-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_interface_linear_svm.py
143 lines (116 loc) · 5.32 KB
/
test_interface_linear_svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Takes a set of images as inputs, transforms them using multiple algorithms, then outputs them in CSV format
import sys
import csv
import numpy as np
import cv2
from sklearn.externals import joblib
dim = [10,20,30,40]
with open("test_paths.txt",'r') as file:
lines = file.readlines()
for line in lines:
imagePath, label = line.split()
# if label != 'H':
# continue
print line
frame = cv2.imread(imagePath) # frame is a HxW numpy ndarray of triplets (pixels), where W and H are the dimensions of the input image
frame = cv2.resize(frame,(100,100))
# downsize it to reduce processing time
cv2.imshow("test_image",frame)
converted = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # Convert from RGB to HSV
# tuned settings
lowerBoundary = np.array([0,40,30],dtype="uint8")
upperBoundary = np.array([43,255,254],dtype="uint8")
skinMask = cv2.inRange(converted, lowerBoundary, upperBoundary)
# apply a series of erosions and dilations to the mask using an elliptical kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
skinMask = cv2.erode(skinMask, kernel, iterations = 2)
skinMask = cv2.dilate(skinMask, kernel, iterations = 2)
lowerBoundary = np.array([170,80,30],dtype="uint8")
upperBoundary = np.array([180,255,250],dtype="uint8")
skinMask2 = cv2.inRange(converted, lowerBoundary, upperBoundary)
skinMask = cv2.addWeighted(skinMask,0.5,skinMask2,0.5,0.0)
# blur the mask to help remove noise, then apply the
# mask to the frame
# skinMask = cv2.medianBlur(skinMask, 5)
skin = cv2.bitwise_and(frame, frame, mask = skinMask)
frame = cv2.addWeighted(frame,1.5,skin,-0.5,0)
skin = cv2.bitwise_and(frame, frame, mask = skinMask)
# cv2.imshow("masked",skin) # Everything apart from skin is shown to be black
###############################################################################
###############################################################################
# thresholding code
h,w = skin.shape[:2]
bw_image = cv2.cvtColor(skin, cv2.COLOR_HSV2BGR) # Convert image from HSV to BGR format
bw_image = cv2.cvtColor(skin, cv2.COLOR_BGR2GRAY) # Convert image from BGR to gray format
bw_image = cv2.GaussianBlur(bw_image,(5,5),0) # Highlight the main object
threshold = 1
for i in xrange(h):
for j in xrange(w):
if bw_image[i][j] > threshold:
bw_image[i][j] = 255 #Setting the skin tone to be White
else:
bw_image[i][j] = 0 #else setting it to zero.
###############################################################################
###############################################################################
# Remove the arm by cropping the image and draw contours around the main object
sign_image = bw_image[:h-15,:] # Cropping 15 pixels from the bottom
# Drawing a contour around white color.
# 'contours' is a list of contours found.
# 'hierarchy' is of no use as such.
contours, hierarchy = cv2.findContours(sign_image,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# Finding the contour with the greatest area.
largestContourIndex = 0
if len(contours)<=0:
print "Skipping due to empty contour"
continue
largestContourArea = cv2.contourArea(contours[largestContourIndex])
i=1
while i<len(contours):
if cv2.contourArea(contours[i]) > cv2.contourArea(contours[largestContourIndex]):
largestContourIndex = i
i+=1
# Draw the largest contour in the image.
cv2.drawContours(sign_image,contours,largestContourIndex,(255,255,255),thickness = -1)
x,y,w,h = cv2.boundingRect(contours[largestContourIndex]) # Draw a rectangle around the contour perimeter
# cv2.rectangle(sign_image,(x,y),(x+w,y+h),(255,255,255),0,8)
###############################################################################
#######################################################
### centre the image in its square ###################
squareSide = max(w,h)-1
hHalf = (y+y+h)/2
wHalf = (x+x+w)/2
hMin, hMax = hHalf-squareSide/2, hHalf+squareSide/2
wMin, wMax = wHalf-squareSide/2, wHalf+squareSide/2
if (hMin>=0 and hMin<hMax and wMin>=0 and wMin<wMax):
sign_image = sign_image[hMin:hMax,wMin:wMax]
else:
print "No contour found!! Skipping this image"
continue
#cv2.imshow("centred",sign_image)
########################################################
########################################################
# finally convert the multi-dimensonal array of the
# image to a one-dimensional one and write it to a file
sign_image = cv2.resize(sign_image,(100,100))
flattened_sign_image = sign_image.flatten() # Convert multi-dimensional array to a one-dimensional array
# cv2.imshow("final",sign_image)
for d in dim:
clf = joblib.load('models/linear_SVC/linearSVC_'+str(d)+'x'+str(d)+'.pkl')
temp_image = cv2.resize(sign_image,(d,d)).flatten()
predicted = clf.predict(temp_image)
pred = predicted[0]
print d
print pred
# pred = predicted[0].upper()
pred_path = 'sample/'+str(pred)+'.jpg'
result = cv2.imread(pred_path)
result = cv2.resize(result,(100,100))
cv2.imshow("predicted by "+str(d)+"x"+str(d)+" SVM model: "+str(pred),result)
cv2.waitKey(1000)
#########################################################
if cv2.waitKey(1) & 0xFF == ord("q"): # Wait for a few microseconds and check if `q` is pressed.. if yes, then quit
break
# cleanup the camera and close any open windows
# camera.release()
cv2.destroyAllWindows()
print "The program completed successfully !!"