forked from sbos/AdaGram.jl
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest-all.py
90 lines (82 loc) · 3.14 KB
/
test-all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import numpy as np
import sys
import os
import subprocess
import itertools
from sklearn.metrics import adjusted_rand_score,v_measure_score
def get_pairs(labels):
result = []
for label in np.unique(labels):
ulabels = np.where(labels==label)[0]
for p in itertools.combinations(ulabels, 2):
result.append(p)
return result
def compute_fscore(true, pred):
true_pairs = get_pairs(true)
pred_pairs = get_pairs(pred)
int_size = len(set(true_pairs).intersection(pred_pairs))
p = int_size / float(len(pred_pairs))
r = int_size / float(len(true_pairs))
return 2*p*r/float(p+r)
def read_answers(filename):
with open(filename, 'r') as f:
keys = []
instances = []
senses = []
senses_id = {}
sense_count = 0
for line in f.readlines():
key, instance, sense = line.strip().split(' ')
num = int(instance.split('.')[-1])
keys.append(key)
instances.append(num)
senses.append(sense)
if sense not in senses_id:
senses_id[sense] = sense_count
sense_count += 1
answers = {}
for k,i,s in zip(keys, instances, senses):
if k not in answers:
answers[k] = ([],[])
answers[k][0].append(i)
answers[k][1].append(senses_id[s])
return answers
def compute_metrics(answers, predictions):
aris = []
vscores = []
fscores = []
weights = []
for k in answers.keys():
idx = np.argsort(np.array(answers[k][0]))
true = np.array(answers[k][1])[idx]
pred = np.array(predictions[k][1])
weights.append(pred.shape[0])
if len(np.unique(true)) > 1:
aris.append(adjusted_rand_score(true, pred))
vscores.append(v_measure_score(true, pred))
fscores.append(compute_fscore(true, pred))
# print '%s: ari=%f, vscore=%f, fscore=%f' % (k, aris[-1], vscores[-1], fscores[-1])
aris = np.array(aris)
vscores = np.array(vscores)
fscores = np.array(fscores)
weights = np.array(weights)
print 'number of one-sense words: %d' % (len(vscores) - len(aris))
print 'mean ari: %f' % np.mean(aris)
print 'mean vscore: %f' % np.mean(vscores)
print 'weighted vscore: %f' % np.sum(vscores * (weights / float(np.sum(weights))))
print 'mean fscore: %f' % np.mean(fscores)
print 'weighted fscore: %f' % np.sum(fscores * (weights / float(np.sum(weights))))
return np.mean(aris),np.mean(vscores)
if __name__ == '__main__':
model = sys.argv[1]
datasets = ['semeval-2007', 'semeval-2010']
for dataset in datasets:
subprocess.call('./run.sh benchmark/semeval2010.jl %s 5 < datasets/%s/dataset.txt > __result__.tmp' % (model, dataset), shell=True)
true_answers = read_answers('datasets/%s/key.txt' % dataset)
predictions = read_answers('__result__.tmp')
print('DATASET %s:' % dataset)
compute_metrics(true_answers, predictions)
os.remove('__result__.tmp')
print('\n')
subprocess.call('./run.sh benchmark/test_wwsi.jl %s __result__.tmp' % model, shell=True)
os.remove('__result__.tmp')