-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCayenneLPP_Dec.cpp
259 lines (210 loc) · 6.75 KB
/
CayenneLPP_Dec.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
// CayenneLPP Decoder
//
// Decodes a CayenneLPP binary buffer to JSON format
//
// https://os.mbed.com/teams/myDevicesIoT/code/Cayenne-LPP
// https://github.com/open-source-parsers/jsoncpp
//
// Copyright (c) 2018 Robbert E. Peters. All rights reserved.
// Licensed under the MIT License. See LICENSE file in the project root for full license information.
//
// 29 April 2018 - Initial Version
//
#include "stdafx.h"
#include "CayenneLPP_Dec.h"
#include "../JSONCPP/json.h"
#include "../CayenneLPP/CayenneLPP.h"
/*
Example Usage:
CayenneLPP lpp(200);
lpp.addTemperature(1, 10.4f);
lpp.addTemperature(2, -23.5f);
lpp.addDigitalInput(1, 0);
lpp.addDigitalOutput(1, 1);
lpp.addAnalogInput(1, 1.23f);
lpp.addAnalogOutput(1, 3.45f);
lpp.addLuminosity(1, 20304);
lpp.addPresence(1, 1);
lpp.addTemperature(3, 26.5f);
lpp.addRelativeHumidity(1, 86.6f);
lpp.addAccelerometer(1, 1.234f, -1.234f, 0.567f);
lpp.addBarometricPressure(1, 1023.4f);
lpp.addGyrometer(1, -12.34f, 45.56f, 89.01f);
lpp.addGPS(1, 54.184668f, 7.886778f , -6.3f);
//Decode buffer to JSON
Json::Value root;
if (CayenneLPPDec::ParseLPP(lpp.getBuffer(), lpp.getSize(), root))
{
std::cout << "Found " << root.size() << " entries:\n\n";
std::cout << root.toStyledString();
}
*/
bool CayenneLPPDec::ParseLPP(const uint8_t *pBuffer, size_t Len, Json::Value &root)
{
int iIndex = 0;
while (Len > 2)
{
uint8_t channel = pBuffer[0];
uint8_t lpp_type = pBuffer[1];
if (lpp_type == LPP_DIGITAL_INPUT) {
if (Len < LPP_DIGITAL_INPUT_SIZE)
return false;
root[iIndex]["channel"] = channel;
root[iIndex]["type"] = "digital_input";
root[iIndex++]["value"] = pBuffer[2];
pBuffer += LPP_DIGITAL_INPUT_SIZE;
Len -= LPP_DIGITAL_INPUT_SIZE;
}
else if (lpp_type == LPP_DIGITAL_OUTPUT) {
if (Len < LPP_DIGITAL_OUTPUT_SIZE)
return false;
root[iIndex]["channel"] = channel;
root[iIndex]["type"] = "digital_output";
root[iIndex++]["value"] = pBuffer[2];
pBuffer += LPP_DIGITAL_OUTPUT_SIZE;
Len -= LPP_DIGITAL_OUTPUT_SIZE;
}
else if (lpp_type == LPP_ANALOG_INPUT) {
if (Len < LPP_ANALOG_INPUT_SIZE)
return false;
root[iIndex]["channel"] = channel;
root[iIndex]["type"] = "analog_input";
float value = float((pBuffer[2] << 8) | pBuffer[3]) / 100.0f;
root[iIndex++]["value"] = value;
pBuffer += LPP_ANALOG_INPUT_SIZE;
Len -= LPP_ANALOG_INPUT_SIZE;
}
else if (lpp_type == LPP_ANALOG_OUTPUT) {
if (Len < LPP_ANALOG_OUTPUT_SIZE)
return false;
root[iIndex]["channel"] = channel;
root[iIndex]["type"] = "analog_output";
float value = float((pBuffer[2] << 8) | pBuffer[3]) / 100.0f;
root[iIndex++]["value"] = value;
pBuffer += LPP_ANALOG_OUTPUT_SIZE;
Len -= LPP_ANALOG_OUTPUT_SIZE;
}
else if (lpp_type == LPP_LUMINOSITY) {
if (Len < LPP_LUMINOSITY_SIZE)
return false;
root[iIndex]["channel"] = channel;
root[iIndex]["type"] = "luminosity";
uint16_t value = (pBuffer[2] << 8) | pBuffer[3];
root[iIndex++]["value"] = value;
pBuffer += LPP_LUMINOSITY_SIZE;
Len -= LPP_LUMINOSITY_SIZE;
}
else if (lpp_type == LPP_PRESENCE) {
if (Len < LPP_PRESENCE_SIZE)
return false;
root[iIndex]["channel"] = channel;
root[iIndex]["type"] = "presence";
root[iIndex++]["value"] = pBuffer[2];
pBuffer += LPP_PRESENCE_SIZE;
Len -= LPP_PRESENCE_SIZE;
}
else if (lpp_type == LPP_TEMPERATURE) {
if (Len < LPP_TEMPERATURE_SIZE)
return false;
root[iIndex]["channel"] = channel;
root[iIndex]["type"] = "temp";
float value = float(int16_t((pBuffer[2] << 8) | pBuffer[3])) / 10.0f;
root[iIndex++]["value"] = value;
pBuffer += LPP_TEMPERATURE_SIZE;
Len -= LPP_TEMPERATURE_SIZE;
}
else if (lpp_type == LPP_RELATIVE_HUMIDITY) {
if (Len < LPP_RELATIVE_HUMIDITY_SIZE)
return false;
root[iIndex]["channel"] = channel;
root[iIndex]["type"] = "humidity";
float value = float(pBuffer[2]) / 2.0f;
root[iIndex++]["value"] = value;
pBuffer += LPP_RELATIVE_HUMIDITY_SIZE;
Len -= LPP_RELATIVE_HUMIDITY_SIZE;
}
else if (lpp_type == LPP_ACCELEROMETER) {
if (Len < LPP_ACCELEROMETER_SIZE)
return false;
root[iIndex]["channel"] = channel;
root[iIndex]["type"] = "accel";
int16_t tvalue = (pBuffer[2] << 8) | pBuffer[3];
float value = float(tvalue) / 1000.0f;
root[iIndex]["X"] = value;
tvalue = (pBuffer[4] << 8) | pBuffer[5];
value = float(tvalue) / 1000.0f;
root[iIndex]["Y"] = value;
tvalue = (pBuffer[6] << 8) | pBuffer[7];
value = float(tvalue) / 1000.0f;
root[iIndex++]["Z"] = value;
pBuffer += LPP_ACCELEROMETER_SIZE;
Len -= LPP_ACCELEROMETER_SIZE;
}
else if (lpp_type == LPP_BAROMETRIC_PRESSURE) {
if (Len < LPP_BAROMETRIC_PRESSURE_SIZE)
return false;
root[iIndex]["channel"] = channel;
root[iIndex]["type"] = "baro";
float value = float(int16_t((pBuffer[2] << 8) | pBuffer[3])) / 10.0f;
root[iIndex++]["value"] = value;
pBuffer += LPP_BAROMETRIC_PRESSURE_SIZE;
Len -= LPP_BAROMETRIC_PRESSURE_SIZE;
}
#ifdef LPP_UNIXTIME
else if (lpp_type == LPP_UNIXTIME) {
if (Len < LPP_UNIXTIME_SIZE)
return false;
root[iIndex]["channel"] = channel;
root[iIndex]["type"] = "unixtime";
uint32_t value = (pBuffer[2] << 24) | (pBuffer[3] << 16) | (pBuffer[4] << 8) | pBuffer[5];
root[iIndex++]["value"] = value;
pBuffer += LPP_UNIXTIME_SIZE;
Len -= LPP_UNIXTIME_SIZE;
}
#endif // LPP_UNIXTIME
else if (lpp_type == LPP_GYROMETER) {
if (Len < LPP_GYROMETER_SIZE)
return false;
root[iIndex]["channel"] = channel;
root[iIndex]["type"] = "gyro";
int16_t tvalue = (pBuffer[2] << 8) | pBuffer[3];
float value = float(tvalue) / 100.0f;
root[iIndex]["X"] = value;
tvalue = (pBuffer[4] << 8) | pBuffer[5];
value = float(tvalue) / 100.0f;
root[iIndex]["Y"] = value;
tvalue = (pBuffer[6] << 8) | pBuffer[7];
value = float(tvalue) / 100.0f;
root[iIndex++]["Z"] = value;
pBuffer += LPP_GYROMETER_SIZE;
Len -= LPP_GYROMETER_SIZE;
}
else if (lpp_type == LPP_GPS) {
if (Len < LPP_GPS_SIZE)
return false;
root[iIndex]["channel"] = channel;
root[iIndex]["type"] = "gps";
int32_t tvalue = (int32_t)(pBuffer[2] << 16) | (pBuffer[3] << 8) | pBuffer[4];
if ((pBuffer[2]&0xF0) == 0xF0)
tvalue |= 0xFF000000;
float value = float(tvalue) / 10000.0f;
root[iIndex]["lat"] = value;
tvalue = (pBuffer[5] << 16) | (pBuffer[6] << 8) | pBuffer[7];
if ((pBuffer[5] & 0xF0) == 0xF0)
tvalue |= 0xFF000000;
value = float(tvalue) / 10000.0f;
root[iIndex]["lon"] = value;
tvalue = (int32_t)((pBuffer[8] << 16) | (pBuffer[9] << 8) | pBuffer[10]);
if ((pBuffer[8] & 0xF0) == 0xF0)
tvalue |= 0xFF000000;
value = float(tvalue) / 100.0f;
root[iIndex++]["alt"] = value;
pBuffer += LPP_GPS_SIZE;
Len -= LPP_GPS_SIZE;
}
else {
return false;
}
}
return (Len==0);
}