-
Notifications
You must be signed in to change notification settings - Fork 31
/
datasets_ws.py
executable file
·405 lines (349 loc) · 23 KB
/
datasets_ws.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import os
import torch
import faiss
import logging
import numpy as np
from glob import glob
from tqdm import tqdm
from PIL import Image
from os.path import join
import torch.utils.data as data
import torchvision.transforms as T
from torch.utils.data.dataset import Subset
from sklearn.neighbors import NearestNeighbors
from torch.utils.data.dataloader import DataLoader
base_transform = T.Compose([
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
def path_to_pil_img(path):
return Image.open(path).convert("RGB")
def collate_fn(batch):
"""Creates mini-batch tensors from the list of tuples (images,
triplets_local_indexes, triplets_global_indexes).
triplets_local_indexes are the indexes referring to each triplet within images.
triplets_global_indexes are the global indexes of each image.
Args:
batch: list of tuple (images, triplets_local_indexes, triplets_global_indexes).
considering each query to have 10 negatives (negs_num_per_query=10):
- images: torch tensor of shape (12, 3, h, w).
- triplets_local_indexes: torch tensor of shape (10, 3).
- triplets_global_indexes: torch tensor of shape (12).
Returns:
images: torch tensor of shape (batch_size*12, 3, h, w).
triplets_local_indexes: torch tensor of shape (batch_size*10, 3).
triplets_global_indexes: torch tensor of shape (batch_size, 12).
"""
images = torch.cat([e[0] for e in batch])
triplets_local_indexes = torch.cat([e[1][None] for e in batch])
triplets_global_indexes = torch.cat([e[2][None] for e in batch])
for i, (local_indexes, global_indexes) in enumerate(zip(triplets_local_indexes, triplets_global_indexes)):
local_indexes += len(global_indexes) * i # Increment local indexes by offset (len(global_indexes) is 12)
return images, torch.cat(tuple(triplets_local_indexes)), triplets_global_indexes
class PCADataset(data.Dataset):
def __init__(self, args, datasets_folder="dataset", dataset_folder="pitts30k/images/train"):
dataset_folder_full_path = join(datasets_folder, dataset_folder)
if not os.path.exists(dataset_folder_full_path):
raise FileNotFoundError(f"Folder {dataset_folder_full_path} does not exist")
self.images_paths = sorted(glob(join(dataset_folder_full_path, "**", "*.jpg"), recursive=True))
def __getitem__(self, index):
return base_transform(path_to_pil_img(self.images_paths[index]))
def __len__(self):
return len(self.images_paths)
class BaseDataset(data.Dataset):
"""Dataset with images from database and queries, used for inference (testing and building cache).
"""
def __init__(self, args, datasets_folder="datasets", dataset_name="pitts30k", split="train"):
super().__init__()
self.args = args
self.dataset_name = dataset_name
self.dataset_folder = join(datasets_folder, dataset_name, "images", split)
if not os.path.exists(self.dataset_folder):
raise FileNotFoundError(f"Folder {self.dataset_folder} does not exist")
self.resize = args.resize
self.test_method = args.test_method
#### Read paths and UTM coordinates for all images.
database_folder = join(self.dataset_folder, "database")
queries_folder = join(self.dataset_folder, "queries")
if not os.path.exists(database_folder):
raise FileNotFoundError(f"Folder {database_folder} does not exist")
if not os.path.exists(queries_folder):
raise FileNotFoundError(f"Folder {queries_folder} does not exist")
self.database_paths = sorted(glob(join(database_folder, "**", "*.jpg"), recursive=True))
self.queries_paths = sorted(glob(join(queries_folder, "**", "*.jpg"), recursive=True))
# The format must be path/to/file/@utm_easting@utm_northing@[email protected]
self.database_utms = np.array([(path.split("@")[1], path.split("@")[2]) for path in self.database_paths]).astype(float)
self.queries_utms = np.array([(path.split("@")[1], path.split("@")[2]) for path in self.queries_paths]).astype(float)
# Find soft_positives_per_query, which are within val_positive_dist_threshold (deafult 25 meters)
knn = NearestNeighbors(n_jobs=-1)
knn.fit(self.database_utms)
self.soft_positives_per_query = knn.radius_neighbors(self.queries_utms,
radius=args.val_positive_dist_threshold,
return_distance=False)
self.images_paths = list(self.database_paths) + list(self.queries_paths)
self.database_num = len(self.database_paths)
self.queries_num = len(self.queries_paths)
def __getitem__(self, index):
img = path_to_pil_img(self.images_paths[index])
img = base_transform(img)
# With database images self.test_method should always be "hard_resize"
if self.test_method == "hard_resize":
# self.test_method=="hard_resize" is the default, resizes all images to the same size.
img = T.functional.resize(img, self.resize)
else:
img = self._test_query_transform(img)
return img, index
def _test_query_transform(self, img):
"""Transform query image according to self.test_method."""
C, H, W = img.shape
if self.test_method == "single_query":
# self.test_method=="single_query" is used when queries have varying sizes, and can't be stacked in a batch.
processed_img = T.functional.resize(img, min(self.resize))
elif self.test_method == "central_crop":
# Take the biggest central crop of size self.resize. Preserves ratio.
scale = max(self.resize[0]/H, self.resize[1]/W)
processed_img = torch.nn.functional.interpolate(img.unsqueeze(0), scale_factor=scale).squeeze(0)
processed_img = T.functional.center_crop(processed_img, self.resize)
assert processed_img.shape[1:] == torch.Size(self.resize), f"{processed_img.shape[1:]} {self.resize}"
elif self.test_method == "five_crops" or self.test_method == 'nearest_crop' or self.test_method == 'maj_voting':
# Get 5 square crops with size==shorter_side (usually 480). Preserves ratio and allows batches.
shorter_side = min(self.resize)
processed_img = T.functional.resize(img, shorter_side)
processed_img = torch.stack(T.functional.five_crop(processed_img, shorter_side))
assert processed_img.shape == torch.Size([5, 3, shorter_side, shorter_side]), \
f"{processed_img.shape} {torch.Size([5, 3, shorter_side, shorter_side])}"
return processed_img
def __len__(self):
return len(self.images_paths)
def __repr__(self):
return f"< {self.__class__.__name__}, {self.dataset_name} - #database: {self.database_num}; #queries: {self.queries_num} >"
def get_positives(self):
return self.soft_positives_per_query
class TripletsDataset(BaseDataset):
"""Dataset used for training, it is used to compute the triplets
with TripletsDataset.compute_triplets() with various mining methods.
If is_inference == True, uses methods of the parent class BaseDataset,
this is used for example when computing the cache, because we compute features
of each image, not triplets.
"""
def __init__(self, args, datasets_folder="datasets", dataset_name="pitts30k", split="train", negs_num_per_query=10):
super().__init__(args, datasets_folder, dataset_name, split)
self.mining = args.mining
self.neg_samples_num = args.neg_samples_num # Number of negatives to randomly sample
self.negs_num_per_query = negs_num_per_query # Number of negatives per query in each batch
if self.mining == "full": # "Full database mining" keeps a cache with last used negatives
self.neg_cache = [np.empty((0,), dtype=np.int32) for _ in range(self.queries_num)]
self.is_inference = False
identity_transform = T.Lambda(lambda x: x)
self.resized_transform = T.Compose([
T.Resize(self.resize) if self.resize is not None else identity_transform,
base_transform
])
self.query_transform = T.Compose([
T.ColorJitter(args.brightness, args.contrast, args.saturation, args.hue),
T.RandomPerspective(args.rand_perspective),
T.RandomResizedCrop(size=self.resize, scale=(1-args.random_resized_crop, 1)),
T.RandomRotation(degrees=args.random_rotation),
self.resized_transform,
])
# Find hard_positives_per_query, which are within train_positives_dist_threshold (10 meters)
knn = NearestNeighbors(n_jobs=-1)
knn.fit(self.database_utms)
self.hard_positives_per_query = list(knn.radius_neighbors(self.queries_utms,
radius=args.train_positives_dist_threshold, # 10 meters
return_distance=False))
#### Some queries might have no positive, we should remove those queries.
queries_without_any_hard_positive = np.where(np.array([len(p) for p in self.hard_positives_per_query], dtype=object) == 0)[0]
if len(queries_without_any_hard_positive) != 0:
logging.info(f"There are {len(queries_without_any_hard_positive)} queries without any positives " +
"within the training set. They won't be considered as they're useless for training.")
# Remove queries without positives
self.hard_positives_per_query = np.delete(self.hard_positives_per_query, queries_without_any_hard_positive)
self.soft_positives_per_query = np.delete(self.soft_positives_per_query, queries_without_any_hard_positive)
self.queries_paths = np.delete(self.queries_paths, queries_without_any_hard_positive)
# Recompute images_paths and queries_num because some queries might have been removed
self.images_paths = list(self.database_paths) + list(self.queries_paths)
self.queries_num = len(self.queries_paths)
# msls_weighted refers to the mining presented in MSLS paper's supplementary.
# Basically, images from uncommon domains are sampled more often. Works only with MSLS dataset.
if self.mining == "msls_weighted":
notes = [p.split("@")[-2] for p in self.queries_paths]
try:
night_indexes = np.where(np.array([n.split("_")[0] == "night" for n in notes]))[0]
sideways_indexes = np.where(np.array([n.split("_")[1] == "sideways" for n in notes]))[0]
except IndexError:
raise RuntimeError("You're using msls_weighted mining but this dataset " +
"does not have night/sideways information. Are you using Mapillary SLS?")
self.weights = np.ones(self.queries_num)
assert len(night_indexes) != 0 and len(sideways_indexes) != 0, \
"There should be night and sideways images for msls_weighted mining, but there are none. Are you using Mapillary SLS?"
self.weights[night_indexes] += self.queries_num / len(night_indexes)
self.weights[sideways_indexes] += self.queries_num / len(sideways_indexes)
self.weights /= self.weights.sum()
logging.info(f"#sideways_indexes [{len(sideways_indexes)}/{self.queries_num}]; " +
"#night_indexes; [{len(night_indexes)}/{self.queries_num}]")
def __getitem__(self, index):
if self.is_inference:
# At inference time return the single image. This is used for caching or computing NetVLAD's clusters
return super().__getitem__(index)
query_index, best_positive_index, neg_indexes = torch.split(self.triplets_global_indexes[index], (1, 1, self.negs_num_per_query))
query = self.query_transform(path_to_pil_img(self.queries_paths[query_index]))
positive = self.resized_transform(path_to_pil_img(self.database_paths[best_positive_index]))
negatives = [self.resized_transform(path_to_pil_img(self.database_paths[i])) for i in neg_indexes]
images = torch.stack((query, positive, *negatives), 0)
triplets_local_indexes = torch.empty((0, 3), dtype=torch.int)
for neg_num in range(len(neg_indexes)):
triplets_local_indexes = torch.cat((triplets_local_indexes, torch.tensor([0, 1, 2 + neg_num]).reshape(1, 3)))
return images, triplets_local_indexes, self.triplets_global_indexes[index]
def __len__(self):
if self.is_inference:
# At inference time return the number of images. This is used for caching or computing NetVLAD's clusters
return super().__len__()
else:
return len(self.triplets_global_indexes)
def compute_triplets(self, args, model):
self.is_inference = True
if self.mining == "full":
self.compute_triplets_full(args, model)
elif self.mining == "partial" or self.mining == "msls_weighted":
self.compute_triplets_partial(args, model)
elif self.mining == "random":
self.compute_triplets_random(args, model)
@staticmethod
def compute_cache(args, model, subset_ds, cache_shape):
"""Compute the cache containing features of images, which is used to
find best positive and hardest negatives."""
subset_dl = DataLoader(dataset=subset_ds, num_workers=args.num_workers,
batch_size=args.infer_batch_size, shuffle=False,
pin_memory=(args.device == "cuda"))
model = model.eval()
# RAMEfficient2DMatrix can be replaced by np.zeros, but using
# RAMEfficient2DMatrix is RAM efficient for full database mining.
cache = RAMEfficient2DMatrix(cache_shape, dtype=np.float32)
with torch.no_grad():
for images, indexes in tqdm(subset_dl, ncols=100):
images = images.to(args.device)
features = model(images)
cache[indexes.numpy()] = features.cpu().numpy()
return cache
def get_query_features(self, query_index, cache):
query_features = cache[query_index + self.database_num]
if query_features is None:
raise RuntimeError(f"For query {self.queries_paths[query_index]} " +
f"with index {query_index} features have not been computed!\n" +
"There might be some bug with caching")
return query_features
def get_best_positive_index(self, args, query_index, cache, query_features):
positives_features = cache[self.hard_positives_per_query[query_index]]
faiss_index = faiss.IndexFlatL2(args.features_dim)
faiss_index.add(positives_features)
# Search the best positive (within 10 meters AND nearest in features space)
_, best_positive_num = faiss_index.search(query_features.reshape(1, -1), 1)
best_positive_index = self.hard_positives_per_query[query_index][best_positive_num[0]].item()
return best_positive_index
def get_hardest_negatives_indexes(self, args, cache, query_features, neg_samples):
neg_features = cache[neg_samples]
faiss_index = faiss.IndexFlatL2(args.features_dim)
faiss_index.add(neg_features)
# Search the 10 nearest negatives (further than 25 meters and nearest in features space)
_, neg_nums = faiss_index.search(query_features.reshape(1, -1), self.negs_num_per_query)
neg_nums = neg_nums.reshape(-1)
neg_indexes = neg_samples[neg_nums].astype(np.int32)
return neg_indexes
def compute_triplets_random(self, args, model):
self.triplets_global_indexes = []
# Take 1000 random queries
sampled_queries_indexes = np.random.choice(self.queries_num, args.cache_refresh_rate, replace=False)
# Take all the positives
positives_indexes = [self.hard_positives_per_query[i] for i in sampled_queries_indexes]
positives_indexes = [p for pos in positives_indexes for p in pos] # Flatten list of lists to a list
positives_indexes = list(np.unique(positives_indexes))
# Compute the cache only for queries and their positives, in order to find the best positive
subset_ds = Subset(self, positives_indexes + list(sampled_queries_indexes + self.database_num))
cache = self.compute_cache(args, model, subset_ds, (len(self), args.features_dim))
# This loop's iterations could be done individually in the __getitem__(). This way is slower but clearer (and yields same results)
for query_index in tqdm(sampled_queries_indexes, ncols=100):
query_features = self.get_query_features(query_index, cache)
best_positive_index = self.get_best_positive_index(args, query_index, cache, query_features)
# Choose some random database images, from those remove the soft_positives, and then take the first 10 images as neg_indexes
soft_positives = self.soft_positives_per_query[query_index]
neg_indexes = np.random.choice(self.database_num, size=self.negs_num_per_query+len(soft_positives), replace=False)
neg_indexes = np.setdiff1d(neg_indexes, soft_positives, assume_unique=True)[:self.negs_num_per_query]
self.triplets_global_indexes.append((query_index, best_positive_index, *neg_indexes))
# self.triplets_global_indexes is a tensor of shape [1000, 12]
self.triplets_global_indexes = torch.tensor(self.triplets_global_indexes)
def compute_triplets_full(self, args, model):
self.triplets_global_indexes = []
# Take 1000 random queries
sampled_queries_indexes = np.random.choice(self.queries_num, args.cache_refresh_rate, replace=False)
# Take all database indexes
database_indexes = list(range(self.database_num))
# Compute features for all images and store them in cache
subset_ds = Subset(self, database_indexes + list(sampled_queries_indexes + self.database_num))
cache = self.compute_cache(args, model, subset_ds, (len(self), args.features_dim))
# This loop's iterations could be done individually in the __getitem__(). This way is slower but clearer (and yields same results)
for query_index in tqdm(sampled_queries_indexes, ncols=100):
query_features = self.get_query_features(query_index, cache)
best_positive_index = self.get_best_positive_index(args, query_index, cache, query_features)
# Choose 1000 random database images (neg_indexes)
neg_indexes = np.random.choice(self.database_num, self.neg_samples_num, replace=False)
# Remove the eventual soft_positives from neg_indexes
soft_positives = self.soft_positives_per_query[query_index]
neg_indexes = np.setdiff1d(neg_indexes, soft_positives, assume_unique=True)
# Concatenate neg_indexes with the previous top 10 negatives (neg_cache)
neg_indexes = np.unique(np.concatenate([self.neg_cache[query_index], neg_indexes]))
# Search the hardest negatives
neg_indexes = self.get_hardest_negatives_indexes(args, cache, query_features, neg_indexes)
# Update nearest negatives in neg_cache
self.neg_cache[query_index] = neg_indexes
self.triplets_global_indexes.append((query_index, best_positive_index, *neg_indexes))
# self.triplets_global_indexes is a tensor of shape [1000, 12]
self.triplets_global_indexes = torch.tensor(self.triplets_global_indexes)
def compute_triplets_partial(self, args, model):
self.triplets_global_indexes = []
# Take 1000 random queries
if self.mining == "partial":
sampled_queries_indexes = np.random.choice(self.queries_num, args.cache_refresh_rate, replace=False)
elif self.mining == "msls_weighted": # Pick night and sideways queries with higher probability
sampled_queries_indexes = np.random.choice(self.queries_num, args.cache_refresh_rate, replace=False, p=self.weights)
# Sample 1000 random database images for the negatives
sampled_database_indexes = np.random.choice(self.database_num, self.neg_samples_num, replace=False)
# Take all the positives
positives_indexes = [self.hard_positives_per_query[i] for i in sampled_queries_indexes]
positives_indexes = [p for pos in positives_indexes for p in pos]
# Merge them into database_indexes and remove duplicates
database_indexes = list(sampled_database_indexes) + positives_indexes
database_indexes = list(np.unique(database_indexes))
subset_ds = Subset(self, database_indexes + list(sampled_queries_indexes + self.database_num))
cache = self.compute_cache(args, model, subset_ds, cache_shape=(len(self), args.features_dim))
# This loop's iterations could be done individually in the __getitem__(). This way is slower but clearer (and yields same results)
for query_index in tqdm(sampled_queries_indexes, ncols=100):
query_features = self.get_query_features(query_index, cache)
best_positive_index = self.get_best_positive_index(args, query_index, cache, query_features)
# Choose the hardest negatives within sampled_database_indexes, ensuring that there are no positives
soft_positives = self.soft_positives_per_query[query_index]
neg_indexes = np.setdiff1d(sampled_database_indexes, soft_positives, assume_unique=True)
# Take all database images that are negatives and are within the sampled database images (aka database_indexes)
neg_indexes = self.get_hardest_negatives_indexes(args, cache, query_features, neg_indexes)
self.triplets_global_indexes.append((query_index, best_positive_index, *neg_indexes))
# self.triplets_global_indexes is a tensor of shape [1000, 12]
self.triplets_global_indexes = torch.tensor(self.triplets_global_indexes)
class RAMEfficient2DMatrix:
"""This class behaves similarly to a numpy.ndarray initialized
with np.zeros(), but is implemented to save RAM when the rows
within the 2D array are sparse. In this case it's needed because
we don't always compute features for each image, just for few of
them"""
def __init__(self, shape, dtype=np.float32):
self.shape = shape
self.dtype = dtype
self.matrix = [None] * shape[0]
def __setitem__(self, indexes, vals):
assert vals.shape[1] == self.shape[1], f"{vals.shape[1]} {self.shape[1]}"
for i, val in zip(indexes, vals):
self.matrix[i] = val.astype(self.dtype, copy=False)
def __getitem__(self, index):
if hasattr(index, "__len__"):
return np.array([self.matrix[i] for i in index])
else:
return self.matrix[index]