-
Notifications
You must be signed in to change notification settings - Fork 0
/
classifier_knn.py
72 lines (63 loc) · 2.55 KB
/
classifier_knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from sklearn.metrics import confusion_matrix
from sklearn.externals import joblib
import numpy as np
import os
import csv
from sklearn import svm
from sklearn import cross_validation
from sklearn import linear_model
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
from sklearn import metrics
import cPickle
def prec(num):
return "%0.5f"%num
outfile = open("output/knn_10_output.txt","a")
for dim in [10,20,30,40]:
images=[]
labels=[]
name = str(dim)+"x"+str(dim)+".csv"
with open("csv/"+name,'r') as file:
reader = csv.reader(file,delimiter=',')
for line in file:
labels.append(line[0])
line=line[2:] # Remove the label
image=[int(pixel) for pixel in line.split(',')]
images.append(np.array(image))
clf = KNeighborsClassifier(n_neighbors=10)
outfile.write(str(clf))
print clf
kf = cross_validation.KFold(len(images),n_folds=10,indices=True, shuffle=True, random_state=4)
outfile.write("Kfold on "+str(dim)+"x"+str(dim)+" dataset:\n\n")
print "\nDividing dataset using `Kfold()` -:\n\nThe training dataset has been divided into " + str(len(kf)) + " parts\n"
for train, test in kf:
training_images=[]
training_labels=[]
for i in train:
training_images.append(images[i])
training_labels.append(labels[i])
testing_images=[]
testing_labels=[]
for i in test:
testing_images.append(images[i])
testing_labels.append(labels[i])
clf.fit(training_images,training_labels)
predicted = clf.predict(testing_images)
print prec(clf.score(testing_images, testing_labels))
outfile.write(prec(clf.score(testing_images, testing_labels))+'\n')
# outfile.write(confusion_matrix(testing_labels, predicted))
# print confusion_matrix(testing_labels, predicted)
# outfile.write(metrics.classification_report(testing_labels, predicted))
print "\nDividing dataset using `train_test_split()` -:\n"
outfile.write("\n\ntrain_test_split() on "+str(dim)+"x"+str(dim)+" dataset:\n\n")
training_images, testing_images, training_labels, testing_labels = cross_validation.train_test_split(images,labels, test_size=0.2, random_state=0)
clf = clf.fit(training_images,training_labels)
score = clf.score(testing_images,testing_labels)
joblib.dump(clf, 'models/knn_10_'+str(dim)+'x'+str(dim)+'.pkl')
print "Dumped"
predicted = clf.predict(testing_images)
print prec(score)
outfile.write(prec(clf.score(testing_images, testing_labels))+'\n')
# outfile.write(confusion_matrix(testing_labels, predicted))
# print confusion_matrix(testing_labels, predicted)
outfile.write(metrics.classification_report(testing_labels, predicted))