-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcogstudio.py
784 lines (689 loc) · 39.1 KB
/
cogstudio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
"""
THis is the main file for the gradio web demo. It uses the CogVideoX-2B model to generate videos gradio web demo.
set environment variable OPENAI_API_KEY to use the OpenAI API to enhance the prompt.
Usage:
OpenAI_API_KEY=your_openai_api_key OpenAI_BASE_URL=https://api.openai.com/v1 python inference/gradio_web_demo.py
"""
import math
import os
import random
import threading
import time
import cv2
import tempfile
import imageio_ffmpeg
import gradio as gr
import torch
from PIL import Image
from diffusers import (
CogVideoXPipeline,
CogVideoXDPMScheduler,
CogVideoXVideoToVideoPipeline,
CogVideoXImageToVideoPipeline,
CogVideoXTransformer3DModel,
)
from diffusers.utils import export_to_video, load_video, load_image
from datetime import datetime, timedelta
from diffusers.image_processor import VaeImageProcessor
from openai import OpenAI
import moviepy.editor as mp
import utils
from rife_model import load_rife_model, rife_inference_with_latents
from huggingface_hub import hf_hub_download, snapshot_download
import gc
pipe = None
pipe_image = None
pipe_video = None
device = "cuda" if torch.cuda.is_available() else "cpu"
hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran")
snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
initialized = None
def init(name, image_input, video_input, dtype_str, full_gpu):
if image_input is not None:
# img2vid
init_img2vid(name, dtype_str, full_gpu)
elif video_input is not None:
# vid2vid
init_vid2vid(name, dtype_str, full_gpu)
else:
# txt2vid
init_txt2vid(name, dtype_str, full_gpu)
def init_core(name, dtype_str):
global pipe
torch.cuda.empty_cache()
if dtype_str == "bfloat16":
dtype = torch.bfloat16
elif dtype_str == "float16":
dtype = torch.float16
if pipe == None:
pipe = CogVideoXPipeline.from_pretrained(name, torch_dtype=dtype).to(device)
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
return dtype
def optimize(_pipe, full_gpu):
print('optimizing')
_pipe.vae.enable_slicing()
_pipe.vae.enable_tiling()
if not full_gpu:
_pipe.enable_model_cpu_offload()
_pipe.enable_sequential_cpu_offload()
print('done')
# 1. initialize core pipe
def init_txt2vid(name, dtype_str, full_gpu):
global pipe
dtype = init_core(name, dtype_str)
optimize(pipe, full_gpu)
# 2. initialize vid2vid pipe
def init_vid2vid(name, dtype_str, full_gpu):
global pipe
global pipe_video
dtype = init_core(name, dtype_str)
if pipe_video == None:
pipe_video = CogVideoXVideoToVideoPipeline.from_pretrained(
name,
transformer=pipe.transformer,
vae=pipe.vae,
scheduler=pipe.scheduler,
tokenizer=pipe.tokenizer,
text_encoder=pipe.text_encoder,
torch_dtype=dtype
)#.to(device)
optimize(pipe_video, full_gpu)
# 3. initialize img2vid pipe
def init_img2vid(name, dtype_str, full_gpu):
global pipe
global pipe_image
torch.cuda.empty_cache()
print("init cogvideox pipeline")
if dtype_str == "bfloat16":
dtype = torch.bfloat16
elif dtype_str == "float16":
dtype = torch.float16
core_pipe = CogVideoXPipeline.from_pretrained(name, torch_dtype=dtype).to("cpu")
core_pipe.scheduler = CogVideoXDPMScheduler.from_config(core_pipe.scheduler.config, timestep_spacing="trailing")
if pipe_image == None:
print("init i2v_transformer pipeline")
i2v_transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-5b-I2V", subfolder="transformer", torch_dtype=dtype).to("cpu")
print("init cogvideox image2video pipeline")
pipe_image = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b-I2V",
transformer=i2v_transformer,
vae=core_pipe.vae,
scheduler=core_pipe.scheduler,
tokenizer=core_pipe.tokenizer,
text_encoder=core_pipe.text_encoder,
torch_dtype=dtype
)#.to(device)
print("done")
optimize(pipe_image, full_gpu)
os.makedirs("./output", exist_ok=True)
os.makedirs("./gradio_tmp", exist_ok=True)
sys_prompt = """You are part of a team of bots that creates videos. You work with an assistant bot that will draw anything you say in square brackets.
For example , outputting " a beautiful morning in the woods with the sun peaking through the trees " will trigger your partner bot to output an video of a forest morning , as described. You will be prompted by people looking to create detailed , amazing videos. The way to accomplish this is to take their short prompts and make them extremely detailed and descriptive.
There are a few rules to follow:
You will only ever output a single video description per user request.
When modifications are requested , you should not simply make the description longer . You should refactor the entire description to integrate the suggestions.
Other times the user will not want modifications , but instead want a new image . In this case , you should ignore your previous conversation with the user.
Video descriptions must have the same num of words as examples below. Extra words will be ignored.
"""
def convert_prompt(prompt: str, retry_times: int = 3) -> str:
if not os.environ.get("OPENAI_API_KEY"):
return prompt
client = OpenAI()
text = prompt.strip()
for i in range(retry_times):
response = client.chat.completions.create(
messages=[
{"role": "system", "content": sys_prompt},
{
"role": "user",
"content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : "a girl is on the beach"',
},
{
"role": "assistant",
"content": "A radiant woman stands on a deserted beach, arms outstretched, wearing a beige trench coat, white blouse, light blue jeans, and chic boots, against a backdrop of soft sky and sea. Moments later, she is seen mid-twirl, arms exuberant, with the lighting suggesting dawn or dusk. Then, she runs along the beach, her attire complemented by an off-white scarf and black ankle boots, the tranquil sea behind her. Finally, she holds a paper airplane, her pose reflecting joy and freedom, with the ocean's gentle waves and the sky's soft pastel hues enhancing the serene ambiance.",
},
{
"role": "user",
"content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : "A man jogging on a football field"',
},
{
"role": "assistant",
"content": "A determined man in athletic attire, including a blue long-sleeve shirt, black shorts, and blue socks, jogs around a snow-covered soccer field, showcasing his solitary exercise in a quiet, overcast setting. His long dreadlocks, focused expression, and the serene winter backdrop highlight his dedication to fitness. As he moves, his attire, consisting of a blue sports sweatshirt, black athletic pants, gloves, and sneakers, grips the snowy ground. He is seen running past a chain-link fence enclosing the playground area, with a basketball hoop and children's slide, suggesting a moment of solitary exercise amidst the empty field.",
},
{
"role": "user",
"content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : " A woman is dancing, HD footage, close-up"',
},
{
"role": "assistant",
"content": "A young woman with her hair in an updo and wearing a teal hoodie stands against a light backdrop, initially looking over her shoulder with a contemplative expression. She then confidently makes a subtle dance move, suggesting rhythm and movement. Next, she appears poised and focused, looking directly at the camera. Her expression shifts to one of introspection as she gazes downward slightly. Finally, she dances with confidence, her left hand over her heart, symbolizing a poignant moment, all while dressed in the same teal hoodie against a plain, light-colored background.",
},
{
"role": "user",
"content": f'Create an imaginative video descriptive caption or modify an earlier caption in ENGLISH for the user input: "{text}"',
},
],
model="gpt-4o",
temperature=0.01,
top_p=0.7,
stream=False,
max_tokens=250,
)
if response.choices:
return response.choices[0].message.content
return prompt
def infer(
name: str,
prompt: str,
image_input: str,
video_input: str,
strength: float,
num_inference_steps: int,
guidance_scale: float,
dtype: str,
full_gpu: bool,
seed: int = -1,
progress=gr.Progress(track_tqdm=True),
):
global pipe
global pipe_video
global pipe_image
init(name, image_input, video_input, dtype, full_gpu)
if seed == -1:
seed = random.randint(0, 2**8 - 1)
if video_input is not None:
resized_video_input = resize_video(video_input)
video = load_video(resized_video_input)[:49] # Limit to 49 frames
video_pt = pipe_video(
video=video,
prompt=prompt,
num_inference_steps=num_inference_steps,
num_videos_per_prompt=1,
strength=strength,
use_dynamic_cfg=True,
output_type="pt",
guidance_scale=guidance_scale,
generator=torch.Generator(device="cpu").manual_seed(seed),
).frames
# pipe_video = None
# pipe = None
# gc.collect()
torch.cuda.empty_cache()
elif image_input is not None:
image_input = resize_image(Image.fromarray(image_input), (720, 480))
image = load_image(image_input)
video_pt = pipe_image(
image=image,
prompt=prompt,
num_inference_steps=num_inference_steps,
num_videos_per_prompt=1,
use_dynamic_cfg=True,
output_type="pt",
guidance_scale=guidance_scale,
generator=torch.Generator(device="cpu").manual_seed(seed),
).frames
# pipe_image = None
# pipe = None
# gc.collect()
torch.cuda.empty_cache()
else:
video_pt = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=num_inference_steps,
num_frames=49,
use_dynamic_cfg=True,
output_type="pt",
guidance_scale=guidance_scale,
generator=torch.Generator(device="cpu").manual_seed(seed),
).frames
# pipe = None
# gc.collect()
torch.cuda.empty_cache()
return (video_pt, seed)
def resize_image(img, target_size):
# Unpack the target size
target_width, target_height = target_size
# Resize the image to match the target height while maintaining the aspect ratio
img_ratio = img.width / img.height
new_height = target_height
new_width = int(new_height * img_ratio)
# Resize the image
resized_img = img.resize((new_width, new_height), Image.ANTIALIAS)
# Create a black background with the target size
background = Image.new("RGB", target_size, (0, 0, 0))
# Calculate the position to paste the image (centered horizontally)
x_offset = (target_width - new_width) // 2
y_offset = 0 # No offset for vertical since we match height
# Paste the resized image onto the black background
background.paste(resized_img, (x_offset, y_offset))
return background
def resize_video(input_path, target_size=(720, 480)):
# Load the video clip
clip = mp.VideoFileClip(input_path)
# Remove audio
clip = clip.without_audio()
# Calculate the scaling factor
width_ratio = target_size[0] / clip.w
height_ratio = target_size[1] / clip.h
scale_factor = min(width_ratio, height_ratio)
# Resize the clip
resized_clip = clip.resize(scale_factor)
# If the resized clip is smaller than the target size, pad it
if resized_clip.w < target_size[0] or resized_clip.h < target_size[1]:
resized_clip = resized_clip.on_color(
size=target_size,
color=(0, 0, 0), # Black padding
pos='center'
)
# Save to a temporary file
input_dir = os.path.dirname(input_path)
temp_output = os.path.join(input_dir, "temp_video.mp4")
resized_clip.write_videofile(temp_output, fps=8)
# Close the clips
clip.close()
resized_clip.close()
return temp_output
def save_video(tensor):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
video_path = f"./output/{timestamp}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
export_to_video(tensor, video_path)
return video_path
def convert_to_gif(video_path):
clip = mp.VideoFileClip(video_path)
clip = clip.set_fps(8)
clip = clip.resize(height=240)
gif_path = video_path.replace(".mp4", ".gif")
clip.write_gif(gif_path, fps=8)
return gif_path
def delete_old_files():
while True:
now = datetime.now()
cutoff = now - timedelta(minutes=10)
directories = ["./output", "./gradio_tmp"]
for directory in directories:
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
if os.path.isfile(file_path):
file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
if file_mtime < cutoff:
os.remove(file_path)
time.sleep(600)
#threading.Thread(target=delete_old_files, daemon=True).start()
css="""
.info{ padding: 15px; font-weight: bold; background: rgba(0, 0, 0, 0.04); }
"""
with gr.Blocks(css=css) as demo:
# gr.Markdown("""
# <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
# CogVideoX-2B Huggingface Space🤗
# </div>
# <div style="text-align: center;">
# <a href="https://huggingface.co/THUDM/CogVideoX-2B">🤗 2B Model Hub</a> |
# <a href="https://github.com/THUDM/CogVideo">🌐 Github</a> |
# <a href="https://arxiv.org/pdf/2408.06072">📜 arxiv </a>
# </div>
#
# <div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
# ⚠️ This demo is for academic research and experiential use only.
# Users should strictly adhere to local laws and ethics.
# </div>
# """)
with gr.Tabs(selected=0) as tabs:
with gr.TabItem("text-to-video", id=0):
gr.HTML("<div class='info'>Generate a video from a prompt</div>")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt (Less than 200 Words. The more detailed the better.)", placeholder="Enter your prompt here", lines=5)
image = gr.Image(visible=False)
video = gr.Video(visible=False)
strength = gr.Number(value=0.8, minimum=0.1, maximum=1.0, step=0.01, label="Strength", visible=False)
with gr.Row():
gr.Markdown(
"✨ To enhance the prompt, either set the OPENAI_API_KEY variable from the Configure menu (if you have an OpenAI API key), or just use chatgpt to enhance the prompt manually (Recommended)",
)
enhance_button = gr.Button("✨ Enhance Prompt(Optional)")
with gr.Row():
model_choice = gr.Dropdown(["THUDM/CogVideoX-2b", "THUDM/CogVideoX-5b"], value="THUDM/CogVideoX-2b", label="Model")
with gr.Row():
num_inference_steps = gr.Number(label="Inference Steps", value=50)
guidance_scale = gr.Number(label="Guidance Scale", value=6.0)
with gr.Row():
dtype_choice = gr.Radio(["bfloat16", "float16"], label="dtype (older machines may not support bfloat16. try float16 if bfloat16 doesn't work)", value="bfloat16")
with gr.Row():
seed_param = gr.Number(
label="Inference Seed (Enter a positive number, -1 for random)", value=-1
)
with gr.Row():
enable_scale = gr.Checkbox(label="Super-Resolution (720 × 480 -> 2880 × 1920)", value=False)
enable_rife = gr.Checkbox(label="Frame Interpolation (8fps -> 16fps)", value=False)
full_gpu = gr.Checkbox(label="Don't use CPU offload", info="If you have a lot of GPU VRAM, check this option for faster generation", value=False)
generate_button = gr.Button("🎬 Generate Video")
with gr.Column():
video_output = gr.Video(label="CogVideoX Generate Video", width=720, height=480)
with gr.Row():
download_video_button = gr.File(label="📥 Download Video", visible=False)
download_gif_button = gr.File(label="📥 Download GIF", visible=False)
seed_text = gr.Number(label="Seed used for generation", visible=False)
send_to_vid2vid_button = gr.Button("Send to video-to-video", visible=False)
send_to_extendvid_button = gr.Button("Send to extend-video", visible=False)
gr.Markdown("""
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
<div style="text-align: center; font-size: 24px; font-weight: bold; margin-bottom: 20px;">
Demo Videos with 50 Inference Steps and 6.0 Guidance Scale.
</div>
<tr>
<td style="width: 25%; vertical-align: top; font-size: 0.8em;">
<p>A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/ea3af39a-3160-4999-90ec-2f7863c5b0e9" width="100%" controls autoplay></video>
</td>
<td style="width: 25%; vertical-align: top; font-size: 0.8em;">
<p>The camera follows behind a white vintage SUV with a black roof rack as it speeds up a steep dirt road surrounded by pine trees on a steep mountain slope, dust kicks up from its tires, the sunlight shines on the SUV as it speeds along the dirt road, casting a warm glow over the scene. The dirt road curves gently into the distance, with no other cars or vehicles in sight. The trees on either side of the road are redwoods, with patches of greenery scattered throughout. The car is seen from the rear following the curve with ease, making it seem as if it is on a rugged drive through the rugged terrain. The dirt road itself is surrounded by steep hills and mountains, with a clear blue sky above with wispy clouds.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/9de41efd-d4d1-4095-aeda-246dd834e91d" width="100%" controls autoplay></video>
</td>
</tr>
<tr>
<td style="width: 25%; vertical-align: top; font-size: 0.8em;">
<p>A street artist, clad in a worn-out denim jacket and a colorful bandana, stands before a vast concrete wall in the heart, holding a can of spray paint, spray-painting a colorful bird on a mottled wall.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/941d6661-6a8d-4a1b-b912-59606f0b2841" width="100%" controls autoplay></video>
</td>
<td style="width: 25%; vertical-align: top; font-size: 0.8em;">
<p>In the haunting backdrop of a war-torn city, where ruins and crumbled walls tell a story of devastation, a poignant close-up frames a young girl. Her face is smudged with ash, a silent testament to the chaos around her. Her eyes glistening with a mix of sorrow and resilience, capturing the raw emotion of a world that has lost its innocence to the ravages of conflict.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/938529c4-91ae-4f60-b96b-3c3947fa63cb" width="100%" controls autoplay></video>
</td>
</tr>
</table>
""")
with gr.TabItem("video-to-video", id=1):
gr.HTML("<div class='info'>Transform a video with a prompt</div>")
with gr.Row():
with gr.Column():
image2 = gr.Image(visible=False)
video2 = gr.Video(label="Driving Video")
full_gpu2 = gr.Checkbox(label="Use Full GPU", info="If you have a lot of GPU VRAM, check this option for faster generation", value=False, visible=False)
strength2 = gr.Number(value=0.8, minimum=0.1, maximum=1.0, step=0.01, label="Strength")
prompt2 = gr.Textbox(label="Prompt (Less than 200 Words. The more detailed the better.)", placeholder="Enter your prompt here", lines=5)
with gr.Row():
gr.Markdown(
"✨ To enhance the prompt, either set the OPENAI_API_KEY variable from the Configure menu (if you have an OpenAI API key), or just use chatgpt to enhance the prompt manually (Recommended)",
)
enhance_button2 = gr.Button("✨ Enhance Prompt(Optional)")
with gr.Row():
model_choice2 = gr.Dropdown(["THUDM/CogVideoX-2b", "THUDM/CogVideoX-5b"], value="THUDM/CogVideoX-2b", label="Model")
with gr.Row():
num_inference_steps2 = gr.Number(label="Inference Steps", value=50)
guidance_scale2 = gr.Number(label="Guidance Scale", value=6.0)
with gr.Row():
dtype_choice2 = gr.Radio(["bfloat16", "float16"], label="dtype (older machines may not support bfloat16. try float16 if bfloat16 doesn't work)", value="bfloat16")
with gr.Row():
seed_param2 = gr.Number(
label="Inference Seed (Enter a positive number, -1 for random)", value=-1
)
with gr.Row():
enable_scale2 = gr.Checkbox(label="Super-Resolution (720 × 480 -> 2880 × 1920)", value=False)
enable_rife2 = gr.Checkbox(label="Frame Interpolation (8fps -> 16fps)", value=False)
generate_button2 = gr.Button("🎬 Generate Video")
with gr.Column():
video_output2 = gr.Video(label="CogVideoX Generate Video", width=720, height=480)
with gr.Row():
download_video_button2 = gr.File(label="📥 Download Video", visible=False)
download_gif_button2 = gr.File(label="📥 Download GIF", visible=False)
seed_text2 = gr.Number(label="Seed used for generation", visible=False)
send_to_vid2vid_button2 = gr.Button("Send to video-to-video", visible=False)
send_to_extendvid_button2 = gr.Button("Send to extend-video", visible=False)
with gr.TabItem("image-to-video", id=2):
gr.HTML("<div class='info'>Generate 6 second videos starting from an image</div>")
with gr.Row():
with gr.Column():
image3 = gr.Image(label="Driving Image")
video3 = gr.Video(visible=False)
full_gpu3 = gr.Checkbox(label="Use Full GPU", info="If you have a lot of GPU VRAM, check this option for faster generation", value=False, visible=False)
strength3 = gr.Number(value=0.8, minimum=0.1, maximum=1.0, step=0.01, label="Strength")
prompt3 = gr.Textbox(label="Prompt (Less than 200 Words. The more detailed the better.)", placeholder="Enter your prompt here", lines=5)
with gr.Row():
gr.Markdown(
"✨ To enhance the prompt, either set the OPENAI_API_KEY variable from the Configure menu (if you have an OpenAI API key), or just use chatgpt to enhance the prompt manually (Recommended)",
)
enhance_button3 = gr.Button("✨ Enhance Prompt(Optional)")
with gr.Row():
model_choice3 = gr.Dropdown(["THUDM/CogVideoX-2b", "THUDM/CogVideoX-5b"], value="THUDM/CogVideoX-5b", label="Model", visible=False)
with gr.Row():
num_inference_steps3 = gr.Number(label="Inference Steps", value=50)
guidance_scale3 = gr.Number(label="Guidance Scale", value=6.0)
with gr.Row():
dtype_choice3 = gr.Radio(["bfloat16", "float16"], label="dtype (older machines may not support bfloat16. try float16 if bfloat16 doesn't work)", value="bfloat16")
with gr.Row():
seed_param3 = gr.Number(
label="Inference Seed (Enter a positive number, -1 for random)", value=-1
)
with gr.Row():
enable_scale3 = gr.Checkbox(label="Super-Resolution (720 × 480 -> 2880 × 1920)", value=False)
enable_rife3 = gr.Checkbox(label="Frame Interpolation (8fps -> 16fps)", value=False)
generate_button3 = gr.Button("🎬 Generate Video")
with gr.Column():
video_output3 = gr.Video(label="CogVideoX Generate Video", width=720, height=480)
with gr.Row():
download_video_button3 = gr.File(label="📥 Download Video", visible=False)
download_gif_button3 = gr.File(label="📥 Download GIF", visible=False)
seed_text3 = gr.Number(label="Seed used for generation", visible=False)
send_to_vid2vid_button3 = gr.Button("Send to video-to-video", visible=False)
send_to_extendvid_button3 = gr.Button("Send to extend-video", visible=False)
with gr.TabItem("extend-video", id=3):
gr.HTML("<div class='info'>Take any video and extend 6 seconds</div>")
with gr.Row():
with gr.Column():
with gr.Row():
video_to_extend = gr.Video(label="Video to extend")
with gr.Column():
extend_frame = gr.Image(label="Extrend from the last frame", visible=False)
extend_slider = gr.Slider(label="Select start frame", step=0.01, visible=False)
video4 = gr.Video(visible=False)
full_gpu4 = gr.Checkbox(label="Use Full GPU", info="If you have a lot of GPU VRAM, check this option for faster generation", value=False, visible=False)
strength4 = gr.Number(value=0.8, minimum=0.1, maximum=1.0, step=0.01, label="Strength")
prompt4 = gr.Textbox(label="Prompt (Less than 200 Words. The more detailed the better.)", placeholder="Enter your prompt here", lines=5)
with gr.Row():
gr.Markdown(
"✨ To enhance the prompt, either set the OPENAI_API_KEY variable from the Configure menu (if you have an OpenAI API key), or just use chatgpt to enhance the prompt manually (Recommended)",
)
enhance_button4 = gr.Button("✨ Enhance Prompt(Optional)")
with gr.Row():
model_choice4 = gr.Dropdown(["THUDM/CogVideoX-2b", "THUDM/CogVideoX-5b"], value="THUDM/CogVideoX-5b", label="Model", visible=False)
with gr.Row():
num_inference_steps4 = gr.Number(label="Inference Steps", value=50)
guidance_scale4 = gr.Number(label="Guidance Scale", value=6.0)
with gr.Row():
dtype_choice4 = gr.Radio(["bfloat16", "float16"], label="dtype (older machines may not support bfloat16. try float16 if bfloat16 doesn't work)", value="bfloat16")
with gr.Row():
seed_param4 = gr.Number(
label="Inference Seed (Enter a positive number, -1 for random)", value=-1
)
with gr.Row():
enable_scale4 = gr.Checkbox(label="Super-Resolution (720 × 480 -> 2880 × 1920)", value=False)
enable_rife4 = gr.Checkbox(label="Frame Interpolation (8fps -> 16fps)", value=False)
generate_button4 = gr.Button("🎬 Generate Video")
with gr.Column():
video_output4 = gr.Video(label="CogVideoX Generate Video", width=720, height=480)
with gr.Row():
download_video_button4 = gr.File(label="📥 Download Video", visible=False)
download_gif_button4 = gr.File(label="📥 Download GIF", visible=False)
seed_text4 = gr.Number(label="Seed used for generation", visible=False)
send_to_vid2vid_button4 = gr.Button("Send to video-to-video", visible=False)
send_to_extendvid_button4 = gr.Button("Send to extend-video", visible=False)
def select_frame(
video_to_extend,
):
clip = mp.VideoFileClip(video_to_extend)
print(f"clip duration = {clip.duration}")
ts = clip.duration - 0.01
frame = clip.get_frame(ts)
frame_array = Image.fromarray(frame)
return gr.update(value=frame_array, visible=True), gr.update(value=ts, minimum=0.0, maximum = ts, visible=True)
def select_frame_ts(
video_to_extend,
ts
):
clip = mp.VideoFileClip(video_to_extend)
frame = clip.get_frame(ts)
frame_array = Image.fromarray(frame)
return gr.update(value=frame_array, visible=True)
def extend(
prompt,
video_to_extend,
ts,
image_input,
video_input,
video_strength,
num_inference_steps,
guidance_scale,
model_choice,
dtype,
seed_value,
scale_status,
rife_status,
full_gpu=full_gpu,
progress=gr.Progress(track_tqdm=True)
):
# normal generation
video_path, video_update, gif_update, seed_update, vid2vid_update, extendvid_update = generate(
prompt,
image_input,
video_input,
video_strength,
num_inference_steps,
guidance_scale,
model_choice,
dtype,
seed_value,
scale_status,
rife_status,
full_gpu=full_gpu,
progress=gr.Progress(track_tqdm=True)
)
# stitch video_to_extend with the generated video
print(f"stitch {video_to_extend} {video_path} ts={ts}")
resized_video = resize_video(video_to_extend)
video1 = mp.VideoFileClip(resized_video)
video1 = video1.without_audio()
cut_video1 = video1.subclip(0, ts)
video2 = mp.VideoFileClip(video_path)
extended_video = mp.concatenate_videoclips([cut_video1, video2])
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
extended_video_path = f"./output/{timestamp}.mp4"
extended_video.write_videofile(extended_video_path, codec="libx264")
video_update = gr.update(visible=True, value=extended_video_path)
gif_path = convert_to_gif(extended_video_path)
gif_update = gr.update(visible=True, value=gif_path)
return extended_video_path, video_update, gif_update, seed_update, vid2vid_update, extendvid_update
def generate(
prompt,
image_input,
video_input,
video_strength,
num_inference_steps,
guidance_scale,
model_choice,
dtype,
seed_value,
scale_status,
rife_status,
full_gpu=full_gpu,
progress=gr.Progress(track_tqdm=True)
):
latents, seed = infer(
model_choice,
prompt,
image_input,
video_input,
video_strength,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
dtype=dtype,
full_gpu=full_gpu,
seed=seed_value,
progress=progress,
)
if scale_status:
upscale_model = utils.load_sd_upscale("model_real_esran/RealESRGAN_x4.pth", device)
latents = utils.upscale_batch_and_concatenate(upscale_model, latents, device)
if rife_status:
frame_interpolation_model = load_rife_model("model_rife")
latents = rife_inference_with_latents(frame_interpolation_model, latents)
batch_size = latents.shape[0]
batch_video_frames = []
for batch_idx in range(batch_size):
pt_image = latents[batch_idx]
pt_image = torch.stack([pt_image[i] for i in range(pt_image.shape[0])])
image_np = VaeImageProcessor.pt_to_numpy(pt_image)
image_pil = VaeImageProcessor.numpy_to_pil(image_np)
batch_video_frames.append(image_pil)
video_path = utils.save_video(batch_video_frames[0], fps=math.ceil((len(batch_video_frames[0]) - 1) / 6))
video_update = gr.update(visible=True, value=video_path)
gif_path = convert_to_gif(video_path)
gif_update = gr.update(visible=True, value=gif_path)
seed_update = gr.update(visible=True, value=seed)
vid2vid_update = gr.update(visible=True)
extendvid_update = gr.update(visible=True)
return video_path, video_update, gif_update, seed_update, vid2vid_update, extendvid_update
def enhance_prompt_func(prompt):
return convert_prompt(prompt, retry_times=1)
def send_to_vid2vid(vid):
vid2vid = gr.update(value=vid)
tabs = gr.Tabs(selected=1)
return [vid2vid, tabs]
def send_to_extendvid(vid):
extendvid = gr.update(value=vid)
tabs = gr.Tabs(selected=3)
return [extendvid, tabs]
generate_button.click(
generate,
inputs=[prompt, image, video, strength, num_inference_steps, guidance_scale, model_choice, dtype_choice, seed_param, enable_scale, enable_rife, full_gpu],
outputs=[video_output, download_video_button, download_gif_button, seed_text, send_to_vid2vid_button, send_to_extendvid_button],
)
generate_button2.click(
generate,
inputs=[prompt2, image2, video2, strength2, num_inference_steps2, guidance_scale2, model_choice2, dtype_choice2, seed_param2, enable_scale2, enable_rife2, full_gpu2],
outputs=[video_output2, download_video_button2, download_gif_button2, seed_text2, send_to_vid2vid_button2, send_to_extendvid_button2],
)
generate_button3.click(
generate,
inputs=[prompt3, image3, video3, strength3, num_inference_steps3, guidance_scale3, model_choice3, dtype_choice3, seed_param3, enable_scale3, enable_rife3, full_gpu3],
outputs=[video_output3, download_video_button3, download_gif_button3, seed_text3, send_to_vid2vid_button3, send_to_extendvid_button3],
)
generate_button4.click(
extend,
inputs=[prompt4, video_to_extend, extend_slider, extend_frame, video4, strength4, num_inference_steps4, guidance_scale4, model_choice4, dtype_choice4, seed_param4, enable_scale4, enable_rife4, full_gpu4],
outputs=[video_output4, download_video_button4, download_gif_button4, seed_text4, send_to_vid2vid_button4, send_to_extendvid_button4],
)
video_to_extend.change(
select_frame,
inputs=[video_to_extend],
outputs=[extend_frame, extend_slider]
)
extend_slider.change(
select_frame_ts,
inputs=[video_to_extend, extend_slider],
outputs=[extend_frame]
)
enhance_button.click(enhance_prompt_func, inputs=[prompt], outputs=[prompt])
enhance_button2.click(enhance_prompt_func, inputs=[prompt2], outputs=[prompt2])
enhance_button3.click(enhance_prompt_func, inputs=[prompt3], outputs=[prompt3])
enhance_button4.click(enhance_prompt_func, inputs=[prompt4], outputs=[prompt4])
send_to_vid2vid_button.click(send_to_vid2vid, inputs=[video_output], outputs=[video2, tabs])
send_to_vid2vid_button2.click(send_to_vid2vid, inputs=[video_output2], outputs=[video2, tabs])
send_to_vid2vid_button3.click(send_to_vid2vid, inputs=[video_output3], outputs=[video2, tabs])
send_to_vid2vid_button4.click(send_to_vid2vid, inputs=[video_output4], outputs=[video2, tabs])
send_to_extendvid_button.click(send_to_extendvid, inputs=[video_output], outputs=[video_to_extend, tabs])
send_to_extendvid_button2.click(send_to_extendvid, inputs=[video_output2], outputs=[video_to_extend, tabs])
send_to_extendvid_button3.click(send_to_extendvid, inputs=[video_output3], outputs=[video_to_extend, tabs])
send_to_extendvid_button4.click(send_to_extendvid, inputs=[video_output4], outputs=[video_to_extend, tabs])
if __name__ == "__main__":
demo.launch()