-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtestopt.py
executable file
·494 lines (434 loc) · 21.1 KB
/
testopt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import numpy as np
import matplotlib
matplotlib.use('Qt4Agg')
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
from matplotlib.widgets import Slider, Button, RadioButtons, CheckButtons
from matplotlib.lines import Line2D
from scipy.stats import spearmanr,pearsonr,kendalltau
from scipy.optimize import minimize
from scipy.optimize import curve_fit
from scipy.interpolate import interp1d,UnivariateSpline
from scipy.signal import argrelextrema
import pdb
import pandas as pd
import time
from scipy import signal
def air_to_vacuum(airwl,nouvconv=True):
"""
Returns vacuum wavelength of the provided air wavelength array or scalar.
Good to ~ .0005 angstroms.
If nouvconv is True, does nothing for air wavelength < 2000 angstroms.
Input must be in angstroms.
Adapted from idlutils airtovac.pro, based on the IAU standard
for conversion in Morton (1991 Ap.J. Suppl. 77, 119)
"""
airwl = np.array(airwl,copy=False,dtype=float,ndmin=1)
isscal = airwl.shape == tuple()
if isscal:
airwl = airwl.ravel()
#wavenumber squared
sig2 = (1e4/airwl)**2
convfact = 1. + 6.4328e-5 + 2.94981e-2/(146. - sig2) + 2.5540e-4/( 41. - sig2)
newwl = airwl.copy()
if nouvconv:
convmask = newwl>=2000
newwl[convmask] *= convfact[convmask]
else:
newwl[:] *= convfact
return newwl[0] if isscal else newwl
def gaussian_lines(line_x,line_a,xgrid,width=2.0):
'''
Creates ideal Xenon spectrum
'''
#print 'Creating ideal calibration spectrum'
temp = np.zeros(xgrid.size)
for i in range(line_a.size):
gauss = line_a[i]*np.exp(-(xgrid-line_x[i])**2/(2*width**2))
temp += gauss
return temp
def polyfour(x,a,b,c,d,e,f):
return a + b*x + c*x**2.0 + d*x**3.0 + e*x**4.0 + f*x**5.0
def wavecalibrate(px,fx,slit_x,stretch_est=0.0,shift_est=0.0,quad_est=0.0,cube_est=0.0,fourth_est=0.0,fifth_est=0.0):
#flip and normalize flux
fx = fx - np.min(fx)
fx = fx[::-1]
fx = fx/signal.medfilt(fx,201)
#prep calibration lines into 1d spectra
wm,fm = np.loadtxt('osmos_Xenon.dat',usecols=(0,2),unpack=True)
wm = air_to_vacuum(wm)
xgrid = np.arange(0.0,6800.0,0.01)
lines_gauss = gaussian_lines(wm,fm,xgrid)
interp = interp1d(xgrid,lines_gauss,bounds_error=False,fill_value=0)
#interp = UnivariateSpline(xgrid,lines_gauss)
wave_est = fifth_est*(px-slit_x)**5 + fourth_est*(px-slit_x)**4 + cube_est*(px-slit_x)**3 + quad_est*(px-slit_x)**2 + (px-slit_x)*stretch_est + shift_est #don't subtract the slit pos because interactive plot doesn't (easier)
wm_in = wm[np.where((wm<wave_est.max())&(wm>wave_est.min()))]
#wm_in = wm[np.where((wm<5000.0)&(wm>wave_est.min()))]
px_max = np.zeros(wm_in.size)
for i in range(wm_in.size):
px_in = px[np.where((wave_est<wm_in[i]+5.0)&(wave_est>wm_in[i]-5))]
px_max[i] = px_in[fx[np.where((wave_est<wm_in[i]+5.0)&(wave_est>wm_in[i]-5))].argmax()]
params,pcov = curve_fit(polyfour,(px_max-slit_x),wm_in,p0=[shift_est,stretch_est,quad_est,cube_est,fourth_est,fifth_est])
#return (wave_new,fx,max_fourth,max_cube,max_quad,max_stretch,max_shift)
return (params[0]+params[1]*(px-slit_x)+params[2]*(px-slit_x)**2+params[3]*(px-slit_x)**3.0+params[4]*(px-slit_x)**4.0+params[5]*(px-slit_x)**5.0,fx,params[5],params[4],params[3],params[2],params[1],params[0])
#return (param0+param1*(px-slit_x)+param2*(px-slit_x)**2+param3*(px-slit_x)**3.0+param4*(px-slit_x)**4.0+param5*(px-slit_x)**5.0,fx,params[4],params[3],params[2],params[1],params[0])
def interactive_plot(px,fx,stretch_0,shift_0,quad_0,cube_0,fourth_0,fifth_0,slit_x,wm,fm):
#flip and normalize flux
fx = fx - np.min(fx)
fx = fx[::-1]
'''
#prep calibration lines into 1d spectra
wm_Xe,fm_Xe = np.loadtxt('osmos_Xenon.dat',usecols=(0,2),unpack=True)
wm_Xe = air_to_vacuum(wm_Xe)
wm_Ar,fm_Ar = np.loadtxt('osmos_Argon.dat',usecols=(0,2),unpack=True)
wm_Ar = air_to_vacuum(wm_Ar)
wm_HgNe,fm_HgNe = np.loadtxt('osmos_HgNe.dat',usecols=(0,2),unpack=True)
wm_HgNe = air_to_vacuum(wm_HgNe)
wm_Ne,fm_Ne = np.loadtxt('osmos_Ne.dat',usecols=(0,2),unpack=True)
wm_Ne = air_to_vacuum(wm_Ne)
'''
cal_states = {'Xe':True,'Ar':False,'HgNe':False,'Ne':False}
fig,ax = plt.subplots()
plt.subplots_adjust(left=0.25,bottom=0.30)
l, = ax.plot(fifth_0*(px-slit_x)**5 + fourth_0*(px-slit_x)**4 + cube_0*(px-slit_x)**3 + quad_0*(px-slit_x)**2 + stretch_0*(px-slit_x) + shift_0,fx/10.0,'b')
plt.plot(wm,fm/2.0,'ro')
for i in range(wm.size): ax.axvline(wm[i],color='r')
ax.set_xlim(4000,6000)
ax.set_ylim(0,3500)
#stateax = plt.axes([0.1,0.25,0.15,0.1])
#states = CheckButtons(stateax,cal_states.keys(), cal_states.values())
axstretch = plt.axes([0.25,0.17,0.65,0.03])
axshift = plt.axes([0.25,0.22,0.65,0.03])
fn_quad_0 = 0.0
fn_stretch_0 = 0.0
fn_shift_0 = 0.0
fn_axquad = plt.axes([0.25,0.03,0.65,0.03])
fn_axstretch = plt.axes([0.25,0.07,0.65,0.03])
fn_axshift = plt.axes([0.25,0.12,0.65,0.03])
close_ax = plt.axes([0.05,0.5,0.13,0.1])
slide_stretch = Slider(axstretch, 'Stretch',0.4,1.3,valinit=stretch_0)
slide_shift = Slider(axshift,'Shift',-2000.0,6000.0,valinit=shift_0)
fn_slide_stretch = Slider(fn_axstretch, 'Fine Stretch',-0.05,0.05,valinit=fn_stretch_0)
fn_slide_shift = Slider(fn_axshift,'Fine Shift',-200.0,200.0,valinit=fn_shift_0)
fn_slide_quad = Slider(fn_axquad,'Fine Quad',-4e-5,4e-5,valinit=fn_quad_0)
close_button = Button(close_ax,'Close Plots', hovercolor='0.80')
def set_calib_lines(label):
cal_states[label] = not cal_states[label]
xl = ax.get_xlim()
yl = ax.get_ylim()
ax.cla()
wm = []
fm = []
if cal_states['Xe']:
wm.extend(wm_Xe)
fm.extend(fm_Xe)
if cal_states['Ar']:
wm.extend(wm_Ar)
fm.extend(fm_Ar)
if cal_states['HgNe']:
wm.extend(wm_HgNe)
fm.extend(fm_HgNe)
if cal_states['Ne']:
wm.extend(wm_Ne)
fm.extend(fm_Ne)
wm = np.array(wm)
fm = np.array(fm)
for j in range(wm.size):
ax.axvline(wm[j],color='r')
line, = ax.plot(np.array(wm),np.array(fm)/2.0,'ro',picker=5)# 5 points tolerance
l, = ax.plot(fifth_0*(px-slit_x)**5 + fourth_0*(px-slit_x)**4 + cube_0*(px-slit_x)**3 + (quad_0+fn_slide_quad.val)*(px-slit_x)**2 + (slide_stretch.val+fn_slide_stretch.val)*(px-slit_x) + (slide_shift.val+fn_slide_shift.val),fx/10.0,'b')
ax.set_xlim(xl)
ax.set_ylim(yl)
fig.canvas.draw()
def update(val):
l.set_xdata(fifth_0*(px-slit_x)**5 + fourth_0*(px-slit_x)**4 + cube_0*(px-slit_x)**3 + (quad_0+fn_slide_quad.val)*(px-slit_x)**2+(slide_stretch.val+fn_slide_stretch.val)*(px-slit_x)+(slide_shift.val+fn_slide_shift.val))
fig.canvas.draw_idle()
def fineupdate(val):
l.set_xdata(fifth_0*(px-slit_x)**5 + fourth_0*(px-slit_x)**4 + cube_0*(px-slit_x)**3 + (quad_0+fn_slide_quad.val)*(px-slit_x)**2+(slide_stretch.val+fn_slide_stretch.val)*(px-slit_x)+(slide_shift.val+fn_slide_shift.val))
#slide_stretch.val = slide_stretch.val + fn_slide_stretch.val
#slide_shift.val = slide_shift.val + fn_slide_shift.val
fig.canvas.draw_idle()
def close_plots(event):
plt.close()
slide_stretch.on_changed(update)
slide_shift.on_changed(update)
fn_slide_stretch.on_changed(fineupdate)
fn_slide_shift.on_changed(fineupdate)
fn_slide_quad.on_changed(fineupdate)
close_button.on_clicked(close_plots)
#states.on_clicked(set_calib_lines)
plt.show()
shift_est = slide_shift.val+fn_slide_shift.val
stretch_est = slide_stretch.val+fn_slide_stretch.val
quad_est = quad_0 + fn_slide_quad.val
print 'quad_est:',quad_est, 'stretch est:',stretch_est, 'shift est:',shift_est
return stretch_est,shift_est,quad_est
def interactive_plot_plus(px,fx,wm,fm,stretch_0,shift_0,quad_0):
#main plot
fig,ax = plt.subplots()
plt.subplots_adjust(left=0.25,bottom=0.30)
l, = plt.plot(quad_0*(px-2032.0)**2+stretch_0*px+shift_0,fx/10.0,'b')
plt.plot(wm,fm/2.0,'ro')
for i in range(wm.size): plt.axvline(wm[i],color='r')
plt.xlim(4000,6000)
plt.ylim(0,3500)
axstretch = plt.axes([0.25,0.17,0.65,0.03])
axshift = plt.axes([0.25,0.22,0.65,0.03])
fn_stretch_0 = 0.0
fn_shift_0 = 0.0
fn_axstretch = plt.axes([0.25,0.07,0.65,0.03])
fn_axshift = plt.axes([0.25,0.12,0.65,0.03])
close_ax = plt.axes([0.05,0.5,0.13,0.1])
slide_stretch = Slider(axstretch, 'Stretch',0.4,1.3,valinit=stretch_0)
slide_shift = Slider(axshift,'Shift',-4000.0,4000.0,valinit=shift_0)
fn_slide_stretch = Slider(fn_axstretch, 'Fine Stretch',-0.05,0.05,valinit=fn_stretch_0)
fn_slide_shift = Slider(fn_axshift,'Fine Shift',-200.0,200.0,valinit=fn_shift_0)
close_button = Button(close_ax,'Close Plots', hovercolor='0.80')
#secondary 'zoom' plots
s = plt.figure()
ax2 = s.add_subplot(211)
ax3 = s.add_subplot(212)
l2, = ax2.plot(quad_0*(px-2032.0)**2+stretch_0*px+shift_0,fx/10.0,'b')
ax2.plot(wm,fm/2.0,'ro')
for i in range(wm.size): ax2.axvline(wm[i],color='r')
ax2.set_xlim(4490,4600)
ax2.set_ylim(0,1000)
l3, = ax3.plot(quad_0*(px-2032.0)**2+stretch_0*px+shift_0,fx/10.0,'b')
ax3.plot(wm,fm/2.0,'ro')
for i in range(wm.size): ax3.axvline(wm[i],color='r')
ax3.set_xlim(4900,5100)
ax3.set_ylim(0,1500)
def update(val):
l.set_xdata(quad_0*(px-2032.0)**2+(slide_stretch.val+fn_slide_stretch.val)*px+(slide_shift.val+fn_slide_shift.val))
l2.set_xdata(quad_0*(px-2032.0)**2+(slide_stretch.val+fn_slide_stretch.val)*px+(slide_shift.val+fn_slide_shift.val))
l3.set_xdata(quad_0*(px-2032.0)**2+(slide_stretch.val+fn_slide_stretch.val)*px+(slide_shift.val+fn_slide_shift.val))
fig.canvas.draw_idle()
s.canvas.draw_idle()
def fineupdate(val):
l.set_xdata(quad_0*(px-2032.0)**2+(slide_stretch.val+fn_slide_stretch.val)*px+(slide_shift.val+fn_slide_shift.val))
l2.set_xdata(quad_0*(px-2032.0)**2+(slide_stretch.val+fn_slide_stretch.val)*px+(slide_shift.val+fn_slide_shift.val))
l3.set_xdata(quad_0*(px-2032.0)**2+(slide_stretch.val+fn_slide_stretch.val)*px+(slide_shift.val+fn_slide_shift.val))
#slide_stretch.val = slide_stretch.val + fn_slide_stretch.val
#slide_shift.val = slide_shift.val + fn_slide_shift.val
fig.canvas.draw_idle()
s.canvas.draw_idle()
def close_plots(event):
plt.close()
plt.close()
slide_stretch.on_changed(update)
slide_shift.on_changed(update)
fn_slide_stretch.on_changed(fineupdate)
fn_slide_shift.on_changed(fineupdate)
close_button.on_clicked(close_plots)
plt.show()
shift_est = slide_shift.val+fn_slide_shift.val
stretch_est = slide_stretch.val+fn_slide_stretch.val
print 'quad_0:',quad_0,'stretch_0:',stretch_est,'shift_0:',shift_est
return (quad_0*(px-2032.0)**2+px*stretch_est+shift_est,fx,stretch_est,shift_est)
class LineBrowser:
def __init__(self,fig,ax,est_f,wm,fm,px,xslit,vlines,fline,xspectra,yspectra,peaks,peaks_w,peaks_p,peaks_h,line_matches,cal_states):
#load calibration files
self.wm_Xe,self.fm_Xe = np.loadtxt('osmos_Xenon.dat',usecols=(0,2),unpack=True)
self.wm_Xe = air_to_vacuum(self.wm_Xe)
self.wm_Ar,self.fm_Ar = np.loadtxt('osmos_Argon.dat',usecols=(0,2),unpack=True)
self.wm_Ar = air_to_vacuum(self.wm_Ar)
self.wm_HgNe,self.fm_HgNe = np.loadtxt('osmos_HgNe.dat',usecols=(0,2),unpack=True)
self.wm_HgNe = air_to_vacuum(self.wm_HgNe)
self.wm_Ne,self.fm_Ne = np.loadtxt('osmos_Ne.dat',usecols=(0,2),unpack=True)
self.wm_Ne = air_to_vacuum(self.wm_Ne)
#slider objects
fn_axquad = plt.axes([0.25,0.03,0.65,0.03])
fn_axstretch = plt.axes([0.25,0.07,0.65,0.03])
fn_axshift = plt.axes([0.25,0.12,0.65,0.03])
self.fn_slide_stretch = Slider(fn_axstretch, 'Fine Stretch',-0.05,0.05,valinit=0.0)
self.fn_slide_shift = Slider(fn_axshift,'Fine Shift',-200.0,200.0,valinit=0.0)
self.fn_slide_quad = Slider(fn_axquad,'Fine Quad',-4e-5,4e-5,valinit=0.0)
self.fn_slide_stretch.on_changed(self.slider_update)
self.fn_slide_shift.on_changed(self.slider_update)
self.fn_slide_quad.on_changed(self.slider_update)
self.lastind = 0
self.j = 0
self.est_f = est_f
self.px = px
self.fig = fig
self.ax = ax
self.wm = wm
self.vlines = vlines
self.fline = fline
self.xspectra = xspectra
self.yspectra = yspectra
self.peaks = peaks
self.peaks_w = peaks_w
self.peaks_p = peaks_p
self.peaks_h = peaks_h
self.line_matches = line_matches
self.cal_states = cal_states
self.mindist_el, = np.where(self.peaks_w == self.line_matches['peaks_w'][self.j])
#self.text = ax.text(0.05, 0.95, 'Pick red reference line',transform=ax.transAxes, va='top')
#self.selected, = ax.plot([xs[0]], [ys[0]], 'o', ms=12, alpha=0.4,color='yellow', visible=False)
self.selected = self.ax.axvline(self.line_matches['lines'][self.j],lw=3,alpha=0.5,color='red',ymin=0.5)
self.selected_peak, = self.ax.plot(self.line_matches['peaks_w'][self.j],self.line_matches['peaks_h'][self.j],'o',mec='orange',markersize=8,alpha=0.7,mfc='None',mew=3,visible=True)
self.selected_peak_line = self.ax.axvline(self.line_matches['lines'][self.j],color='cyan',lw=4,alpha=0.3,ymax=0.5,visible=True)
self.reset_lims()
def slider_update(self,val):
#update new wavelength spacing
self.xspectra = self.est_f[0]*(self.px)**5 + self.est_f[1]*(self.px)**4 + self.est_f[2]*(self.px)**3 + (self.est_f[3]+self.fn_slide_quad.val)*(self.px)**2+(self.est_f[4]+self.fn_slide_stretch.val)*(self.px)+(self.est_f[5]+self.fn_slide_shift.val)
self.fline.set_xdata(self.xspectra)
self.peaks_w = self.xspectra[self.peaks]
for k in range(self.wm[self.j:].size):
kj = k + self.j
self.line_matches['peaks_p'][kj] = self.peaks_p[np.argsort(np.abs(self.wm[kj]-self.peaks_w))][0] #closest peak (in pixels)
self.line_matches['peaks_w'][kj] = self.peaks_w[np.argsort(np.abs(self.wm[kj]-self.peaks_w))][0] #closest peak (in wavelength)
self.line_matches['peaks_h'][kj] = self.peaks_h[np.argsort(np.abs(self.wm[kj]-self.peaks_w))][0] #closest peak (height)
self.mindist_el, = np.where(self.peaks_w == self.line_matches['peaks_w'][self.j])
self.mindist_el = self.mindist_el[0]
self.update_circle()
#self.fig.canvas.draw()
self.update_current()
def update_current(self):
if self.j >= len(self.line_matches['peaks_w']):
print 'done with plot'
plt.close()
return
self.selected_peak.set_xdata(self.line_matches['peaks_w'][self.j])
self.selected_peak.set_ydata(self.line_matches['peaks_h'][self.j])
self.selected.set_xdata(self.line_matches['lines'][self.j])
self.selected_peak_line.set_xdata(self.line_matches['lines'][self.j])
self.mindist_el, = np.where(self.peaks_w == self.line_matches['peaks_w'][self.j])
self.mindist_el = self.mindist_el[0]
xlim = self.ax.xaxis.get_view_interval()
ylim = self.ax.yaxis.get_view_interval()
if self.line_matches['lines'][self.j] > xlim[1]:
self.reset_lims()
self.fig.canvas.draw()
def reset_lims(self):
self.ax.set_xlim(self.line_matches['peaks_w'][self.j] - 100, self.line_matches['peaks_w'][self.j] + 500.0)
xlims = self.ax.xaxis.get_view_interval()
y_in = self.yspectra[np.where((self.xspectra>xlims[0])&(self.xspectra<xlims[1]))]
self.ax.set_ylim(top=np.max(y_in)*1.1)
def onpress(self, event):
if event.key not in ('n','m','j','b'): return
if event.key=='n':
self.replace()
if event.key=='m':
self.replace()
if event.key=='j':
self.delete()
if event.key=='b':
self.back_line()
return
def onclick(self, event):
if event.inaxes == self.ax:
if event.button == 1:
# the click locations
x = event.xdata
y = event.ydata
self.mindist_el = np.argsort(np.abs(self.peaks_w-x))[0]
self.update_circle()
def update_circle(self):
self.selected_peak.set_xdata([self.peaks_w[self.mindist_el]])
self.selected_peak.set_ydata([self.peaks_h[self.mindist_el]])
self.fig.canvas.draw()
def replace(self):
self.line_matches['peaks_p'][self.j] = self.peaks_p[self.mindist_el]
self.line_matches['peaks_w'][self.j] = self.peaks_w[self.mindist_el]
self.line_matches['peaks_h'][self.j] = self.peaks_h[self.mindist_el]
self.next_line()
return
def back_line(self):
if self.j >= 1:
self.j -= 1
self.slider_update(1.0)
#self.update_current()
else: return
def next_go(self,event):
self.next_line()
def next_line(self):
self.j += 1
self.update_current()
def finish(self,event):
self.line_matches['peaks_p'] = self.line_matches['peaks_p'][:self.j]
self.line_matches['peaks_w'] = self.line_matches['peaks_w'][:self.j]
self.line_matches['peaks_h'] = self.line_matches['peaks_h'][:self.j]
self.line_matches['lines'] = self.line_matches['lines'][:self.j]
print 'FINISHED GALAXY CALIBRATION'
plt.close()
return
def set_calib_lines(self,label):
self.cal_states[label] = not self.cal_states[label]
xl = self.ax.get_xlim()
yl = self.ax.get_ylim()
#self.ax.cla()
self.wm = []
self.fm = []
for vl in self.vlines:
self.ax.lines.remove(vl)
self.vlines = []
if self.cal_states['Xe']:
self.wm.extend(self.wm_Xe)
self.fm.extend(self.fm_Xe)
if self.cal_states['Ar']:
self.wm.extend(self.wm_Ar)
self.fm.extend(self.fm_Ar)
if self.cal_states['HgNe']:
self.wm.extend(self.wm_HgNe)
self.fm.extend(self.fm_HgNe)
if self.cal_states['Ne']:
self.wm.extend(self.wm_Ne)
self.fm.extend(self.fm_Ne)
self.wm = np.array(self.wm)
self.fm = np.array(self.fm)
for j in range(self.wm.size):
self.vlines.append(self.ax.axvline(self.wm[j],color='r'))
#self.line, = self.ax.plot(np.array(self.wm),np.array(self.fm)/2.0,'ro',picker=5)# 5 points tolerance
#self.selected = self.ax.axvline(self.wm[0],lw=2,alpha=0.7,color='red', visible=False)
#self.selected_peak, = self.ax.plot(np.zeros(1),np.zeros(1),'bo',markersize=4,alpha=0.6,visible=False)
#self.fline, = self.ax.plot(self.xspectra,self.yspectra,'b',picker=5)
self.ax.set_xlim(xl)
self.ax.set_ylim(yl)
self.fig.canvas.draw()
def delete_b(self,event):
self.delete()
def replace_b(self,event):
self.replace()
def delete(self):
self.line_matches['lines'].pop(self.j)
self.line_matches['peaks_p'].pop(self.j)
self.line_matches['peaks_w'].pop(self.j)
self.line_matches['peaks_h'].pop(self.j)
self.wm = np.delete(self.wm,self.j)
self.update_current()
return
if __name__ == '__main__':
from astropy.io import fits as pyfits
wm,fm = np.loadtxt('osmos_Xenon.dat',usecols=(0,2),unpack=True)
wm = air_to_vacuum(wm)
arcfits = pyfits.open('C4_0199/arcs/arc590813.0001b.fits')
data = arcfits[0].data
xpos = 500.0
xpos2 = 1500.0
p_x = np.arange(0,4064,1)
f_x = np.sum(data[1670:1705,:],axis=0)
stretch_est,shift_est,quad_est = interactive_plot(p_x,f_x,0.70,0.0,0.0,0.0,0.0,0.0,2000)
line_matches = {'lines':[],'peaks':[]}
fig,ax = plt.subplots(1)
plt.subplots_adjust(right=0.8)
for j in range(wm.size):
ax.axvline(wm[j],color='r')
line, = ax.plot(wm,fm/2.0,'ro',picker=5)# 5 points tolerance
fline, = plt.plot(quad_est*(p_x-2000)**2 + stretch_est*(p_x-2000) + shift_est,(f_x[::-1]-f_x.min())/10.0,'b',picker=5)
closeax = plt.axes([0.83, 0.3, 0.15, 0.1])
button = Button(closeax, 'Add Line', hovercolor='0.975')
#rax = plt.axes([0.85, 0.5, 0.1, 0.2])
#radio = RadioButtons(rax, ('Select Line', 'Select Peak'))
browser = LineBrowser(fig,ax,line,wm,p_x,fline,line_matches)
fig.canvas.mpl_connect('pick_event', browser.onpick)
fig.canvas.mpl_connect('key_press_event',browser.onpress)
button.on_clicked(browser.add_line)
#radio.on_clicked(browser.radioset)
plt.show()
params,pcov = curve_fit(polyfour,np.sort(browser.line_matches['peaks']),np.sort(browser.line_matches['lines']),p0=[shift_est,stretch_est,quad_est,1e-8,1e-12,1e-12])
print params
wave,Flux,fifth,fourth,cube,quad,stretch,shift = wavecalibrate(p_x,f_x,1679.1503,0.7122818,2778.431)
#p_x2 = np.arange(0,4064,1) + 1000.0
#wave2,Flux2,cube2,quad2,stretch2,shift2 = wavecalibrate(p_x2,f_x,stretch,shift-(xpos2*stretch-xpos*stretch),quad)