-
Notifications
You must be signed in to change notification settings - Fork 5
/
fastcpda.m
210 lines (190 loc) · 8.54 KB
/
fastcpda.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
%% FASTCPDA - Fast corner detection.
%
%% Description
% Fast corner detector based on the chord-to-point distance accumulation
% technique of [AL08,ALFR09], itself derived from the curvature-based approach
% introduced in [HY04,HY08].
%
%% Algorithm
% The original algorithm by [HY04,HY08] works by the following steps:
%
% # extract the edge contours from the edge-map, fill the gaps in the
% contours.
% # compute curvature at a low scale for each contour to retain all
% true corners.
% # all of the curvature local maxima are considered as corner candidates,
% then rounded corners and false corners due to boundary noise and details
% were eliminated.
% # end points of line mode curve were added as corner, if they are not
% close to the above detected corners.
%
% Improvements due to CPDA (Chord-to-Point Distance Accumulation) rely on
% the observation that setting different sigma values based on the curve
% length is rather impractical, since a different set of edges may be
% extracted from the test images and the extracted edges often vary in
% lengths. Therefore, sigma is set to sigma=3 for all curves for the CPDA
% detector. This is different from [AG08] where sigma was set one of three
% values 1, 2 and 3 based on the curve-length.
%
%% Syntax
% [ptcorner,cornermap] = FASTCPDA(I);
% [ptcorner,cornermap] = FASTCPDA(I, 'Property', propertyvalue, ...);
% [ptcorner,cornermap] = FASTCPDA(emap);
% [ptcorner,cornermap] = FASTCPDA(emap, 'Property', propertyvalue, ...);
%
%% Input
% *|V|* : input image (see also variables |'der'| and |'sig'| below) to analyze
% or (binary/logical) map of already detected edges.
%
%% Property [propertyname propertyvalues]
% *|'gap'|* : maximum gap between the successive edge-points, used to fill
% the gaps in the contours; if the gap between the sucessive points is
% more than Gap_size, then they would be in two different edges; default:
% |gap=1| pixel.
%
% *|'end'|* : flag to indicate whether the end-points of a curve are detected
% as corners (|true|) or not; default: |end=false|.
%
% *|'thang'|* : threshold on angle orientation; it denotes the maximum obtuse
% angle that a corner can have when it is detected as a true corner;
% default: |thang=157|;
%
% *|'der'|* : in the case, the input image is to be processed, this optional
% string stores the method used for calculating the edge map: |'matlab'|,
% |'vista'| or |'kovesi'|; default: |der='vista'|.
%
% *|'sig'|* : similarly, this (optional) variable gives standard deviation of
% the Gaussian filter used for smoothing the image and computing the
% curvature; default: |sig=1|.
%
% *|'reduce'|* : logical value or string defining the way the different channels
% of a multispectral image are combined into the output edge map:
%
% * |'igray'| : the input RGB image is converted to a gray image using the
% function |RGB2GRAY|,
% * |'imax'|, |'isum'| : the input image (any dimension) is converted to a
% gray image by taking the sum and the max over the different
% channels resp.,
% * |'gmax'| : gradients are computed for the different channels and their
% local pixelwise max is given as a single input to the edge
% detector;
% * |'eor'| : calculations are made like for a multispectral image (as if
% |reduce=false|), but the final edge map is taken as the logical
% |OR| of the output edge maps of the different channels;
%
% in |true| case, it is set to |'sum'|; default: |reduce=false|, ie. no
% 'combination' is used, a multichannel map is output; this parameter
% is naturally ignored when |I| is a scalar image.
%
%% Outputs
% *|cout|* : |(n,2)| matrix containing the coordinates of the detected corners,
% where |n| is the number of detected corners.
%
% *|cd|* : cpda curvature values of the detected corners.
%
%% References
% [MS98] F. Mokhtarian and R. Suomela: "Robust image corner detection through
% curvature scale space", IEEE Trans. on Pattern Analysis and Machine
% Intelligence, 20(12):1376-1381, 1998
% <http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=735812>
%
% [HY04] X.C. He and N.H.C. Yung: "Curvature scale space corner detector
% with adaptive threshold and dynamic region of support", Proc. ICPR,
% vol. 2, pp. 791-794, 2004.
% <http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1334377>
%
% [HY08] X.C. He and N.H.C. Yung: "Corner detector based on global and
% local curvature properties", Optical Engineering, 47(5):057008, 2008.
% <http://spiedigitallibrary.org/oe/resource/1/opegar/v47/i5/p057008_s1>
%
% [AL08] M. Awrangjeb and G. Lu: "Robust image corner detection based
% on the chord-to-point distance accumulation technique", IEEE Trans.
% on Multimedia, 10(6):1059-1072, 2008.
% <http://www.gscit.monash.edu.au/gscitweb/loid.php?loid=905299&mimetype=application/pdf>
%
% [ALFR09] M. Awrangjeb, G. Lu, C.S. Fraser and M. Ravanbakhsh: "“A Fast
% Corner Detector Based on the Chord-to-Point Distance Accumulation
% Technique", Proc. DICTA, pp. 519-525, 2009.
% <http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5384897>
%
%% Acknowledgement
% This is an adaptation of the original code of [AL08,ALFR09] available at:
% <http://www.mathworks.com/matlabcentral/fileexchange/28207-a-fast-corner-detector-based-on-the-chord-to-point-distance-accumulation-technique>
%
% Part of this code was already from the source code of [HY04,HY08] available at:
% <http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=7652&objectType=file>
%
%% See also
% Related:
% <CORNER.html |CORNER|>,
% <EDGECORNER.html |EDGECORNER|>,
% <SUSANCORNER.html |SUSANCORNER|>,
% <HARRISCORNER.html |HARRISCORNER|>,
% <FASTCORNER.html |FASTCORNER|>,
% <COMPASSEDGE.html |COMPASSEDGE|>,
% <CONGRUENCYEDGE.html |CONGRUENCYEDGE|>.
% Called:
% <FASTCPDA_BASE.html |FASTCPDA_BASE|>,
% <CANNYEDGE_BASE.html |CANNYEDGE_BASE|>.
%% Function implementation
function [ptcorner,cornermap] = fastcpda(V, varargin)
%%
% parsing and checking parameters
error(nargchk(1, 21, nargin, 'struct'));
error(nargoutchk(1, 2, nargout, 'struct'));
% mandatory parameter
if ~(isnumeric(V) || islogical(V))
error('fastcpda:inputerror','numeric or logical matrix required in input');
end
p = createParser('FASTCPDA'); % create an instance of the inputParser class.
% optional parameters
p.addParamValue('thang',157, @(x)x>=0 && x<=180);
p.addParamValue('gap',1, @(x)isscalar(x) && x>=1);
p.addParamValue('end',false,@(x)islogical(x));
% used in case an edge map has to be produced first
p.addParamValue('sig', 1, @(x)isscalar(x) && x>=0.05);
p.addParamValue('der', 'vista', @(x)ischar(x) && ...
any(strcmpi(x,{'matlab','vista','kovesi'})));
p.addParamValue('reduce', false, @(x)islogical(x) || ...
(ischar(x) && any(strcmpi(x,{'igray','imax','isum','gmax','eor'}))));
% parse and validate all input arguments
p.parse(varargin{:});
p = getvarParser(p);
%%
% calculation
if ~islogical(V)
V = cannyedge_base(V, p.sig, p.der, [], p.reduce);
end
[ptcorner, cornermap] = fastcpda_base(V, p.gap, p.thang, p.end);
%%
% display
if p.disp
tmp = V; % to show corners on the input image
for c=1:size(ptcorner,1)
for i=1:size(ptcorner{c},1)
tmp(:,:,c) = mark(tmp(:,:,c),ptcorner{c}(i,1),ptcorner{c}(i,2),3);
end
end
figure, imagesc(tmp), axis image off, title('fast CPDA corner map');
if size(tmp,3) == 1, colormap gray; end
end
end % end of fastcpda
%% Subfunction
%%
% |MARK| - Show corners into the output images or into the edge-image.
%--------------------------------------------------------------------------
function I1 = mark(I, x, y, w)
[M,N,~] = size(I);
I1 = I;
if isa(I,'logical')
I1(max(1,x-floor(w/2)):min(M,x+floor(w/2)),max(1,y-floor(w/2)):min(N,y+floor(w/2)),:) = ...
(I1(max(1,x-floor(w/2)):min(M,x+floor(w/2)),max(1,y-floor(w/2)):min(N,y+floor(w/2)),:)<1);
I1(x-floor(w/2)+1:x+floor(w/2)-1,y-floor(w/2)+1:y+floor(w/2)-1,:) = ...
I(x-floor(w/2)+1:x+floor(w/2)-1,y-floor(w/2)+1:y+floor(w/2)-1,:);
else
I1(max(1,x-floor(w/2)):min(M,x+floor(w/2)),max(1,y-floor(w/2)):min(N,y+floor(w/2)),:) = ...
(I1(max(1,x-floor(w/2)):min(M,x+floor(w/2)),max(1,y-floor(w/2)):min(N,y+floor(w/2)),:)<128)*255;
I1(x-floor(w/2)+1:x+floor(w/2)-1,y-floor(w/2)+1:y+floor(w/2)-1,:) = ...
I(x-floor(w/2)+1:x+floor(w/2)-1,y-floor(w/2)+1:y+floor(w/2)-1,:);
end
end % end of mark