np.zeros(self.robot.nv)
self.resize_contact_data(reset_contact_positions)
def resize_contact_data(self, reset_contact_positions=False):
self.nc = len(self.contacts) # number of contacts
self.nk = 3*self.nc # size of contact force vector
self.f = np.zeros(self.nk) # contact forces
self.Jc = np.zeros((self.nk, self.model.nv)) # contact Jacobian
# reset contact position
if(reset_contact_positions):
pin.forwardKinematics(self.model, self.data, self.q)
pin.updateFramePlacements(self.model, self.data)
for c in self.contacts:
c.reset_contact_position()
self.compute_forces(compute_data=True)
def set_coulomb_friction(self, tau_max):
self.tau_coulomb_max = 1e-2*tau_max*self.model.effortLimit
self.simulate_coulomb_friction = (norm(self.tau_coulomb_max)!=0.0)
def collision_detection(self):
for s in self.contact_surfaces: # for each contact surface
for cp in self.candidate_contact_points: # for each candidate contact point
p = cp.get_position()
if(s.check_collision(p)): # check whether the point is colliding with the surface
if(not cp.active): # if the contact was not already active
print("Collision detected between point", cp.frame_name, " at ", p)
cp.active = True
cp.contact = Contact(cp, s)
self.contacts += [cp.contact]
self.resize_contact_data()
else:
if(cp.active):
print("Contact lost between point", cp.frame_name, " at ", p)
cp.active = False
self.contacts.remove(cp.contact)
self.resize_contact_data()
def compute_forces(self, compute_data=True):
'''Compute the contact forces from q, v and elastic model'''
if compute_data:
pin.forwardKinematics(self.model, self.data, self.q, self.v)
# Computes the placements of all the operational frames according to the current joint placement stored in data
pin.updateFramePlacements(self.model, self.data)
self.collision_detection()
i = 0
for c in self.contacts:
self.f[i:i+3] = c.compute_force()
self.Jc[i:i+3, :] = c.get_jacobian()
i += 3
return self.f
def step(self, u, dt=None):
if dt is None:
dt = self.dt
# (Forces are directly in the world frame, and aba wants them in the end effector frame)
pin.computeAllTerms(self.model, self.data, self.q, self.v)
pin.updateFramePlacements(self.model, self.data)
M = self.data.M
h = self.data.nle
self.collision_detection()
self.compute_forces(False)
if(self.simulate_coulomb_friction and self.simulation_type=='timestepping'):
# minimize kinetic energy using time stepping
from quadprog import solve_qp
'''
Solve a strictly convex quadratic program
Minimize 1/2 x^T G x - a^T x
Subject to C.T x >= b
Input Parameters
----------
G : array, shape=(n, n)
a : array, shape=(n,)
C : array, shape=(n, m) matrix defining the constraints
b : array, shape=(m), default=None, vector defining the constraints
meq : int, default=0
the first meq constraints are treated as equality constraints,
all further as inequality constraints
'''
# M (v' - v) = dt*S^T*(tau - tau_c) - dt*h + dt*J^T*f
# M v' = M*v + dt*(S^T*tau - h + J^T*f) - dt*S^T*tau_c
# M v' = b + B*tau_c
# v' = Minv*(b + B*tau_c)
b = M.dot(self.v) + dt*(self.S.T.dot(u) - h + self.Jc.T.dot(self.f))
B = - dt*self.S.T
# Minimize kinetic energy:
# min v'.T * M * v'
# min (b+B*tau_c).T*Minv*(b+B*tau_c)
# min tau_c.T * B.T*Minv*B* tau_C + 2*b.T*Minv*B*tau_c
Minv = np.linalg.inv(M)
G = B.T.dot(Minv.dot(B))
a = -b.T.dot(Minv.dot(B))
C = np.vstack((np.eye(self.na), -np.eye(self.na)))
c = np.concatenate((-self.tau_coulomb_max, -self.tau_coulomb_max))
solution = solve_qp(G, a, C.T, c, 0)
self.tau_c = solution[0]
self.v = Minv.dot(b + B.dot(self.tau_c))
self.q = pin.integrate(self.model, self.q, self.v*dt)
self.dv = np.linalg.solve(M, self.S.T.dot(u-self.tau_c) - h + self.Jc.T.dot(self.f))
elif(self.simulation_type=='euler' or self.simulate_coulomb_friction==False):
self.tau_c = self.tau_coulomb_max*np.sign(self.v[-self.na:])
self.dv = np.linalg.solve(M, self.S.T.dot(u-self.tau_c) - h + self.Jc.T.dot(self.f))
# v_mean = np.copy(self.v) + 0.5*dt*self.dv
self.q = pin.integrate(self.model, self.q, self.v*dt)
# self.q += dt*v_mean
self.v += self.dv*dt
else:
print("[ERROR] Unknown simulation type:", self.simulation_type)
self.t += dt
return self.q, self.v, self.dv
def reset(self):
self.first_iter = True
def simulate(self, state, u, dt=0.05, ndt=1):
''' Perform ndt steps, each lasting dt/ndt seconds '''
self.q = state[:self.robot.nq]
self.v = state[self.robot.nq:self.robot.nv+self.robot.nq]
tau_c_avg = 0*self.tau_c
for i in range(ndt):
self.q, self.v, self.dv = self.step(u, dt/ndt)
tau_c_avg += self.tau_c
self.tau_c = tau_c_avg / ndt
if (self.use_viewer):
self.display_counter -= dt
if self.display_counter <= 0.0:
self.robot.display(self.q)
self.display_counter = self.DISPLAY_T
return self.q, self.v, self.f
def display(self, q):
if(self.use_viewer):
self.robot.display(q)
class RobotWrapper(PinocchioRobotWrapper):
@staticmethod
def BuildFromURDF(filename, package_dirs=None, root_joint=None, verbose=False, meshLoader=None):
robot = RobotWrapper()
robot.initFromURDF(filename, package_dirs, root_joint, verbose, meshLoader)
return robot
@property
def na(self):
if(self.model.joints[0].nq==7):
return self.model.nv-6
return self.model.nv
def mass(self, q, update=True):
if(update):
return pin.crba(self.model, self.data, q)
return self.data.M
def nle(self, q, v, update=True):
if(update):
return pin.nonLinearEffects(self.model, self.data, q, v)
return self.data.nle
def com(self, q=None, v=None, a=None, update=True):
if(update==False or q is None):
return PinocchioRobotWrapper.com(self, q)
if a is None:
if v is None:
return PinocchioRobotWrapper.com(self, q)
return PinocchioRobotWrapper.com(self, q, v)
return PinocchioRobotWrapper.com(self, q, v,a)
def Jcom(self, q, update=True):
if(update):
return pin.jacobianCenterOfMass(self.model, self.data, q)
return self.data.Jcom
def momentumJacobian(self, q, v, update=True):
if(update):
pin.ccrba(self.model, self.data, q, v)
return self.data.Ag
def computeAllTerms(self, q, v):
''' pin.computeAllTerms is equivalent to calling:
pinocchio::forwardKinematics
pinocchio::crba
pinocchio::nonLinearEffects
pinocchio::computeJointJacobians
pinocchio::centerOfMass
pinocchio::jacobianCenterOfMass
pinocchio::kineticEnergy
pinocchio::potentialEnergy
This is too much for our needs, so we call only the functions
we need, including those for the frame kinematics
'''
#pin.computeAllTerms(self.model, self.data, q, v);
pin.forwardKinematics(self.model, self.data, q, v, np.zeros(self.model.nv))
pin.computeJointJacobians(self.model, self.data)
pin.updateFramePlacements(self.model, self.data)
pin.crba(self.model, self.data, q)
pin.nonLinearEffects(self.model, self.data, q, v)
def forwardKinematics(self, q, v=None, a=None):
if v is not None:
if a is not None:
pin.forwardKinematics(self.model, self.data, q, v, a)
else:
pin.forwardKinematics(self.model, self.data, q, v)
else:
pin.forwardKinematics(self.model, self.data, q)
def inverseKinematics(self, ee_coords):
''' Inverse kinematics algorithm to compute a joint configuration given the EE coordinates'''
oMdes = pin.SE3(np.eye(3), np.array([ee_coords[0], ee_coords[1], 0.0]))
random.seed(123)
for j in range(100):
q = np.array([random.uniform(-math.pi,math.pi),random.uniform(-math.pi,math.pi),random.uniform(-math.pi,math.pi)])
# q = pin.neutral(self.model)
pin.forwardKinematics(self.model, self.data, q)
pin.updateFramePlacements(self.model, self.data)
eps = 1e-4
IT_MAX = 1000
DT = 1e-1
damp = 1e-12
frame_id = self.model.getFrameId('fixed_ee')
i=0
while True:
pin.forwardKinematics(self.model,self.data,q)
pin.updateFramePlacements(self.model, self.data)
dMi = oMdes.actInv(self.data.oMf[frame_id])
err = pin.log(dMi).vector
if norm(err) < eps:
success = True
break
if i >= IT_MAX:
success = False
break
J = pin.computeFrameJacobian(self.model,self.data,q,frame_id)
v = - J.T.dot(np.linalg.solve(J.dot(J.T) + damp * np.eye(6), err))
q = pin.integrate(self.model,q,v*DT)
if not i % 10:
print('%d: error = %s' % (i, err.T))
i += 1
if success:
print("Convergence achieved!")
break
else:
print("\nWarning: the iterative algorithm has not reached convergence to the desired precision. Retry ({}) with another initial configuration".format(j))
return q, success
def frameJacobian(self, q, index, update=True, ref_frame=pin.ReferenceFrame.LOCAL_WORLD_ALIGNED):
''' Call computeFrameJacobian if update is true. If not, user should call computeFrameJacobian first.
Then call getFrameJacobian and return the Jacobian matrix.
ref_frame can be: ReferenceFrame.LOCAL, ReferenceFrame.WORLD, ReferenceFrame.LOCAL_WORLD_ALIGNED
'''
if(update):
pin.computeFrameJacobian(self.model, self.data, q, index)
return pin.getFrameJacobian(self.model, self.data, index, ref_frame)
def frameVelocity(self, q, v, index, update_kinematics=True, ref_frame=pin.ReferenceFrame.LOCAL_WORLD_ALIGNED):
if update_kinematics:
pin.forwardKinematics(self.model, self.data, q, v)
v_local = pin.getFrameVelocity(self.model, self.data, index)
if ref_frame==pin.ReferenceFrame.LOCAL:
return v_local
H = self.data.oMf[index]
if ref_frame==pin.ReferenceFrame.WORLD:
v_world = H.act(v_local)
return v_world
Hr = pin.pin(H.rotation, np.zeros(3))
v = Hr.act(v_local)
return v
def frameAcceleration(self, q, v, a, index, update_kinematics=True, ref_frame=pin.ReferenceFrame.LOCAL_WORLD_ALIGNED):
if update_kinematics:
pin.forwardKinematics(self.model, self.data, q, v, a)
a_local = pin.getFrameAcceleration(self.model, self.data, index)
if ref_frame==pin.ReferenceFrame.LOCAL:
return a_local
H = self.data.oMf[index]
if ref_frame==pin.ReferenceFrame.WORLD:
a_world = H.act(a_local)
return a_world
Hr = pin.pin(H.rotation, np.zeros(3))
a = Hr.act(a_local)
return a
def frameClassicAcceleration(self, q, v, a, index, update_kinematics=True, ref_frame=pin.ReferenceFrame.LOCAL_WORLD_ALIGNED):
if update_kinematics:
pin.forwardKinematics(self.model, self.data, q, v, a)
v = pin.getFrameVelocity(self.model, self.data, index)
a_local = pin.getFrameAcceleration(self.model, self.data, index)
a_local.linear += np.cross(v.angular, v.linear, axis=0)
if ref_frame==pin.ReferenceFrame.LOCAL:
return a_local
H = self.data.oMf[index]
if ref_frame==pin.ReferenceFrame.WORLD:
a_world = H.act(a_local)
return a_world
Hr = pin.pin(H.rotation, np.zeros(3))
a = Hr.act(a_local)
return a
def deactivateCollisionPairs(self, collision_pair_indexes):
for i in collision_pair_indexes:
self.collision_data.deactivateCollisionPair(i)
def addAllCollisionPairs(self):
self.collision_model.addAllCollisionPairs()
self.collision_data = pin.GeometryData(self.collision_model)
def isInCollision(self, q, stop_at_first_collision=True):
return pin.computeCollisions(self.model, self.data, self.collision_model, self.collision_data, np.asmatrix(q).reshape((self.model.nq,1)), stop_at_first_collision)
def findFirstCollisionPair(self, consider_only_active_collision_pairs=True):
for i in range(len(self.collision_model.collisionPairs)):
if(not consider_only_active_collision_pairs or self.collision_data.activeCollisionPairs[i]):
if(pin.computeCollision(self.collision_model, self.collision_data, i)):
return (i, self.collision_model.collisionPairs[i])
return None
def findAllCollisionPairs(self, consider_only_active_collision_pairs=True):
res = []
for i in range(len(self.collision_model.collisionPairs)):
if(not consider_only_active_collision_pairs or self.collision_data.activeCollisionPairs[i]):
if(pin.computeCollision(self.collision_model, self.collision_data, i)):
res += [(i, self.collision_model.collisionPairs[i])]
return res