Real-time face detection and emotion/gender classification using fer2013/IMDB datasets & Head-pose detection to measure roll, pitch & yaw using a keras CNN model and openCV3
- IMDB gender classification test accuracy: 96%.
- fer2013 emotion classification test accuracy: 66%.
python3 video_emotion_color_demo.py
-
Download the fer2013.tar.gz file from here
-
Move the downloaded file to the datasets directory inside this repository.
-
Untar the file:
tar -xzf fer2013.tar
- Run the train_emotion_classification.py file
python3 train_emotion_classifier.py
-
Download the imdb_crop.tar file from here (It's the 7GB button with the title Download faces only).
-
Move the downloaded file to the datasets directory inside this repository.
-
Untar the file:
tar -xfv imdb_crop.tar
- Run the train_gender_classification.py file
python3 train_gender_classifier.py
Patacchiola, M., & Cangelosi, A. (2017). Head pose estimation in the wild using Convolutional Neural Networks and adaptive gradient methods. Pattern Recognition, http://dx.doi.org/10.1016/j.patcog.2017.06.009.
python3 head_pose_estimation_webcam.py