-
Notifications
You must be signed in to change notification settings - Fork 5
/
fuzzrampimpulse_base.m
403 lines (327 loc) · 12.8 KB
/
fuzzrampimpulse_base.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
%% Function implementation
function [SH,TH,pl, pch] = ...
fuzzrampimpulse_base(I, niter, pilot, method, grd, gthres, kern, ...
fac, fE, pctch, trans)
error(nargchk(1, 11, nargin, 'struct'));
error(nargoutchk(1, 4, nargout, 'struct'));
if nargin<11, trans = 'indice';
if nargin<10, pctch = 0.01;
% if nargin<12, crit = 'one'; % check only if assertion is true on single band
if nargin<9, fE = 1; % no correction factor
if nargin<8, fac = 'f0'; % factor used in shifting
if nargin<7, kern = 'leu'; % original weights for computing the indices
if nargin<6, gthres = 0;
if nargin<5, grd = 'sob'; % sobel gradient for estimating the derivatives
if nargin<4, method = 'shift'; % just shift the value, without controlling its extent
if nargin<3, pilot = 'ave';
if nargin<2, niter = 1; end
end
end
end
end
end
end
end
% end
end
end
%% Parsing parameters
if ~isnumeric(I)
error('fuzzrampimpulse_base:errorinput','a matrix is required in input');
end
% check the dimension of the input image:
nbdims = nb_dims(I); % instead of ndims
if nbdims<2 || nbdims>3
error('fuzzrampimpulse_base:inputerror', ...
'matrix or array of matrices are expected as inputs');
end
% number of spectral components
C = size(I,3);
% possibly overwrite
if C~=3 && strcmp(pilot,'int')
warning('fuzzrampimpulse_base:inputparameter',...
'pilot image as intensity implemented only for RGB images');
pilot = 'ave';
end
%% internal parameters (do not modify)
% Initializing variables
pchange = pctch +1;
% We adopt the following index representation for the directed components
% used for the intensity and gradient indices used (matlab indexing)
% --------------- -------------
% | NW | N | NE | | 1 | 4 | 7 |
% --------------- -------------
% | W | | E | => | 2 | 5 | 8 |
% --------------- -------------
% | SW | S | SE | | 3 | 6 | 9 |
% --------------- -------------
direction_indices = struct('east', 8, 'northeast', 7, 'north', 4, ...
'northwest', 1, 'west', 2, 'southwest', 3, ...
'south', 6, 'southeast', 9, 'central', 5); %#ok
%directions = fieldnames(direction_indices);
%ndirections = length(directions);
% note: not used in the following
level_indices = struct( 'L', 1, 'M', 2, 'H', 3);
L = level_indices.('L'); M = level_indices.('M'); H = level_indices.('H');
% Remember: mapping from indexes to subscripts for a 3x3 matrix in matlab
% ------------------- -------------
% | 1,1 | 1,2 | 1,3 | | 1 | 4 | 7 |
% ------------------- -------------
% | 2,1 | 2,2 | 2,3 | => | 2 | 5 | 8 |
% ------------------- -------------
% | 3,1 | 3,2 | 3,3 | | 3 | 6 | 9 |
% ------------------- -------------
% (ii,jj) => ii+3*(jj-1)
%% construct beforehand the predefined local 3x3 kernels defined for each
% different zone and level, and used for the estimation of the gradient and
% intensity indices (used once at the beginning of the code).
% Intensity and gradient masks are built for both zones 1 and 2, and all
% the other zones derived by rotation
switch kern
case 'leu'
matI = local3x3kernel('ker','i0','norm',true);
matG = local3x3kernel('ker','g0','norm',true);
case 'new'
matI = local3x3kernel('ker','i1','norm',true);
matG = local3x3kernel('ker','g1','norm',true);
end
% mote: matI and matG are indexed by [size(x,y),zone,level]
%% Main computation through iterative filtering
% % possibly resize the input matrix
% if interp
% A = upscalexy(I,[2 2],'cubic');
% else
A = I;
% end
% initialize the output matrix
% SH = A;
% dimension of the frame
[X,Y] = size(A(:,:,1));
XY = X * Y; % numel(A(:,:,1));
% index of all pixels in the input image
% pixindex = reshape(1:XY,[X Y]);
% indexes of the border pixels
% pixbord = [1:X, (1:Y-2)*X+1, (2:Y-1)*X, (1+X*(Y-1)):XY]';
% create the 'pilot' for gradient orientation
if C==3 && strcmp(pilot,'bright')
pilot = rgb2gray(A); % pilot will be the brightness image
elseif C>=2
pilot = sum(A,3) / C; % pilot will be the average image
end
% construct the variation sparse matrices measuring the amount of change
% occurring in the image after each of the iterative filtering
deltaI = zeros(XY,C);
dirdeltaI = deltaI;
% index of transition pixels for each step of the iterations
Itrans = cell(niter);
% set the number of estimated gradient
nC = C + (C>1); % ie: ng=1 if Z==1, ng=Z+1 otherwise
G = zeros(X,Y,nC);
pl = A(110, :);
pch = [];
TH = zeros(X,Y);
% proceed iteratively
for iter=1:niter
%% Computation of the directional derivatives through Gaussian smoothing and
% differentiation
% compute the gradient (gy: vertical, gx: horizontal) for each channel
[gy,gx] = grdmask_base(A, grd, 'ij');
% same as computing first: [gx,gy]=grdsmooth(I,sigma,p.der,hsize,'xy');
% and then take the vector orthogonal to the gradient: tmp=gx; gx=gy; gy=-tmp;
gy = -gy;
% note that the output directional derivatives have size [X Y C]
if C>1
% norm channel by channel
G(:,:,1:C) = sqrt(gx.^2 + gy.^2);
% update the value of the gradient to set it to the gradient of
% the average image
gx = sum(gx,3) / C;
gy = sum(gy,3) / C;
end
% Theta = mod(atan2(gy,gx),pi);
Theta = atan2(gy,gx);
figure, imagesc(Theta), colorbar
G(:,:,nC) = mean(G(:,:,1:C),3);
figure, imagesc(rescale(G(:,:,nC))), colormap gray
% find the orientation and the interpolation parameters over the image
[Zones,Omega] = localorientzone(Theta,8);
% compute the compensation factor
S = 1 - (1-sqrt(2.)) * Omega;
%% local estimation of intensity indices
% prior computation of the intensity indices over the different
% spectral components
mI = localorientfeature(A, 'filt', 'mean', ... % 'filt','med'
'Kernel',matI,'Zones',Zones,'Omega',Omega);
% mI = round(mI);
%% local estimation and characterization of ramp/transition pixels
Iramp = maptransition(mI,trans,'const','strong');
figure, imagesc(reshape(Iramp,[X,Y])), colormap gray;
% get rid of flat area:
if gthres > 0
m = max(max(G(:,:,nC)));
else
m=0;
end
Iramp = Iramp & reshape(G(:,:,nC),[XY 1])>m*gthres;
% if no consideration for this condition: Iramp = ones(XY,1);
%figure, imagesc(reshape(Iramp(:,:,1),X,Y)), axis image, colormap gray;
Iramp = find(Iramp);
% proceed only if such pixels have been found
if isempty(Iramp) % this is very improbable
break;
end
%% local estimation of the gradient indices
%mG = zeros(lenght(Iramp), nelevels, Z);
mG = localorientfeature(G,'filt','mean', ...
'Kernel',matG,'Zones',Zones,'Omega',Omega);
% reduce the problem to potential ramp pixels: restrict the set of
% pixels which are examined to pixels on the ramp
mI = mI(Iramp,:,:);
mG = mG(Iramp,:,:);
if strcmp(method,'control')
D = deltaI(Iramp,:);
ID = dirdeltaI(Iramp,:);
else
D = zeros(length(Iramp),C);
ID = [];
end
S = S(Iramp);
% extraction of transition pixels (located on a ramp) with the
% criterion GM>GH and GM>GL
iR = mG(:,M,nC)>mG(:,H,nC) & mG(:,M,nC)>mG(:,L,nC);
Itrans{iter} = Iramp(iR); % a subset of the ramp pixels
a = zeros(X,Y); a(Itrans{iter}) = 1;
figure, imagesc(a),colormap gray, title('ramp')
%% Image sharpening
% reshape the input and initialize the output
A = reshape(A,[XY C]);
SH = A;
% extract ramp pixels of type 1: GL <(or<=) GM <= GH
iR = findcase(method, mG(:,H,nC), mG(:,L,nC), mG(:,M,nC));
% note : iR are the coordinates of the pixels considered in the domain
% of the reduced image and Iramp(iR) are the correponding coordinates in
% the domain of the original image
% possibly update those pixels
if ~isempty(iR)
for c=1:C
F = factorvalue(fac, mG(iR,H,c), mG(iR,L,c), mG(iR,M,c));
if strcmp(method,'shift')
R = adjustleu(F, mI(iR,L,c), mI(iR,M,c), S(iR), fE);
SH(Iramp(iR),c) = updateleu(A(Iramp(iR),c), R, -1);
elseif strcmp(method,'control')
R = adjustcontrol(F, mI(iR,L,c), mI(iR,M,c), D(iR,c), ID(iR,c), ...
S(iR), fE);
SH(Iramp(iR),c) = updatecontrol(A(Iramp(iR),c),R,mI(iR,L,c));
end
end
end
% extract ramp pixels of type 2: GH <(or<=) GM <= GL
iR = findcase(method, mG(:,L,nC), mG(:,H,nC), mG(:,M,nC));
if ~isempty(iR)
for c=1:C
F = factorvalue(fac, mG(iR,L,c), mG(iR,H,c), mG(iR,M,c));
if strcmp(method,'shift')
R = adjustleu(F, mI(iR,H,c), mI(iR,M,c), S(iR), fE);
SH(Iramp(iR),c) = updateleu(A(Iramp(iR),c), R, 1);
elseif strcmp(method,'control')
R = adjustcontrol(F, mI(iR,H,c), mI(iR,M,c), D(iR,c), ID(iR,c), ...
S(iR), fE);
SH(Iramp(iR),c) = updatecontrol(A(Iramp(iR),c),R,mI(iR,H,c));
end
end
end
% SH = round(SH);
if niter>1
% updates:
% - matrices delta of intensity variation changes
delta = A(Iramp,:) - SH(Iramp,:);
% - matrices dirdelta of change in intensity variation direction
for c=1:C
dirdeltaI(Iramp(delta(:,c) .* deltaI(Iramp,c) < 0),c) = 1; % sign change
end
deltaI(Iramp,:) = delta;
pchange = sum(abs(delta),2)>eps; % matrix of modified pixels
pchange = sum(pchange(:)) / XY; % pct of change
% note : the first sum: sum(abs(delta),3) operates over the channnel
% account for pixels modified in any of their channel
end
%% Process for update for next loop in the iteration
A = reshape(SH, [X, Y, C]);
pl = [pl ; A(110, :)];
pch = [pch ; pchange];
if pchange <= pctch
pchange
pctch
break;
end
% TH: final ramp after the last iteration
iR = findramp(method, mG(:,L,nC), mG(:,H,nC), mG(:,M,nC));
TH(Iramp(iR)) = TH(Iramp(iR))+1;
end
% final output
SH = A;
end% end of rampsharp
%% adjustment estimation
% -------------------------------------------------------------------------
function iR = findcase(method, G1, G2, Gm)
iR = G1>=Gm & Gm>G2; % standard Leu condition
if ~strcmp(method,'leu')
iR = iR | (G1>=Gm & Gm==G2); % add flexible condition
end
%iR = find(iR);
end
% end of findcase
% -------------------------------------------------------------------------
function iR = findramp(method, G1, G2, Gm)
iR = Gm>=G1 & Gm>=G2; %
%iR = find(iR);
end
% end of findramp
% -------------------------------------------------------------------------
function SH = updatecontrol(A, R, I1)
SH = (A > I1) .* max(A - R, I1) + (A <= I1) .* min(A + R, I1);
end
% end of updatecase
% -------------------------------------------------------------------------
function SH = updateleu(A, R, s)
SH = A + s * R;
end
% end of updateleu
% -------------------------------------------------------------------------
function R = adjustcontrol(F, I1, I2, D, ID, S, fE)
R = 0.5 + fE .* F .* S .* abs(I1-I2);
iR0 = D~=0 & ID==1;
% control the current correction amount by the previous correction amount
if ~isempty(iR0)
R(iR0) = max(min(R(iR0), abs(D(iR0))-1), 0);
end
end
% end of adjustcase
% -------------------------------------------------------------------------
function R = adjustleu(F, I1, I2, S, fE)
R = fE .* S .* abs(I1-I2);
R = (F >= 0.5) .* R + 2. * (F < 0.5) .* F .* R;
end
% end of adjustleu
% -------------------------------------------------------------------------
function F = factorvalue(alpha, G1, G2, Gm)
% compute the correction factor based on the estimated gradient indices
% Gm, Gl (either G1 or G2) and Gh (ibid)
% G1 and G2 stand for Gl or Gh depending on the part of the ramp (lower or
% higher) the pixel belongs to
switch alpha
case {'leu','f0'} % original leu
F = (G1 - Gm) ./ (Gm - G2); % leu-like
case 'f1' % default choice
F = (G2 + Gm) ./ (1 + 2*Gm);
case 'f2'
F = (G1 + G2 - Gm) ./ (1 + 3*Gm);
case 'f3'
F = (G1 + G2) ./ (1 + 2*Gm);
case 'f4'
F = (G1 + Gm) ./ (1 + 2*Gm);
case 'f5'
F = (G1 + G2 + Gm) ./ (1 + 3*Gm);
end
end
% end of factorvalue