-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
71 lines (52 loc) · 1.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
from data import TweetStream
from preprocessing import Collate
from model import SkipGram
from torch.utils.data import DataLoader
def accuracy(pred):
pred = (torch.sigmoid(pred) > 0.5).int()
target = torch.LongTensor([1, 0, 0]).to(device)
correct = ((pred == target).sum(dim=1) == 3)
return correct.sum() / len(correct)
ts = TweetStream('C:/Users/gabri/Desktop/biwv/biwv/proccess_tweets.txt')
col = Collate(neg_samples_sum=2)
dataloader = DataLoader(ts, batch_size=64, collate_fn=col)
device = torch.device('cpu')
VOCAB_SIZE = col.vocab.max_size
EMBEDDING_DIM = 100
model = SkipGram(VOCAB_SIZE, EMBEDDING_DIM)
model.to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.5, momentum=0.9)
criterion = torch.nn.BCEWithLogitsLoss()
N_EPOCH = 1
# scheduler = torch.optim.lr_scheduler.OneCycleLR(
# optimizer,
# max_lr=110., # from LR range test plot
# epochs=N_EPOCH,
# steps_per_epoch=len(dataloader)
# )
# for X, y in dataloader:
# # X = batch[0].to(device)
# # y = batch[1].to(device)
# print(X)
# print(y)
# break
losses, accs = [], []
for i in range(1, N_EPOCH+1):
loss_epoch = 0.
acc_epoch = 0.
for batch, target in dataloader: #, position=0, leave=True, desc=f"Epoch {i:03}"):
x = batch.to(device)
target = target.to(device)
model.zero_grad()
pred = model(x)
loss = criterion(pred.float(), target.float())
loss.backward()
optimizer.step()
#scheduler.step()
loss_epoch += loss.item()
acc_epoch += accuracy(pred).item()
losses.append(loss_epoch)
accs.append(acc_epoch)
if i % 1 == 0:
print(f"epoch: {i:03}, loss: {loss_epoch: .3f}, acc: {acc_epoch: .4f}")