-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
256 lines (208 loc) · 9.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
import glob
import time
import random
import datetime
import argparse
import yaml
import shutil
from yaml.loader import SafeLoader
from easydict import EasyDict
import numpy as np
from tqdm import tqdm
import wandb
from wandb import AlertLevel
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from utils.utils_general import set_random_seeds, running_time
from utils.utils_logging import Logger, ddp_print
from utils.metrics import MetricTracker
from datasets import get_dataset
from models import get_model
from utils import WarmupPolyLR
#################### Read YAML File ####################
parser = argparse.ArgumentParser(description='Train a segmentor')
parser.add_argument('config', help='train config file path')
args = parser.parse_args()
with open(args.config, "r") as f:
opt = yaml.safe_load(f)
#################### Set DDP ####################
dist.init_process_group("nccl", timeout=datetime.timedelta(seconds=18000))
WORLD_SIZE = dist.get_world_size()
RANK = dist.get_rank()
torch.cuda.set_device(RANK)
ddp_print('Number of GPUs : ', WORLD_SIZE)
opt['WORLD_SIZE'] = WORLD_SIZE
#################### Make directory and logger for save Result ####################
t = time.strftime('%Y_%m_%d_%H_%M', time.localtime(time.time()))
SAVE_DIR = os.path.join('./exp', opt['EXP']['EXP_NAME'], t)
opt['EXP']['SAVE_DIR'] = SAVE_DIR
if RANK == 0:
os.makedirs(SAVE_DIR, exist_ok=True)
logger = Logger(opt['EXP']['EXP_NAME'], log_path=SAVE_DIR)
with open(f'{SAVE_DIR}/{opt["EXP"]["EXP_NAME"]}.yaml', 'w') as f:
yaml.dump(opt, f, sort_keys=False)
#################### Set configs as EasyDict ####################
# EasyDict을 여기서 사용한 이유는 yaml을 저장할 easydict으로 저장하면 이상한 것들도 같이 저장돼서...
opt = EasyDict(opt)
if opt.MODEL.IS_RESUME:
assert opt.MODEL.PRETRAINED_PATH, 'we need PRETRINED_PATH for resume training.'
ddp_print('Resume Training....')
#################### Set WandDB ####################
if RANK == 0:
wandb.login()
wandb.init(
project="SpaceNet6-Distillation",
config=opt,
name=f'{opt.EXP.EXP_NAME}_{t}',
dir=SAVE_DIR
)
dist.barrier()
#################### Set random seeds ####################
set_random_seeds(random_seed=40)
#################### Get DataLoader ####################
train_loader, val_loader = get_dataset(opt)
ddp_print('Number of train images: ', len(train_loader.dataset))
ddp_print('Number of val images: ', len(val_loader.dataset))
#################### Get Model ####################
model = get_model(opt)
if RANK == 0:
# save model.py
shutil.copyfile(
f'./models/{opt.MODEL.MODEL_NAME}_model.py',
f'{SAVE_DIR}/{opt.MODEL.MODEL_NAME}_model.py'
)
print(f"Log and Checkpoint will be saved '{SAVE_DIR}' \n")
wandb.watch(model.net.module) # # Wandb Logging
#################### Get Optimizers ####################
params = model.get_params()
optimizer = optim.AdamW(params, lr=opt.OPTIM.LR, weight_decay=opt.OPTIM.WEIGHT_DECAY)
scheduler = WarmupPolyLR(optimizer, power=1, max_iter=opt.INTERVAL.MAX_INTERVAL, warmup_iter=1500, warmup='linear')
interval = 0
if opt.MODEL.IS_RESUME:
ddp_print('Ready for Resume....')
checkpoint = torch.load(opt.MODEL.PRETRAINED_PATH, map_location='cpu')
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
interval = checkpoint['interval']
model.best = checkpoint['metrics'][opt.CHECKPOINT.BEST_METRIC]
dist.barrier()
def main():
timer = running_time(opt.INTERVAL.MAX_INTERVAL)
train_metric = MetricTracker(opt)
interval = 0
loss_avg = 0
generator = iter(train_loader) # Iteration based
ddp_print('Start Loop....')
while interval < opt.INTERVAL.MAX_INTERVAL:
try:
interval += 1
current_lr = model.get_lr(optimizer)
###################### Train ######################
model.train()
data = next(generator)
if isinstance(data['image'], list):
image = [img.to(RANK) for img in data['image']]
# label = [lab.to(RANK) for lab in data['label']]
label = data['label'].to(RANK)
else:
image, label = data['image'].to(RANK), data['label'].to(RANK)
# remove
output = model.forward(image)
optimizer.zero_grad()
loss = model.get_loss(output, label)
loss.backward()
optimizer.step()
scheduler.step()
dist.all_reduce(loss, op=dist.ReduceOp.SUM)
loss_avg += (loss.item() / opt.WORLD_SIZE)
# train_avg = train_metric.get(output, label.cpu(), RANK)
train_avg = train_metric.get(output, label, RANK)
dist.barrier()
###################### Logging ######################
if RANK == 0:
# Wandb Logging
w_log = {
'LR': current_lr,
'Train_loss': loss_avg/interval,
}
w_log.update([(f'Train_{m}', s) for m,s in train_avg.items()])
wandb.log(w_log)
if (((interval % opt.INTERVAL.LOG_INTERVAL) == 0) or (interval == opt.INTERVAL.MAX_INTERVAL)):
timer.end_t = time.time()
interval_time, eta = timer.predict(interval)
msg = (
f'[{interval:6d}/{opt.INTERVAL.MAX_INTERVAL}] | '
f'LR: {current_lr:.8e} | '
f'Loss: {loss_avg/interval:.4f} | '
# f'{" | ".join([f"{m}: {s:.4f}" for m, s in train_avg.items()])} | '
f'{" | ".join([f"{m}: {s:.4f}" for m, s in train_avg.items()])} | '
f'Time: {interval_time} | '
f'ETA: {eta} | '
f'{time.strftime("%m%d %H:%M", time.localtime(time.time()))}'
)
print(msg)
logger.train.info(msg)
timer.start_t = time.time()
###################### Validation ######################
if (((interval % opt.INTERVAL.VAL_INTERVAL) == 0) or (interval == opt.INTERVAL.MAX_INTERVAL)):
dist.barrier()
with torch.no_grad():
model.eval()
if RANK == 0:
tbar = tqdm(val_loader, dynamic_ncols=True, desc="Validation")
else:
tbar = val_loader
val_metric = MetricTracker(opt)
for idx, data in enumerate(tbar, start=1):
if isinstance(data['image'], list):
image = [img.to(RANK) for img in data['image']]
# label = [lab.to(RANK) for lab in data['label']]
label = data['label'].to(RANK)
else:
image, label = data['image'].to(RANK), data['label']
output = model.forward(image)
val_avg = val_metric.get(output, label, RANK)
if RANK == 0:
###################### Logging ######################
msg = (
f'[{interval:6d}/{opt.INTERVAL.MAX_INTERVAL}] | '
f'Validation | '
f'{" | ".join([f"{m}: {s:.4f}" for m, s in val_avg.items()])} | '
)
tbar.set_description(msg)
if idx == len(val_loader):
logger.val.info(msg)
if RANK == 0:
# Wandb Logging
wandb.log({f'Val_{m}':s for m,s in val_avg.items()})
if model.best < val_avg[opt.CHECKPOINT.BEST_METRIC]:
alert = (
f"Metric: {opt.CHECKPOINT.BEST_METRIC} | "
f"{model.best:0.4f} -> {val_avg[opt.CHECKPOINT.BEST_METRIC]:0.4f}"
)
print('alert')
wandb.alert(
title=f'Metric Update {interval}',
text=alert,
level=AlertLevel.INFO)
# Checkpoint
state = {
'interval': interval,
'state_dict': model.net.module.state_dict() if opt.WORLD_SIZE > 1 else model.net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict() if scheduler is not None else None,
'metrics': val_avg
}
model.save_checkpoint(state)
timer.start_t = time.time()
except StopIteration:
train_loader.sampler.set_epoch(interval)
generator = iter(train_loader)
train_metric = MetricTracker(opt) # init train_metric
if __name__ == '__main__':
main()