forked from alu222/SIFDriveNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mainNN_total.py
459 lines (379 loc) · 14.6 KB
/
mainNN_total.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
from image_convnet import *
from audio_convnet import *
from AVENet1 import *
import shutil
import time
import argparse
from torch.optim import *
from torchvision.transforms import *
import warnings
import numpy as np
from sklearn.manifold import TSNE
from matplotlib import pyplot as plt
import json
from utils.mydata_xu import *
import math
from tqdm import tqdm
from prettytable import PrettyTable
choices = ["demo", "main", "test","checkValidation", "getVideoEmbeddings", "generateEmbeddingsForVideoAudio", \
"imageToImageQueries", "crossModalQueries"]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
R = 4
h = 8
class valConfusionMatrix(object):
def __init__(self, num_classes: int, labels: list):
self.matrix = np.zeros((num_classes, num_classes))
self.num_classes = num_classes
self.labels = labels
def update(self, preds, labels):
for p, t in zip(preds, labels):
self.matrix[p, t] += 1
def summary(self):
f1_list=[]
for i in range(self.num_classes):
TP = self.matrix[i, i]
FP = np.sum(self.matrix[i, :]) - TP
FN = np.sum(self.matrix[:, i]) - TP
TN = np.sum(self.matrix) - TP - FP - FN
Precision = round(TP / (TP + FP), 3) if TP + FP != 0 else 0.
Recall = round(TP / (TP + FN), 3) if TP + FN != 0 else 0.
#Specificity = round(TN / (TN + FP), 3) if TN + FP != 0 else 0.
F1=round(2*Precision*Recall / (Precision+Recall), 3) if Precision+Recall != 0 else 0.
f1_list.append(F1)
return f1_list
class testConfusionMatrix(object):
"""
注意,如果显示的图像不全,是matplotlib版本问题
本例程使用matplotlib-3.2.1(windows and ubuntu)绘制正常
需要额外安装prettytable库
"""
def __init__(self, num_classes: int, labels: list):
self.matrix = np.zeros((num_classes, num_classes))
self.num_classes = num_classes
self.labels = labels
def update(self, preds, labels):
for p, t in zip(preds, labels):
self.matrix[p, t] += 1
def summary(self):
# calculate accuracy
sum_TP = 0
for i in range(self.num_classes):
sum_TP += self.matrix[i, i]
acc = sum_TP / np.sum(self.matrix)
print("the model accuracy is ", acc)
# precision, recall, specificity
table = PrettyTable()
table.field_names = ["", "Precision", "Recall", "Specificity","F1"]
for i in range(self.num_classes):
TP = self.matrix[i, i]
FP = np.sum(self.matrix[i, :]) - TP
FN = np.sum(self.matrix[:, i]) - TP
TN = np.sum(self.matrix) - TP - FP - FN
Precision = round(TP / (TP + FP), 3) if TP + FP != 0 else 0.
Recall = round(TP / (TP + FN), 3) if TP + FN != 0 else 0.
Specificity = round(TN / (TN + FP), 3) if TN + FP != 0 else 0.
F1=round(2*Precision*Recall / (Precision+Recall), 3) if Precision+Recall != 0 else 0.
table.add_row([self.labels[i], Precision, Recall, Specificity,F1])
print(table)
def plot(self):
matrix = self.matrix
print(matrix)
plt.imshow(matrix, cmap=plt.cm.Blues)
# 设置x轴坐标label
plt.xticks(range(self.num_classes), self.labels, rotation=45)
# 设置y轴坐标label
plt.yticks(range(self.num_classes), self.labels)
# 显示colorbar
plt.colorbar()
plt.xlabel('True Labels')
plt.ylabel('Predicted Labels')
plt.title('Confusion matrix')
# 在图中标注数量/概率信息
thresh = matrix.max() / 2
for x in range(self.num_classes):
for y in range(self.num_classes):
# 注意这里的matrix[y, x]不是matrix[x, y]
info = int(matrix[y, x])
plt.text(x, y, info,
verticalalignment='center',
horizontalalignment='center',
color="white" if info > thresh else "black")
plt.tight_layout()
plt.show()
# Write parser
parser = argparse.ArgumentParser(description="Select code to run.")
parser.add_argument('--mode', default="main", choices=choices, type=str)
# parser.add_argument('--mode', required=True, choices=choices, type=str)
# Demo to check if things are working
def demo():
model = AVENet1()
image = Variable(torch.rand(2, 3, 224, 224))
audio = Variable(torch.rand(2, 1, 257, 200))
out, v, a = model(image, audio)
print(image.shape, audio.shape)
print(v.shape, a.shape, out.shape)
checkpoint_dir='/root/shiyan_total/model_total_model1/'
class LossAverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class AccAverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val
self.count += n
def getacc(self):
return (self.sum *100) / self.count
# Main function here
def main(use_cuda=True, EPOCHS=200, batch_size=8, model_name="avenet.pt"):
model = getAVENet(use_cuda)
# Load from before
if os.path.exists(model_name):
model.load_state_dict(torch.load(model_name))
print("Loading from previous checkpoint.")
# list_image1=getimage()
dataset = Mydata(img_speed_path='/user-data/lujianli/totaldata/train.txt',
img_path='/user-data/lujianli/totaldata/train/img/',
speed_path='/user-data/lujianli/totaldata/train/speed/')
valdataset = Mydata(img_speed_path='/user-data/lujianli/totaldata/val.txt',
img_path='/user-data/lujianli/totaldata/val/img/',
speed_path='/user-data/lujianli/totaldata/val/speed/')
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=2)
valdataloader = DataLoader(valdataset, batch_size=batch_size, shuffle=True, num_workers=2)
crossEntropy = nn.CrossEntropyLoss()
print("Loaded dataloader and loss function.")
# optim = Adam(model.parameters(), lr=lr, weight_decay=1e-7)
optim = SGD(model.parameters(), lr=0.25e-3, momentum=0.9, weight_decay=1e-4)
print("Optimizer loaded.")
model.train()
try:
best_precision = 0
lowest_loss = 100000
best_avgf1=0
best_weightf1=0
for epoch in range(EPOCHS):
if(50<=epoch<100):
optim = SGD(model.parameters(), lr=0.25e-4, momentum=0.9, weight_decay=1e-4)
if(epoch>=100):
optim = SGD(model.parameters(), lr=0.25e-5, momentum=0.9, weight_decay=1e-4)
# Run algo
train_losses = LossAverageMeter()
train_acc = AccAverageMeter()
if (epoch == 0):
end = time.time()
for subepoch, (img, aud, out) in enumerate(dataloader):
if(epoch==0 and subepoch==0):
print(time.time() - end)
optim.zero_grad()
out = out.squeeze(1)
idx = (out != 3).numpy().astype(bool)
if idx.sum() == 0:
continue
img = torch.Tensor(img.numpy()[idx, :, :, :])
aud = torch.Tensor(aud.numpy()[idx, :, :, :])
out = torch.LongTensor(out.numpy()[idx])
img = Variable(img)
aud = Variable(aud)
out = Variable(out)
M = img.shape[0]
if use_cuda:
img = img.cuda()
aud = aud.cuda()
out = out.cuda()
o, _, _ = model(img, aud)
loss = crossEntropy(o, out)
train_losses.update(loss.item(),M)
loss.backward()
optim.step()
o=F.softmax(o,1)
_, ind = o.max(1)
accuracy = (ind.data == out.data).sum()*1.0/M
train_acc.update((ind.data == out.data).sum()*1.0,M)
if subepoch%400 == 0:
print("Epoch: %d, Subepoch: %d, Loss: %f, batch_size: %d,acc: %f, zongacc: %f" % (epoch, subepoch, train_losses.avg, M, accuracy,train_acc.getacc()))
with open(file="./losses_total1.txt", mode="a+") as f:
f.write("Epoch: %d, Subepoch: %d, Loss: %f, batch_size: %d, acc: %f,zongacc: %f"%(epoch, subepoch, train_losses.avg, M,accuracy, train_acc.getacc()))
print("Epoch: %d, Loss: %f, sum: %d, acc: %f\n"%(epoch, train_losses.avg, train_losses.count, train_acc.getacc()))
with open(file="./losses_total1.txt", mode="a+") as f:
f.write("Epoch: %d, Loss: %f, sum: %d, acc: %f\n"%(epoch, train_losses.avg, train_losses.count, train_acc.getacc()))
val_losses = LossAverageMeter()
val_acc = AccAverageMeter()
labels=['Normal','Aggressive','Drowsy']
valconfusion = valConfusionMatrix(num_classes=3, labels=labels)
model.eval()
for sepoch,(img, aud, out) in enumerate(valdataloader):
out = out.squeeze(1)
idx = (out != 3).numpy().astype(bool)
if idx.sum() == 0:
continue
# Find the new variables
img = torch.Tensor(img.numpy()[idx, :, :, :])
aud = torch.Tensor(aud.numpy()[idx, :, :, :])
out = torch.LongTensor(out.numpy()[idx])
img = Variable(img, volatile=True)
aud = Variable(aud, volatile=True)
out = Variable(out, volatile=True)
# print(img.shape, aud.shape, out.shape)
M = img.shape[0]
if use_cuda:
img = img.cuda()
aud = aud.cuda()
out = out.cuda()
with torch.no_grad():
o, _, _ = model(img, aud)
valloss = crossEntropy(o, out)
val_losses.update(valloss.item(),M)
# Calculate valaccuracy
o=F.softmax(o,1)
_, ind = o.max(1)
valconfusion.update(ind.to("cpu").numpy(), out.to("cpu").numpy())
valaccuracy = (ind.data == out.data).sum()*1.0/M
val_acc.update((ind.data == out.data).sum()*1.0,M)
if sepoch%400==0:
print("Epoch: %d, Sepoch: %d, Valloss: %f, batch_size: %d, valacc: %f, zongvalacc: %f"%(epoch, sepoch, val_losses.avg, M, valaccuracy,val_acc.getacc()))
with open(file="./vallosses_total1.txt", mode="a+") as f:
f.write("Epoch: %d, Sepoch: %d, Valloss: %f, batch_size: %d, valacc: %f, zongvalacc: %f"%(epoch, sepoch, val_losses.avg, M, valaccuracy,val_acc.getacc()))
model.train()
avgf1=(valconfusion.summary()[0]+valconfusion.summary()[1]+valconfusion.summary()[2])/3.0
weightnor=0.399
weightagg=0.257
weightdrow=0.344
weightf1=valconfusion.summary()[0]*weightnor+valconfusion.summary()[1]*weightagg+valconfusion.summary()[2]*weightdrow
print("Epoch: %d, Valloss: %f, sum: %d, valacc: %f, avgf1: %f, weightf1: %f"%(epoch, val_losses.avg, val_losses.count, val_acc.getacc(),avgf1,weightf1))
with open(file="./vallosses_total1.txt", mode="a+") as f:
f.write("Epoch: %d, Valloss: %f, sum: %d, valacc: %f, avgf1: %f, weightf1: %f\n"%(epoch,val_losses.avg, val_losses.count, val_acc.getacc(),avgf1,weightf1))
is_best_avgf1=avgf1>best_avgf1
is_best_weightf1=weightf1>best_weightf1
is_best = val_acc.getacc() > best_precision
is_lowest_loss = val_losses.avg < lowest_loss
best_precision = max(val_acc.getacc(), best_precision)
lowest_loss = min(val_losses.avg, lowest_loss)
best_avgf1=max(avgf1,best_avgf1)
best_weightf1=max(weightf1,best_weightf1)
with open(file="./vallosses_total1.txt", mode="a+") as f:
f.write("Epoch: %d,best_precision: %f,lowest_loss: %f,best_avgf1: %f,best_weightf1: %f"%(epoch, best_precision,lowest_loss,best_avgf1,best_weightf1))
print('--'*30)
print("Epoch: %d,best_precision: %f,lowest_loss: %f,best_avgf1: %f,best_weightf1: %f"%(epoch, best_precision,lowest_loss,best_avgf1,best_weightf1))
print('--' * 30)
save_path = os.path.join(checkpoint_dir,model_name)
torch.save(model.state_dict(),save_path)
best_path = os.path.join(checkpoint_dir,'best_model.pt')
if is_best:
shutil.copyfile(save_path, best_path)
lowest_path = os.path.join(checkpoint_dir, 'lowest_loss.pt')
if is_lowest_loss:
shutil.copyfile(save_path, lowest_path)
best_avgf1_path = os.path.join(checkpoint_dir, 'best_avgf1.pt')
if is_best_avgf1:
shutil.copyfile(save_path, best_avgf1_path)
best_weightf1_path = os.path.join(checkpoint_dir, 'best_weightf1.pt')
if is_best_weightf1:
shutil.copyfile(save_path, best_weightf1_path)
except Exception as e:
print(e)
torch.save(model.state_dict(), "backup"+model_name)
print("Checkpoint saved and backup.")
#
# lossfile.close()
# lossfile1.close()
def getAVENet(use_cuda):
Bias = torch.tensor([[1.8062e-25, 7.3008e-43, 1.8062e-25, 7.3008e-43, 3.2415e-24, 7.3008e-43,
1.8062e-25, 7.3008e-43]], requires_grad=True).cuda()
f = torch.tensor([[0., 0., 0., 0.]], requires_grad=True).cuda()
print(R)
model = AVENet1(Bias,f,R,h)
if use_cuda:
model = model.cuda()
return model
class TestMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val
self.count += n
def getacc(self):
return (self.sum *100) / self.count
def test(use_cuda=True, batch_size=8, model_name="/root/shiyan_total/model_total_model/lowest_loss.pt"):
model = getAVENet(use_cuda)
if os.path.exists(model_name):
model.load_state_dict(torch.load(model_name))
print("Loading from previous checkpoint.")
testdataset = Mydata(img_speed_path='/user-data/lujianli/totaldata/test.txt',
img_path='/user-data/lujianli/totaldata/test/img/',
speed_path='/user-data/lujianli/totaldata/test/speed/')
testdataloader = DataLoader(testdataset, batch_size=batch_size, shuffle=True, num_workers=2)
crossEntropy = nn.CrossEntropyLoss()
print("Loaded dataloader and loss function.")
test_losses = LossAverageMeter()
test_acc = TestMeter()
labels=['Normal','Aggressive','Drowsy']
testconfusion = testConfusionMatrix(num_classes=3, labels=labels)
model.eval()
for sepoch, (img, aud, out) in enumerate(testdataloader):
out = out.squeeze(1)
idx = (out != 3).numpy().astype(bool)
if idx.sum() == 0:
continue
img = torch.Tensor(img.numpy()[idx, :, :, :])
aud = torch.Tensor(aud.numpy()[idx, :, :, :])
out = torch.LongTensor(out.numpy()[idx])
img = Variable(img, volatile=True)
aud = Variable(aud, volatile=True)
out = Variable(out, volatile=True)
M = img.shape[0]
if use_cuda:
img = img.cuda()
aud = aud.cuda()
out = out.cuda()
with torch.no_grad():
o, _, _ = model(img, aud)
valloss = crossEntropy(o, out)
test_losses.update(valloss.item(), M)
o = F.softmax(o, 1)
_, ind = o.max(1)
testconfusion.update(ind.to("cpu").numpy(), out.to("cpu").numpy())
x = (ind.data == out.data).sum() * 1.0
testaccuracy =x / M
test_acc.update(x, M)
if sepoch % 300 == 0:
print("Sepoch: %d, testloss: %f, batch_size: %d, testacc: %f, zongacc: %f" % (
sepoch, test_losses.avg, M,testaccuracy, test_acc.getacc()))
with open(file="./test_lowest_loss.txt", mode="a+") as f:
f.write(" Sepoch: %d, testloss: %f, batch_size: %d, testacc: %f, zongacc: %f\n" % (
sepoch, test_losses.avg, M, testaccuracy, test_acc.getacc()))
with open(file="./test_lowest_loss.txt", mode="a+") as f:
f.write(" testloss: %f, batch_size: %d, sum :%d, testacc: %f\n" % (test_losses.avg, M,test_acc.count, test_acc.getacc()))
testconfusion.summary()
testconfusion.plot()
if __name__ == "__main__":
cuda = True
args = parser.parse_args()
mode = args.mode
if mode == "demo":
demo()
elif mode == "main":
main(use_cuda=cuda, batch_size=16)
elif mode == "test":
test(use_cuda=cuda, batch_size=16)