-
Notifications
You must be signed in to change notification settings - Fork 233
/
worker.py
402 lines (333 loc) · 12.8 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# Copyright 2024 The Kubric Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import logging
import numpy as np
import kubric as kb
from kubric.assets import asset_source
from kubric.renderer.blender import Blender as KubricBlender
from kubric.simulator.pybullet import PyBullet as KubricSimulator
import sys
import imageio
import bpy
import pdb
import random
from scipy.spatial import transform
import pickle
logging.basicConfig(level="INFO")
parser = kb.ArgumentParser()
parser.add_argument("--rotate_camera", type=bool, default=False)
parser.add_argument("--camera_rot_range", type=float, default=2 * np.pi)
parser.add_argument("--object", choices=["cube", "torus", "car",
"airplane", "chair", "table", "pillow"], default="cube")
parser.add_argument("--extra_obj_texture", type=bool, default=False)
parser.add_argument("--obj_texture_path", type=str,
default="examples/tex/tex.jpg")
parser.add_argument("--no_texture", type=bool, default=False)
FLAGS = parser.parse_args()
POSITION = (0, 0, 1)
VELOCITY = (0.5, 0, -1)
ANGULAR_VELOCITY = (0, 0, 5)
out_dir = f"output/{FLAGS.object}"
# random.seed(0)
# --- create scene and attach a renderer and simulator
scene = kb.Scene(resolution=(256, 256))
scene.frame_end = 30 # < numbers of frames to render
scene.frame_rate = 24 # < rendering framerate
scene.step_rate = 240 # < simulation framerate
renderer = KubricBlender(scene)
simulator = KubricSimulator(scene)
# --- populate the scene with objects, lights, cameras
scene += kb.Cube(name="floor", scale=(10, 10, 0.1), position=(0, 0, -0.1),
static=True, background=True, segmentation_id=1)
scene += kb.DirectionalLight(name="sun", position=(-1, -0.5, 3),
look_at=(0, 0, 0), intensity=1.5)
scene.camera = kb.PerspectiveCamera(
name="camera", position=(2, -2, 4), look_at=(0, 0, 0))
# color = kb.random_hue_color()
color = kb.Color(r=1, g=0.1, b=0.1, a=1.0)
# quaternion = [0.871342, 0.401984, -0.177436, 0.218378]
material = kb.PrincipledBSDFMaterial(color=color)
if FLAGS.object == "cube":
obj = kb.Cube(
name="cube",
scale=0.3,
velocity=VELOCITY,
position=POSITION,
mass=0.2,
restitution=1,
material=material,
friction=1,
segmentation_id=2
)
objname = "cube"
# segmentation id doesn"t seem to be working -- the segmentation mask still uses object id
elif FLAGS.object == "torus":
# set up assets
asset_source = kb.AssetSource.from_manifest(
"gs://kubric-public/assets/KuBasic/KuBasic.json")
obj = asset_source.create(name="torus",
asset_id="torus", scale=0.5)
objname = "torus"
obj.material = material
obj.position = POSITION
obj.velocity = VELOCITY
else:
# TODO: go to https://shapenet.org/ create an account and agree to the terms
# then find the URL for the kubric preprocessed ShapeNet and put it here:
SHAPENET_PATH = "gs://KUBRIC_SHAPENET_PATH/ShapeNetCore.v2.json"
if SHAPENET_PATH == "gs://KUBRIC_SHAPENET_PATH/ShapeNetCore.v2.json":
raise ValueError("Wrong ShapeNet path. Please visit https://shapenet.org/ "
"agree to terms and conditions, and find the correct path.")
asset_source = kb.AssetSource.from_manifest(SHAPENET_PATH)
if FLAGS.object == "car":
obj = asset_source.create(
asset_id="02958343/d4d7d596cf08754e2dfac2620a0cf07b")
obj.scale = 2
elif FLAGS.object == "airplane":
obj = asset_source.create(
asset_id="02691156/a9b95631bcbefe9ad225a1c252daae25")
obj.scale = 2
elif FLAGS.object == "chair":
obj = asset_source.create(
asset_id="03001627/c375f006c3384e83c71d7f4874a478cb")
obj.scale = 1.5
scene.camera.position = (2, -2, 3)
obj.angular_velocity = (0, 0, 5)
elif FLAGS.object == "table":
obj = asset_source.create(
asset_id="04379243/d5978095ef90e63375dc74e2f2f50364")
obj.scale = 2
scene.camera.position = (2.5, -2.5, 2)
scene.camera.look_at((0, 0, 0))
elif FLAGS.object == "pillow":
obj = asset_source.create(
asset_id="03938244/b5cb58fb099204fea5c423249b53dbc4")
obj.scale = 2
POSITION = (0, 0, 0.2)
VELOCITY = (0.5, 0, 0)
else:
raise NotImplementedError("Object not supported")
obj.position = POSITION
obj.velocity = VELOCITY
obj.angular_velocity = ANGULAR_VELOCITY
obj.metadata = {
"asset_id": obj.asset_id,
}
obj.quaternion = kb.Quaternion(axis=[1, 0, 0], degrees=90)
objname = obj.name
if FLAGS.extra_obj_texture:
bpy_scene = bpy.context.scene
obj.material = kb.PrincipledBSDFMaterial(name="material")
obj.material.metallic = random.random()
obj.material.roughness = random.random()**0.2
scene += obj
mat = bpy_scene.objects[objname].active_material
tree = mat.node_tree
mat_node = tree.nodes["Principled BSDF"]
tex_image = mat.node_tree.nodes.new("ShaderNodeTexImage")
tex_image.image = bpy.data.images.load(FLAGS.obj_texture_path)
tree.links.new(mat_node.inputs["Base Color"], tex_image.outputs["Color"])
else:
scene += obj
if FLAGS.no_texture:
for material in bpy.data.materials:
material.user_clear()
bpy.data.materials.remove(material)
cam_params = []
if FLAGS.rotate_camera:
# Render cameras at the same general distance from the origin, but at
# different positions.
#
# We will use spherical coordinates (r, theta, phi) to do this.
# x = r * cos(theta) * sin(phi)
# y = r * sin(theta) * sin(phi)
# z = r * cos(phi)
original_camera_position = scene.camera.position
r = np.sqrt(sum(a * a for a in original_camera_position))
phi = np.arccos(original_camera_position[2] / r) # (180 - elevation)
theta = np.arccos(original_camera_position[0] / (r * np.sin(phi))) # azimuth
num_phi_values_per_theta = 1
theta_change = FLAGS.camera_rot_range / \
((scene.frame_end - scene.frame_start) / num_phi_values_per_theta)
for frame in range(scene.frame_start, scene.frame_end + 1):
i = (frame - scene.frame_start)
theta_new = (i // num_phi_values_per_theta) * theta_change + theta
# These values of (x, y, z) will lie on the same sphere as the original camera.
x = r * np.cos(theta_new) * np.sin(phi)
y = r * np.sin(theta_new) * np.sin(phi)
z = r * np.cos(phi)
scene.camera.position = (x, y, z)
scene.camera.look_at((0, 0, 0))
scene.camera.keyframe_insert("position", frame)
scene.camera.keyframe_insert("quaternion", frame)
cam_param = np.zeros([1, 8])
quat = scene.camera.quaternion
rot = transform.Rotation.from_quat(quat)
inv_quat = rot.inv().as_quat()
cam_param[0, 0] = scene.camera.focal_length
cam_param[0, 1] = x
cam_param[0, 2] = y
cam_param[0, 3] = quat[3]
cam_param[0, 4:7] = quat[:3]
cam_param[0, 7] = z
cam_params.append(cam_param)
else:
x, y, z = scene.camera.position
cam_param = np.zeros([1, 8])
quat = scene.camera.quaternion
rot = transform.Rotation.from_quat(quat)
inv_quat = rot.inv().as_quat()
cam_param[0, 0] = scene.camera.focal_length
cam_param[0, 1] = x
cam_param[0, 2] = y
cam_param[0, 3] = quat[3]
cam_param[0, 4:7] = quat[:3]
cam_param[0, 7] = z
for _ in range(scene.frame_end):
cam_params.append(cam_param)
# --- executes the simulation (and store keyframes)
simulator.run()
# --- renders the output
kb.as_path("output").mkdir(exist_ok=True)
renderer.save_state(f"{out_dir}/{FLAGS.object}.blend")
frames_dict = renderer.render()
# with open(f"{out_dir}/frames.dict", "wb") as file:
# pickle.dump(frames_dict, file)
# kb.write_image_dict(frames_dict, f"{out_dir}")
# convert segmentation mask to LASR style
palette = [[0, 0, 0], [0, 0, 0], [128, 128, 128], [
128, 128, 128], [128, 128, 128], [128, 128, 128]]
kb.file_io.multi_write_image(
frames_dict["segmentation"],
str(kb.as_path(
f"{out_dir}/LASR/Annotations/Full-Resolution/{FLAGS.object}") / "{:05d}.png"),
write_fn=kb.write_palette_png,
max_write_threads=16,
palette=palette
)
kb.file_io.multi_write_image(
frames_dict["segmentation"],
str(kb.as_path(
f"{out_dir}/LASR/Annotations/Full-Resolution/r{FLAGS.object}") / "{:05d}.png"),
write_fn=kb.write_palette_png,
max_write_threads=16,
palette=[[0, 0, 0], [0, 0, 0], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]]
)
kb.file_io.multi_write_image(
frames_dict["rgba"],
str(kb.as_path(
f"{out_dir}/LASR/JPEGImages/Full-Resolution/{FLAGS.object}") / "{:05d}.png"),
write_fn=kb.write_png,
max_write_threads=16
)
# write optical flow and occlusion map in LASR format
def write_pfm(path, image, scale=1):
"""Write pfm file.
Args:
path (str): pathto file
image (array): data
scale (int, optional): Scale. Defaults to 1.
"""
with open(path, "wb") as file:
color = None
if image.dtype.name != "float32":
raise Exception("Image dtype must be float32.")
image = np.flipud(image)
if len(image.shape) == 3 and image.shape[2] == 3: # color image
color = True
elif (
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
): # greyscale
color = False
else:
raise Exception(
"Image must have H x W x 3, H x W x 1 or H x W dimensions.")
file.write("PF\n".encode() if color else "Pf\n".encode())
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
endian = image.dtype.byteorder
if endian == "<" or endian == "=" and sys.byteorder == "little":
scale = -scale
file.write("%f\n".encode() % scale)
image.tofile(file)
fw = frames_dict["forward_flow"][:-1, ...] * 256
bw = frames_dict["backward_flow"][1:, ...] * 256
imgs = frames_dict["rgba"]
M, N = imgs.shape[1:3]
occs = np.ones(fw.shape[:-1]).astype("float32")
os.makedirs(
f"{out_dir}/LASR/FlowFW/Full-Resolution/{FLAGS.object}", exist_ok=True)
os.makedirs(
f"{out_dir}/LASR/FlowBW/Full-Resolution/{FLAGS.object}", exist_ok=True)
os.makedirs(
f"{out_dir}/LASR/FlowFW/Full-Resolution/r{FLAGS.object}", exist_ok=True)
os.makedirs(
f"{out_dir}/LASR/FlowBW/Full-Resolution/r{FLAGS.object}", exist_ok=True)
os.makedirs(
f"{out_dir}/LASR/Camera/Full-Resolution/{FLAGS.object}", exist_ok=True)
os.makedirs(
f"{out_dir}/LASR/Camera/Full-Resolution/r{FLAGS.object}", exist_ok=True)
# write flows into pfm
for i in range(len(fw)):
f = fw[i, ...]
ones = np.ones_like(f[..., :1])
f = np.concatenate([f[..., 1:], f[..., :1], ones], -1)
b = np.concatenate([-bw[i, ..., 1:], -bw[i, ..., :1], ones], -1)
f = np.flip(f, 0)
b = np.flip(b, 0)
write_pfm(
f"{out_dir}/LASR/FlowFW/Full-Resolution/{FLAGS.object}/flo-{i:05d}.pfm", f)
write_pfm(
f"{out_dir}/LASR/FlowBW/Full-Resolution/{FLAGS.object}/flo-{i+1:05d}.pfm", b)
write_pfm(f"{out_dir}/LASR/FlowFW/Full-Resolution/{FLAGS.object}/occ-{i:05d}.pfm",
np.ones_like(occs[i, ...]))
write_pfm(f"{out_dir}/LASR/FlowBW/Full-Resolution/{FLAGS.object}/occ-{i+1:05d}.pfm",
np.ones_like(occs[i, ...]))
write_pfm(
f"{out_dir}/LASR/FlowFW/Full-Resolution/r{FLAGS.object}/flo-{i:05d}.pfm", f)
write_pfm(
f"{out_dir}/LASR/FlowBW/Full-Resolution/r{FLAGS.object}/flo-{i+1:05d}.pfm", b)
write_pfm(f"{out_dir}/LASR/FlowFW/Full-Resolution/r{FLAGS.object}/occ-{i:05d}.pfm",
np.ones_like(occs[i, ...]))
write_pfm(f"{out_dir}/LASR/FlowBW/Full-Resolution/r{FLAGS.object}/occ-{i+1:05d}.pfm",
np.ones_like(occs[i, ...]))
for i in range(len(cam_params)):
# save camera parameters
np.savetxt(
f"{out_dir}/LASR/Camera/Full-Resolution/{FLAGS.object}/{i:05d}.txt", cam_params[i].T)
np.savetxt(
f"{out_dir}/LASR/Camera/Full-Resolution/r{FLAGS.object}/{i:05d}.txt", cam_params[i].T)
# write gif
imageio.mimsave(
str(kb.as_path(f"{out_dir}/") / f"{FLAGS.object}.gif"), frames_dict["rgba"])
kb.file_io.write_flow_batch(
frames_dict["forward_flow"],
directory=f"{out_dir}/FlowFW", file_template="{:05d}.png", name="forward_flow",
max_write_threads=16
)
kb.file_io.write_flow_batch(
frames_dict["backward_flow"],
directory=f"{out_dir}/FlowBW",
file_template="{:05d}.png",
name="backward_flow",
max_write_threads=16
)
logging.info("Collecting and storing metadata for each object.")
kb.write_json(filename=f"{out_dir}/metadata.json", data={
"flags": vars(FLAGS),
"metadata": kb.get_scene_metadata(scene),
"camera": kb.get_camera_info(scene.camera),
"instances": kb.get_instance_info(scene, [obj]),
})
kb.done()