-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
param_variation.py
126 lines (111 loc) · 4.81 KB
/
param_variation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# Copyright 2021 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tools for varying parameters from simulation to simulation."""
from typing import Dict, Optional, Tuple
import dataclasses
import numpy as np
from fusion_tcv import tcv_common
# Pylint does not like variable names like `qA`.
# pylint: disable=invalid-name
RP_DEFAULT = 5e-6
LP_DEFAULT = 2.05e-6
BP_DEFAULT = 0.25
QA_DEFAULT = 1.3
@dataclasses.dataclass
class Settings:
"""Settings to modify solver/plasma model."""
# Inverse of the resistivity.
# Plasma circuit equation is roughly
# k * dIoh/dt = L * dIp/dt + R * I = Vloop
# where R is roughly (1 / signeo) or rp.
# Value is multiplier on the default value.
# This parameter does not apply to the OhmTor diffusion.
signeo: Tuple[float, float] = (1, 1)
# Rp Plasma resistivity. The value is an absolute value.
rp: float = RP_DEFAULT
# Plasma self-inductance. The value is an absolute value.
lp: float = LP_DEFAULT
# Proportional to the plasma pressure. The value is an absolute value.
bp: float = BP_DEFAULT
# Plasma current profile. Value is absolute.
qA: float = QA_DEFAULT
# Initial OH coil current. Applied to both coils.
ioh: Optional[float] = None
# The voltage offsets for the various coils.
psu_voltage_offset: Optional[Dict[str, float]] = None
def _psu_voltage_offset_string(self) -> str:
"""Return a short-ish, readable string of the psu voltage offsets."""
if not self.psu_voltage_offset:
return "None"
if len(self.psu_voltage_offset) < 8: # Only a few, output individually.
return ", ".join(
f"{coil.replace('_00', '')}: {offset:.0f}"
for coil, offset in self.psu_voltage_offset.items())
# Otherwise, too long, so output in groups.
groups = []
for coil, action_range in tcv_common.TCV_ACTION_RANGES.ranges():
offsets = [self.psu_voltage_offset.get(tcv_common.TCV_ACTIONS[i], 0)
for i in action_range]
if any(offsets):
groups.append(f"{coil}: " + ",".join(f"{offset:.0f}"
for offset in offsets))
return ", ".join(groups)
class ParamGenerator:
"""Varies parameters using uniform/loguniform distributions.
Absolute parameters are varied using uniform distributions while scaling
parameters use a loguniform distribution.
"""
def __init__(self,
rp_bounds: Optional[Tuple[float, float]] = None,
lp_bounds: Optional[Tuple[float, float]] = None,
qA_bounds: Optional[Tuple[float, float]] = None,
bp_bounds: Optional[Tuple[float, float]] = None,
rp_mean: float = RP_DEFAULT,
lp_mean: float = LP_DEFAULT,
bp_mean: float = BP_DEFAULT,
qA_mean: float = QA_DEFAULT,
ioh_bounds: Optional[Tuple[float, float]] = None,
psu_voltage_offset_bounds: Optional[
Dict[str, Tuple[float, float]]] = None):
# Do not allow Signeo variation as this does not work with OhmTor current
# diffusion.
no_scaling = (1, 1)
self._rp_bounds = rp_bounds if rp_bounds else no_scaling
self._lp_bounds = lp_bounds if lp_bounds else no_scaling
self._bp_bounds = bp_bounds if bp_bounds else no_scaling
self._qA_bounds = qA_bounds if qA_bounds else no_scaling
self._rp_mean = rp_mean
self._lp_mean = lp_mean
self._bp_mean = bp_mean
self._qA_mean = qA_mean
self._ioh_bounds = ioh_bounds
self._psu_voltage_offset_bounds = psu_voltage_offset_bounds
def generate(self) -> Settings:
return Settings(
signeo=(1, 1),
rp=loguniform_rv(*self._rp_bounds) * self._rp_mean,
lp=loguniform_rv(*self._lp_bounds) * self._lp_mean,
bp=loguniform_rv(*self._bp_bounds) * self._bp_mean,
qA=loguniform_rv(*self._qA_bounds) * self._qA_mean,
ioh=np.random.uniform(*self._ioh_bounds) if self._ioh_bounds else None,
psu_voltage_offset=(
{coil: np.random.uniform(*bounds)
for coil, bounds in self._psu_voltage_offset_bounds.items()}
if self._psu_voltage_offset_bounds else None))
def loguniform_rv(lower, upper):
"""Generate loguniform random variable between min and max."""
if lower == upper:
return lower
assert lower < upper
return np.exp(np.random.uniform(np.log(lower), np.log(upper)))