-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
208 lines (166 loc) · 6.58 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import numpy as np
from matplotlib.backends.backend_agg import FigureCanvasAgg
from matplotlib.figure import Figure
import matplotlib as mpl
from matplotlib import cm
import cv2
import os
from datetime import datetime
import shutil
HUGE_NUMBER = 1e10
TINY_NUMBER = 1e-6 # float32 only has 7 decimal digits precision
img_HWC2CHW = lambda x: x.permute(2, 0, 1)
gray2rgb = lambda x: x.unsqueeze(2).repeat(1, 1, 3)
to8b = lambda x: (255 * np.clip(x, 0, 1)).astype(np.uint8)
mse2psnr = lambda x: -10. * np.log(x+TINY_NUMBER) / np.log(10.)
def save_current_code(outdir):
now = datetime.now() # current date and time
date_time = now.strftime("%m_%d-%H:%M:%S")
src_dir = '.'
dst_dir = os.path.join(outdir, 'code_{}'.format(date_time))
shutil.copytree(src_dir, dst_dir,
ignore=shutil.ignore_patterns('data*', 'pretrained*', 'logs*', 'out*', '*.png', '*.mp4',
'*__pycache__*', '*.git*', '*.idea*', '*.zip', '*.jpg'))
def img2mse(x, y, mask=None):
'''
:param x: img 1, [(...), 3]
:param y: img 2, [(...), 3]
:param mask: optional, [(...)]
:return: mse score
'''
if mask is None:
return torch.mean((x - y) * (x - y))
else:
return torch.sum((x - y) * (x - y) * mask.unsqueeze(-1)) / (torch.sum(mask) * x.shape[-1] + TINY_NUMBER)
def img2psnr(x, y, mask=None):
return mse2psnr(img2mse(x, y, mask).item())
def cycle(iterable):
while True:
for x in iterable:
yield x
def get_vertical_colorbar(h, vmin, vmax, cmap_name='jet', label=None, cbar_precision=2):
'''
:param w: pixels
:param h: pixels
:param vmin: min value
:param vmax: max value
:param cmap_name:
:param label
:return:
'''
fig = Figure(figsize=(2, 8), dpi=100)
fig.subplots_adjust(right=1.5)
canvas = FigureCanvasAgg(fig)
# Do some plotting.
ax = fig.add_subplot(111)
cmap = cm.get_cmap(cmap_name)
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
tick_cnt = 6
tick_loc = np.linspace(vmin, vmax, tick_cnt)
cb1 = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
ticks=tick_loc,
orientation='vertical')
tick_label = [str(np.round(x, cbar_precision)) for x in tick_loc]
if cbar_precision == 0:
tick_label = [x[:-2] for x in tick_label]
cb1.set_ticklabels(tick_label)
cb1.ax.tick_params(labelsize=18, rotation=0)
if label is not None:
cb1.set_label(label)
fig.tight_layout()
canvas.draw()
s, (width, height) = canvas.print_to_buffer()
im = np.frombuffer(s, np.uint8).reshape((height, width, 4))
im = im[:, :, :3].astype(np.float32) / 255.
if h != im.shape[0]:
w = int(im.shape[1] / im.shape[0] * h)
im = cv2.resize(im, (w, h), interpolation=cv2.INTER_AREA)
return im
def colorize_np(x, cmap_name='jet', mask=None, range=None, append_cbar=False, cbar_in_image=False, cbar_precision=2):
'''
turn a grayscale image into a color image
:param x: input grayscale, [H, W]
:param cmap_name: the colorization method
:param mask: the mask image, [H, W]
:param range: the range for scaling, automatic if None, [min, max]
:param append_cbar: if append the color bar
:param cbar_in_image: put the color bar inside the image to keep the output image the same size as the input image
:return: colorized image, [H, W]
'''
if range is not None:
vmin, vmax = range
elif mask is not None:
# vmin, vmax = np.percentile(x[mask], (2, 100))
vmin = np.min(x[mask][np.nonzero(x[mask])])
vmax = np.max(x[mask])
# vmin = vmin - np.abs(vmin) * 0.01
x[np.logical_not(mask)] = vmin
# print(vmin, vmax)
else:
vmin, vmax = np.percentile(x, (1, 100))
vmax += TINY_NUMBER
x = np.clip(x, vmin, vmax)
x = (x - vmin) / (vmax - vmin)
# x = np.clip(x, 0., 1.)
cmap = cm.get_cmap(cmap_name)
x_new = cmap(x)[:, :, :3]
if mask is not None:
mask = np.float32(mask[:, :, np.newaxis])
x_new = x_new * mask + np.ones_like(x_new) * (1. - mask)
cbar = get_vertical_colorbar(h=x.shape[0], vmin=vmin, vmax=vmax, cmap_name=cmap_name, cbar_precision=cbar_precision)
if append_cbar:
if cbar_in_image:
x_new[:, -cbar.shape[1]:, :] = cbar
else:
x_new = np.concatenate((x_new, np.zeros_like(x_new[:, :5, :]), cbar), axis=1)
return x_new
else:
return x_new
# tensor
def colorize(x, cmap_name='jet', mask=None, range=None, append_cbar=False, cbar_in_image=False):
device = x.device
x = x.cpu().numpy()
if mask is not None:
mask = mask.cpu().numpy() > 0.99
kernel = np.ones((3, 3), np.uint8)
mask = cv2.erode(mask.astype(np.uint8), kernel, iterations=1).astype(bool)
x = colorize_np(x, cmap_name, mask, range, append_cbar, cbar_in_image)
x = torch.from_numpy(x).to(device)
return x
def visualize_depth(depth, mask=None, depth_min=None, depth_max=None, direct=False):
"""Visualize the depth map with colormap.
Rescales the values so that depth_min and depth_max map to 0 and 1,
respectively.
"""
if not direct:
depth = 1.0 / (depth + 1e-6)
invalid_mask = np.logical_or(np.isnan(depth), np.logical_not(np.isfinite(depth)))
if mask is not None:
invalid_mask += np.logical_not(mask)
if depth_min is None:
depth_min = np.percentile(depth[np.logical_not(invalid_mask)], 5)
if depth_max is None:
depth_max = np.percentile(depth[np.logical_not(invalid_mask)], 95)
depth[depth < depth_min] = depth_min
depth[depth > depth_max] = depth_max
depth[invalid_mask] = depth_max
depth_scaled = (depth - depth_min) / (depth_max - depth_min)
depth_scaled_uint8 = np.uint8(depth_scaled * 255)
depth_color = cv2.applyColorMap(depth_scaled_uint8, cv2.COLORMAP_MAGMA)
depth_color[invalid_mask, :] = 0
return depth_color