-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
shape.py
468 lines (386 loc) · 17.2 KB
/
shape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# Copyright 2021 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for time varying shape control."""
import copy
import enum
import random
from typing import List, Optional, NamedTuple, Tuple, Union
import dataclasses
import numpy as np
from scipy import interpolate
from fusion_tcv import named_array
from fusion_tcv import tcv_common
class Point(NamedTuple):
"""A point in r,z coordinates."""
r: float
z: float
def to_polar(self) -> "PolarPoint":
return PolarPoint(np.arctan2(self.z, self.r),
np.sqrt(self.r**2 + self.z**2))
def __neg__(self):
return Point(-self.r, -self.z)
def __add__(self, pt_or_val: Union["Point", float]):
if isinstance(pt_or_val, Point):
return Point(self.r + pt_or_val.r, self.z + pt_or_val.z)
else:
return Point(self.r + pt_or_val, self.z + pt_or_val)
def __sub__(self, pt_or_val: Union["Point", float]):
if isinstance(pt_or_val, Point):
return Point(self.r - pt_or_val.r, self.z - pt_or_val.z)
else:
return Point(self.r - pt_or_val, self.z - pt_or_val)
def __mul__(self, pt_or_val: Union["Point", float]):
if isinstance(pt_or_val, Point):
return Point(self.r * pt_or_val.r, self.z * pt_or_val.z)
else:
return Point(self.r * pt_or_val, self.z * pt_or_val)
def __truediv__(self, pt_or_val: Union["Point", float]):
if isinstance(pt_or_val, Point):
return Point(self.r / pt_or_val.r, self.z / pt_or_val.z)
else:
return Point(self.r / pt_or_val, self.z / pt_or_val)
__div__ = __truediv__
def dist(p1: Union[Point, np.ndarray], p2: Union[Point, np.ndarray]) -> float:
return np.hypot(*(p1 - p2))
ShapePoints = List[Point]
def to_shape_points(array: np.ndarray) -> ShapePoints:
return [Point(r, z) for r, z in array]
def center_point(points: ShapePoints) -> Point:
return sum(points, Point(0, 0)) / len(points)
class ShapeSide(enum.Enum):
LEFT = 0
RIGHT = 1
NOSHIFT = 2
class PolarPoint(NamedTuple):
angle: float
dist: float
def to_point(self) -> Point:
return Point(np.cos(self.angle) * self.dist, np.sin(self.angle) * self.dist)
def evenly_spaced_angles(num: int):
return np.arange(num) * 2 * np.pi / num
def angle_aligned_dists(points: np.ndarray, angles: np.ndarray) -> np.ndarray:
"""Return a new set of points along angles that intersect with the shape."""
# TODO(tewalds): Walk the two arrays together for an O(n+m) algorithm instead
# of the current O(n*m). This would work as long as they are both sorted
# around the radial direction, so the next intersection will be near the last.
return np.array([dist_angle_to_surface(points, a) for a in angles])
def angle_aligned_points(points: np.ndarray, num_points: int,
origin: Point) -> np.ndarray:
"""Given a set of points, return a new space centered at origin."""
angles = evenly_spaced_angles(num_points)
dists = angle_aligned_dists(points - origin, angles)
return np.stack((np.cos(angles) * dists,
np.sin(angles) * dists), axis=-1) + origin
def dist_angle_to_surface(points: np.ndarray, angle: float) -> float:
"""Distance along a ray to the surface defined by a list of points."""
for p1, p2 in zip(points, np.roll(points, 1, axis=0)):
d = dist_angle_to_segment(p1, p2, angle)
if d is not None:
return d
raise ValueError(f"Intersecting edge not found for angle: {angle}")
def dist_angle_to_segment(p1, p2, angle: float) -> Optional[float]:
"""Distance along a ray from the origin to a segment defined by two points."""
x0, y0 = p1[0], p1[1]
x1, y1 = p2[0], p2[1]
a0, b0 = np.cos(angle), np.sin(angle)
a1, b1 = 0, 0
# Segment/segment algorithm inspired by https://stackoverflow.com/q/563198
denom = (b0 - b1) * (x0 - x1) - (y0 - y1) * (a0 - a1)
if denom == 0:
return None # Angle parallel to the segment, so can't intersect.
xy = (a0 * (y1 - b1) + a1 * (b0 - y1) + x1 * (b1 - b0)) / denom
eps = 0.00001 # Allow intersecting slightly beyond the endpoints.
if -eps <= xy <= 1 + eps: # Check it hit the segment, not just the line.
ab = (y1 * (x0 - a1) + b1 * (x1 - x0) + y0 * (a1 - x1)) / denom
if ab > 0: # Otherwise it hit in the reverse direction.
# If ab <= 1 then it's within the segment defined above, but given it's
# a unit vector with one end at the origin this tells us the distance to
# the intersection of an infinite ray out from the origin.
return ab
return None
def dist_point_to_surface(points: np.ndarray, point: np.ndarray) -> float:
"""Distance from a point to the surface defined by a list of points."""
return min(dist_point_to_segment(p1, p2, point)
for p1, p2 in zip(points, np.roll(points, 1, axis=0)))
def dist_point_to_segment(v: np.ndarray, w: np.ndarray, p: np.ndarray) -> float:
"""Return minimum distance between line segment vw and point p."""
# Inspired by: https://stackoverflow.com/a/1501725
l2 = dist(v, w)**2
if l2 == 0.0:
return dist(p, v) # v == w case
# Consider the line extending the segment, parameterized as v + t (w - v).
# We find projection of point p onto the line.
# It falls where t = [(p-v) . (w-v)] / |w-v|^2
# We clamp t from [0,1] to handle points outside the segment vw.
t = max(0, min(1, np.dot(p - v, w - v) / l2))
projection = v + t * (w - v) # Projection falls on the segment
return dist(p, projection)
def sort_by_angle(points: ShapePoints) -> ShapePoints:
center = sum(points, Point(0, 0)) / len(points)
return sorted(points, key=lambda p: (p - center).to_polar().angle)
def spline_interpolate_points(
points: ShapePoints, num_points: int,
x_points: Optional[ShapePoints] = None) -> ShapePoints:
"""Interpolate along a spline to give a smooth evenly spaced shape."""
ends = []
if x_points:
# Find the shape points that must allow sharp corners.
for xp in x_points:
for i, p in enumerate(points):
if np.hypot(*(p - xp)) < 0.01:
ends.append(i)
if not ends:
# No x-points forcing sharp corners, so use a periodic spline.
tck, _ = interpolate.splprep(np.array(points + [points[0]]).T, s=0, per=1)
unew = np.arange(num_points) / num_points
out = interpolate.splev(unew, tck)
assert len(out[0]) == num_points
return sort_by_angle(to_shape_points(np.array(out).T))
# Generate a spline with an shape==x-point at each end.
new_pts = []
for i, j in zip(ends, ends[1:] + [ends[0]]):
pts = points[i:j+1] if i < j else points[i:] + points[:j+1]
num_segment_points = np.round((len(pts) - 1) / len(points) * num_points)
unew = np.arange(num_segment_points + 1) / num_segment_points
tck, _ = interpolate.splprep(np.array(pts).T, s=0)
out = interpolate.splev(unew, tck)
new_pts += to_shape_points(np.array(out).T)[:-1]
if len(new_pts) != num_points:
raise AssertionError(
f"Generated the wrong number of points: {len(new_pts)} != {num_points}")
return sort_by_angle(new_pts)
@dataclasses.dataclass
class ParametrizedShape:
"""Describes a target shape from the parameter set."""
r0: float # Where to put the center along the radial axis.
z0: float # Where to put the center along the vertical axis.
kappa: float # Elongation of the shape. (0.8, 3)
delta: float # Triangulation of the shape. (-1, 1)
radius: float # Radius of the shape (0.22, 2.58)
lambda_: float # Squareness of the shape. Recommend (0, 0)
side: ShapeSide # Whether and which side to shift the shape to.
@classmethod
def uniform_random_shape(
cls,
r_bounds=(0.8, 0.9),
z_bounds=(0, 0.2),
kappa_bounds=(1.0, 1.8), # elongation
delta_bounds=(-0.5, 0.6), # triangulation
radius_bounds=(tcv_common.LIMITER_WIDTH / 2 - 0.04,
tcv_common.LIMITER_WIDTH / 2),
lambda_bounds=(0, 0), # squareness
side=(ShapeSide.LEFT, ShapeSide.RIGHT)):
"""Return a random shape."""
return cls(
r0=np.random.uniform(*r_bounds),
z0=np.random.uniform(*z_bounds),
kappa=np.random.uniform(*kappa_bounds),
delta=np.random.uniform(*delta_bounds),
radius=np.random.uniform(*radius_bounds),
lambda_=np.random.uniform(*lambda_bounds),
side=side if isinstance(side, ShapeSide) else random.choice(side))
def gen_points(self, num_points: int) -> Tuple[ShapePoints, Point]:
"""Generates a set of shape points, return (points, modified (r0, z0))."""
r0 = self.r0
z0 = self.z0
num_warped_points = 32
points = np.zeros((num_warped_points, 2))
theta = evenly_spaced_angles(num_warped_points)
points[:, 0] = r0 + self.radius * np.cos(theta + self.delta * np.sin(theta)
- self.lambda_ * np.sin(2 * theta))
points[:, 1] = z0 + self.radius * self.kappa * np.sin(theta)
if self.side == ShapeSide.LEFT:
wall_shift = np.min(points[:, 0]) - tcv_common.INNER_LIMITER_R
points[:, 0] -= wall_shift
r0 -= wall_shift
elif self.side == ShapeSide.RIGHT:
wall_shift = np.max(points[:, 0]) - tcv_common.OUTER_LIMITER_R
points[:, 0] -= wall_shift
r0 -= wall_shift
return (spline_interpolate_points(to_shape_points(points), num_points),
Point(r0, z0))
def trim_zero_points(points: ShapePoints) -> Optional[ShapePoints]:
trimmed = [p for p in points if p.r != 0]
return trimmed if trimmed else None
class Diverted(enum.Enum):
"""Whether a shape is diverted or not."""
ANY = 0
LIMITED = 1
DIVERTED = 2
@classmethod
def from_refs(cls, references: named_array.NamedArray) -> "Diverted":
diverted = (references["diverted", 0] == 1)
limited = (references["limited", 0] == 1)
if diverted and limited:
raise ValueError("Diverted and limited doesn't make sense.")
if diverted:
return cls.DIVERTED
if limited:
return cls.LIMITED
return cls.ANY
@dataclasses.dataclass
class Shape:
"""Full specification of a shape."""
params: Optional[ParametrizedShape] = None
points: Optional[ShapePoints] = None
x_points: Optional[ShapePoints] = None
legs: Optional[ShapePoints] = None
diverted: Diverted = Diverted.ANY
ip: Optional[float] = None
limit_point: Optional[Point] = None
@classmethod
def from_references(cls, references: named_array.NamedArray) -> "Shape":
"""Extract a Shape from the references."""
if any(np.any(references[name] != 0)
for name in ("R", "Z", "kappa", "delta", "radius", "lambda")):
params = ParametrizedShape(
r0=references["R"][0],
z0=references["Z"][0],
kappa=references["kappa"][0],
delta=references["delta"][0],
radius=references["radius"][0],
lambda_=references["lambda"][0],
side=ShapeSide.NOSHIFT)
else:
params = None
ip = references["Ip", 0]
return cls(
params,
points=trim_zero_points(points_from_references(references, "shape1")),
x_points=trim_zero_points(points_from_references(references,
"x_points")),
legs=trim_zero_points(points_from_references(references, "legs")),
limit_point=trim_zero_points(points_from_references(
references, "limit_point")[0:1]),
diverted=Diverted.from_refs(references),
ip=float(ip) if ip != 0 else None)
def gen_references(self) -> named_array.NamedArray:
"""Return the references for the parametrized shape."""
refs = tcv_common.REF_RANGES.new_named_array()
if self.ip is not None:
refs["Ip", 0] = self.ip
refs["diverted", 0] = 1 if self.diverted == Diverted.DIVERTED else 0
refs["limited", 0] = 1 if self.diverted == Diverted.LIMITED else 0
if self.params is not None:
refs["R", 0] = self.params.r0
refs["Z", 0] = self.params.z0
refs["kappa", 0] = self.params.kappa
refs["delta", 0] = self.params.delta
refs["radius", 0] = self.params.radius
refs["lambda", 0] = self.params.lambda_
if self.points is not None:
points = np.array(self.points)
assert refs.names.count("shape_r") >= points.shape[0]
refs["shape_r", :points.shape[0]] = points[:, 0]
refs["shape_z", :points.shape[0]] = points[:, 1]
if self.x_points is not None:
x_points = np.array(self.x_points)
assert refs.names.count("x_points_r") >= x_points.shape[0]
refs["x_points_r", :x_points.shape[0]] = x_points[:, 0]
refs["x_points_z", :x_points.shape[0]] = x_points[:, 1]
if self.legs is not None:
legs = np.array(self.legs)
assert refs.names.count("legs_r") >= legs.shape[0]
refs["legs_r", :legs.shape[0]] = legs[:, 0]
refs["legs_z", :legs.shape[0]] = legs[:, 1]
if self.limit_point is not None:
refs["limit_point_r", 0] = self.limit_point.r
refs["limit_point_z", 0] = self.limit_point.z
return refs
def canonical(self) -> "Shape":
"""Return a canonical shape with a fixed number of points and params."""
num_points = tcv_common.REF_RANGES.count("shape_r")
out = copy.deepcopy(self)
if out.points is None:
if out.params is None:
raise ValueError("Can't canonicalize with no params or points.")
out.points, center = out.params.gen_points(num_points)
out.params.r0 = center.r
out.params.z0 = center.z
out.params.side = ShapeSide.NOSHIFT
else:
out.points = spline_interpolate_points(
out.points, num_points, out.x_points or [])
if out.params:
out.params.side = ShapeSide.NOSHIFT
else:
# Copied from FGE. Details: https://doi.org/10.1017/S0022377815001270
top = max(out.points, key=lambda p: p.z)
left = min(out.points, key=lambda p: p.r)
right = max(out.points, key=lambda p: p.r)
bottom = min(out.points, key=lambda p: p.z)
center = Point((left.r + right.r) / 2,
(top.z + bottom.z) / 2)
radius = (right.r - left.r) / 2
kappa = (top.z - bottom.z) / (right.r - left.r)
delta_lower = (center.r - bottom.r) / radius # upper triangularitiy
delta_upper = (center.r - top.r) / radius # lower triangularity
delta = (delta_lower + delta_upper) / 2
out.params = ParametrizedShape(
r0=center.r, z0=center.z, radius=radius, kappa=kappa, delta=delta,
lambda_=0, side=ShapeSide.NOSHIFT)
return out
def points_from_references(
references: named_array.NamedArray, key: str = "shape1",
num: Optional[int] = None) -> ShapePoints:
points = np.array([references[f"{key}_r"], references[f"{key}_z"]]).T
if num is not None:
points = points[:num]
return to_shape_points(points)
@dataclasses.dataclass
class ReferenceTimeSlice:
shape: Shape
time: float
hold: Optional[float] = None # Absolute time.
def __post_init__(self):
if self.hold is None:
self.hold = self.time
def canonicalize_reference_series(
time_slices: List[ReferenceTimeSlice]) -> List[ReferenceTimeSlice]:
"""Canonicalize a full sequence of time slices."""
outputs = []
for ref in time_slices:
ref_shape = ref.shape.canonical()
prev = outputs[-1] if outputs else None
if prev is not None and prev.hold + tcv_common.DT < ref.time:
leg_diff = len(ref_shape.legs or []) != len(prev.shape.legs or [])
xp_diff = len(ref_shape.x_points or []) != len(prev.shape.x_points or [])
div_diff = ref_shape.diverted != prev.shape.diverted
limit_diff = (
bool(ref_shape.limit_point and ref_shape.limit_point.r > 0) !=
bool(prev.shape.limit_point and prev.shape.limit_point.r > 0))
if leg_diff or xp_diff or div_diff or limit_diff:
# Try not to interpolate between a real x-point and a non-existent
# x-point. Non-existent x-points are represented as being at the
# origin, i.e. out to the left of the vessel, and could be interpolated
# into place, but that's weird, so better to pop it into existence by
# adding an extra frame one before with the new shape targets.
# This doesn't handle the case of multiple points appearing/disappearing
# out of order, or of one moving while the other disappears.
outputs.append(
ReferenceTimeSlice(
time=ref.time - tcv_common.DT,
shape=Shape(
ip=ref_shape.ip,
params=ref_shape.params,
points=ref_shape.points,
x_points=(prev.shape.x_points
if xp_diff else ref_shape.x_points),
legs=(prev.shape.legs if leg_diff else ref_shape.legs),
limit_point=(prev.shape.limit_point
if limit_diff else ref_shape.limit_point),
diverted=(prev.shape.diverted
if div_diff else ref_shape.diverted))))
outputs.append(ReferenceTimeSlice(ref_shape, ref.time, ref.hold))
return outputs