-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRAP_VOC.py
243 lines (213 loc) · 9.99 KB
/
RAP_VOC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# -*- coding:utf-8 -*-
__author__ = 'xuy'
# data=scipy.io.loadmat('RAP/RAP_annotation/RAP_annotation.mat')
##this script extract relevant data from .mat file in RAP dataset
import scipy.io
import numpy as np
# import csv
# import datetime
# from datetime import datetime
from datetime import timedelta
# import os
import pandas as pd
shirt_color={}
def loadmat_and_extract(file, root_dir):
##load the .mat file
# mat = scipy.io.loadmat('./RAP_annotation/RAP_annotation.mat') #we have desired objects in mat now
mat = scipy.io.loadmat(file)
##there are key value pairs in mat of which we want wiki key and its values
# There are totally 7 varibals in RAP_annotation, including imagesname, position, label, partion, attribute_chinese, attribute_eng, attribute_exp.
print(mat.keys())
data = mat['RAP_annotation']
images = data['imagesname']
labels = data['label']
eng_attr = data['attribute_eng']
pos = data['position']
## Extracting required labels only
# 0 -> Gender Pr1
# 1-3 -> Age
# 15-23 -> Upper Body
# 24-29 -> Lower Body
# 35-42 -> attachments/accessories
# 51-54 -> face direction
# 55-62 -> occlusion
# 63-74 -> upper color
# 75-82 -> lower color
## putting wordy attributes in place of 1's in labels
req_labels = labels[0][0].astype(str)
for imgnum in range(0, len(req_labels)):
for lblnum in range(0, len(req_labels[imgnum])):
if req_labels[imgnum][lblnum] == '1':
req_labels[imgnum][lblnum] = eng_attr[0][0][lblnum][0][0]
# for now taking gender, upper body, lower body, face direction, upper color and lower colr
# req_labels2 = np.ndarray((41585,1))
# from set import Set
req_labels2 = []
lbl_idx = [0] + list(range(15, 23 + 1)) + list(range(24, 29 + 1)) + list(range(51, 54 + 1)) + list(
range(63, 74 + 1)) + list(range(75, 82 + 1))
for imgnum in range(0, len(req_labels)):
temp_lbl = []
for i in range(0, 92):
if i == 0 and req_labels[imgnum][i] == '0':
temp_lbl.append("Male")
elif i == 0 and req_labels[imgnum][i] == '2':
temp_lbl.append("Unknown")
elif i in lbl_idx:
temp_lbl.append(req_labels[imgnum][i])
req_labels2.append(np.asarray(temp_lbl).reshape(-1, 1))
# req_labels2 = np.asarray(req_labels2)
img_names = []
for i in range(0, len(images[0][0])):
renamed = str(images[0][0][i][0][0][:-4]).replace('-', '_')
img_names.append(renamed)
# img_names[0][:-4]
##finding size of images
import cv2
# root_dir = "./RAP_dataset/"
print("extracting images from root dir %s to get image sizes" % root_dir)
width = []
height = []
for l in range(0, len(img_names)):
# print(img_names[l])
file_loc = root_dir + str(img_names[l] + ".png")
print(file_loc)
# print(file_loc)
img = cv2.imread(file_loc, 0)
height.append(img.shape[0])
width.append(img.shape[1])
## Finding top right, topleft, bottomright, bottomleft
## fb = fullbody, hs = head-shoulder, ub = upperbody, lb = lowerbody
bbox = list(pos[0][0])
fb_xmin = []
fb_ymin = []
fb_xmax = []
fb_ymax = []
hs_xmin = []
hs_ymin = []
hs_xmax = []
hs_ymax = []
ub_xmin = []
ub_ymin = []
ub_xmax = []
ub_ymax = []
lb_xmin = []
lb_ymin = []
lb_xmax = []
lb_ymax = []
for i in range(0, len(bbox)):
fb_xmin.append(bbox[i][0])
fb_ymin.append(bbox[i][1])
fb_xmax.append(bbox[i][2] + bbox[i][0])
fb_ymax.append(bbox[i][3] + bbox[i][1])
hs_xmin.append(bbox[i][4])
hs_ymin.append(bbox[i][5])
hs_xmax.append(bbox[i][6] + bbox[i][4])
hs_ymax.append(bbox[i][7] + bbox[i][5])
ub_xmin.append(bbox[i][8])
ub_ymin.append(bbox[i][9])
ub_xmax.append(bbox[i][10] + bbox[i][8])
ub_ymax.append(bbox[i][11] + bbox[i][9])
lb_xmin.append(bbox[i][12])
lb_ymin.append(bbox[i][13])
lb_xmax.append(bbox[i][14] + bbox[i][12])
lb_ymax.append(bbox[i][15] + bbox[i][13])
## Saving attribute list
attr = []
for i in lbl_idx:
attr.append(eng_attr[0][0][i][0][0])
data3 = {'labels': attr}
df3 = pd.DataFrame(data=data3, index=lbl_idx)
df3.to_csv("attributes.csv")
## Putting all data in dataframe
data2 = {'images': img_names, 'labels': req_labels2, 'width': width, 'height': height,
'fb_xmin': fb_xmin, 'fb_xmax': fb_xmax, 'fb_ymin': fb_ymin, 'fb_ymax': fb_ymax,
'ub_xmin': ub_xmin, 'ub_xmax': ub_xmax, 'ub_ymin': ub_ymin, 'ub_ymax': ub_ymax,
'hs_xmin': hs_xmin, 'hs_xmax': hs_xmax, 'hs_ymin': hs_ymin, 'hs_ymax': hs_ymax,
'lb_xmin': lb_xmin, 'lb_xmax': lb_xmax, 'lb_ymin': lb_ymin, 'lb_ymax': lb_ymax}
df = pd.DataFrame(data=data2)
return df
def annotate(df):
# df = pd.read_csv(csvfile)
for row in df.itertuples():#将mat文件转化为xml文件
xmlData = open("annotations/" + str(row.images) + ".xml", 'w')
xmlData.write('<?xml version="1.0"?>' + "\n")
xmlData.write('<annotation>' + "\n")
xmlData.write(' ' + '<folder>RAP_dataset/</folder>' + "\n")
xmlData.write(' ' + '<filename>' \
+ str(str(row.images) + '.png') + '</filename>' + "\n")
xmlData.write(' ' + '<size>' + "\n")
xmlData.write(' ' + '<width>' \
+ str(row.width) + '</width>' + "\n")
xmlData.write(' ' + '<height>' \
+ str(row.height) + '</height>' + "\n")
xmlData.write(' ' + '<depth>3</depth>' + "\n")
xmlData.write(' ' + '</size>' + "\n")
for i in range(0, len(row.labels)):
# if row.labels[i] != "0" or row.labels[i] == "['2']":
# if row.labels[i] != "0" or row.labels[i] != "2":
ext_lbl = str(row.labels[i]).replace("[", "").replace("]", "").replace("'", "")
if ext_lbl != "0" or ext_lbl == "2":
xmlData.write(' ' + '<object>' + "\n")
xmlData.write(' ' + '<name>' \
+ str(ext_lbl) + '</name>' + "\n")
xmlData.write(' ' + '<pose>Unknown</pose>' + "\n")
xmlData.write(' ' + '<truncated>0</truncated>' + "\n")
xmlData.write(' ' + '<difficult>0</difficult>' + "\n")
if row.labels[i][0][:2] == 'Ma' or row.labels[i][0][:2] == 'Fe':
xmlData.write(' ' + '<bndbox>' + "\n")
xmlData.write(' ' + '<xmin>' \
+ str(row.fb_xmin) + '</xmin>' + "\n")
xmlData.write(' ' + '<ymin>' \
+ str(row.fb_ymin) + '</ymin>' + "\n")
xmlData.write(' ' + '<xmax>' \
+ str(row.fb_xmax) + '</xmax>' + "\n")
xmlData.write(' ' + '<ymax>' \
+ str(row.fb_ymax) + '</ymax>' + "\n")
xmlData.write(' ' + '</bndbox>' + "\n")
if row.labels[i][0][:2] == 'up' or row.labels[i][0][:2] == 'ub':
if row.labels[i][0][:2] == 'up':
color=row.labels[i][0][3:]
shirt_color[color]=shirt_color.get(color,0)+1
xmlData.write(' ' + '<bndbox>' + "\n")
xmlData.write(' ' + '<xmin>' \
+ str(row.ub_xmin) + '</xmin>' + "\n")
xmlData.write(' ' + '<ymin>' \
+ str(row.ub_ymin) + '</ymin>' + "\n")
xmlData.write(' ' + '<xmax>' \
+ str(row.ub_xmax) + '</xmax>' + "\n")
xmlData.write(' ' + '<ymax>' \
+ str(row.ub_ymax) + '</ymax>' + "\n")
xmlData.write(' ' + '</bndbox>' + "\n")
if row.labels[i][0][:3] == 'low' or row.labels[i][0][:2] == 'lb':
xmlData.write(' ' + '<bndbox>' + "\n")
xmlData.write(' ' + '<xmin>' \
+ str(row.lb_xmin) + '</xmin>' + "\n")
xmlData.write(' ' + '<ymin>' \
+ str(row.lb_ymin) + '</ymin>' + "\n")
xmlData.write(' ' + '<xmax>' \
+ str(row.lb_xmax) + '</xmax>' + "\n")
xmlData.write(' ' + '<ymax>' \
+ str(row.lb_ymax) + '</ymax>' + "\n")
xmlData.write(' ' + '</bndbox>' + "\n")
if row.labels[i][0][:2] == 'fa':
xmlData.write(' ' + '<bndbox>' + "\n")
xmlData.write(' ' + '<xmin>' \
+ str(row.hs_xmin) + '</xmin>' + "\n")
xmlData.write(' ' + '<ymin>' \
+ str(row.hs_ymin) + '</ymin>' + "\n")
xmlData.write(' ' + '<xmax>' \
+ str(row.hs_xmax) + '</xmax>' + "\n")
xmlData.write(' ' + '<ymax>' \
+ str(row.hs_ymax) + '</ymax>' + "\n")
xmlData.write(' ' + '</bndbox>' + "\n")
xmlData.write(' ' + '</object>' + "\n")
xmlData.write('</annotation>' + "\n")
xmlData.close()
file = 'RAP/RAP_annotation/RAP_annotation.mat'
root_dir = 'RAP/RAP_dataset/'
RAP_anno = loadmat_and_extract(file, root_dir)
# RAP_anno.to_csv('RAP_attributes.csv')
annotate(RAP_anno)
for word in shirt_color:
print('{} {}'.format(word,(shirt_color[word])))
# CAM21_2014_02_26_20140226111426_20140226112822_tarid136_frame1728_line1.xml