-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
diffn.cc
359 lines (333 loc) · 13.4 KB
/
diffn.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <cstdint>
#include <limits>
#include <string>
#include <vector>
#include "absl/strings/str_format.h"
#include "absl/types/span.h"
#include "ortools/base/hash.h"
#include "ortools/base/int_type.h"
#include "ortools/base/logging.h"
#include "ortools/base/types.h"
#include "ortools/constraint_solver/constraint_solver.h"
#include "ortools/constraint_solver/constraint_solveri.h"
#include "ortools/util/string_array.h"
namespace operations_research {
// Diffn constraint, Non overlapping boxs.
namespace {
DEFINE_INT_TYPE(Box, int);
class Diffn : public Constraint {
public:
Diffn(Solver* const solver, const std::vector<IntVar*>& x_vars,
const std::vector<IntVar*>& y_vars, const std::vector<IntVar*>& x_size,
const std::vector<IntVar*>& y_size, bool strict)
: Constraint(solver),
x_(x_vars),
y_(y_vars),
dx_(x_size),
dy_(y_size),
strict_(strict),
size_(x_vars.size()),
fail_stamp_(0) {
CHECK_EQ(x_vars.size(), y_vars.size());
CHECK_EQ(x_vars.size(), x_size.size());
CHECK_EQ(x_vars.size(), y_size.size());
}
~Diffn() override {}
void Post() override {
Solver* const s = solver();
for (int i = 0; i < size_; ++i) {
Demon* const demon = MakeConstraintDemon1(
s, this, &Diffn::OnBoxRangeChange, "OnBoxRangeChange", i);
x_[i]->WhenRange(demon);
y_[i]->WhenRange(demon);
dx_[i]->WhenRange(demon);
dy_[i]->WhenRange(demon);
}
delayed_demon_ = MakeDelayedConstraintDemon0(s, this, &Diffn::PropagateAll,
"PropagateAll");
if (solver()->parameters().diffn_use_cumulative() &&
IsArrayInRange<int64_t>(x_, 0, std::numeric_limits<int64_t>::max()) &&
IsArrayInRange<int64_t>(y_, 0, std::numeric_limits<int64_t>::max())) {
Constraint* ct1 = nullptr;
Constraint* ct2 = nullptr;
{
// We can add redundant cumulative constraints. This is done
// inside a c++ block to avoid leaking memory if adding the
// constraints leads to a failure. A cumulative constraint is
// a scheduling constraint that will perform finer energy
// based reasoning to do more propagation. (see Solver::MakeCumulative).
const int64_t min_x = MinVarArray(x_);
const int64_t max_x = MaxVarArray(x_);
const int64_t max_size_x = MaxVarArray(dx_);
const int64_t min_y = MinVarArray(y_);
const int64_t max_y = MaxVarArray(y_);
const int64_t max_size_y = MaxVarArray(dy_);
if (AreAllBound(dx_)) {
std::vector<int64_t> size_x;
FillValues(dx_, &size_x);
ct1 = MakeCumulativeConstraint(x_, size_x, dy_,
max_size_y + max_y - min_y);
}
if (AreAllBound(dy_)) {
std::vector<int64_t> size_y;
FillValues(dy_, &size_y);
ct2 = MakeCumulativeConstraint(y_, size_y, dx_,
max_size_x + max_x - min_x);
}
}
if (ct1 != nullptr) {
s->AddConstraint(ct1);
}
if (ct2 != nullptr) {
s->AddConstraint(ct2);
}
}
}
void InitialPropagate() override {
// All sizes should be >= 0.
for (int i = 0; i < size_; ++i) {
dx_[i]->SetMin(0);
dy_[i]->SetMin(0);
}
// Force propagation on all boxes.
to_propagate_.clear();
for (int i = 0; i < size_; i++) {
to_propagate_.insert(i);
}
PropagateAll();
}
std::string DebugString() const override {
return absl::StrFormat(
"Diffn(x = [%s], y = [%s], dx = [%s], dy = [%s]))",
JoinDebugStringPtr(x_, ", "), JoinDebugStringPtr(y_, ", "),
JoinDebugStringPtr(dx_, ", "), JoinDebugStringPtr(dy_, ", "));
}
void Accept(ModelVisitor* const visitor) const override {
visitor->BeginVisitConstraint(ModelVisitor::kDisjunctive, this);
visitor->VisitIntegerVariableArrayArgument(ModelVisitor::kPositionXArgument,
x_);
visitor->VisitIntegerVariableArrayArgument(ModelVisitor::kPositionYArgument,
y_);
visitor->VisitIntegerVariableArrayArgument(ModelVisitor::kSizeXArgument,
dx_);
visitor->VisitIntegerVariableArrayArgument(ModelVisitor::kSizeYArgument,
dy_);
visitor->EndVisitConstraint(ModelVisitor::kDisjunctive, this);
}
private:
void PropagateAll() {
for (const int box : to_propagate_) {
FillNeighbors(box);
FailWhenEnergyIsTooLarge(box);
PushOverlappingBoxes(box);
}
to_propagate_.clear();
fail_stamp_ = solver()->fail_stamp();
}
void OnBoxRangeChange(int box) {
if (solver()->fail_stamp() > fail_stamp_ && !to_propagate_.empty()) {
// We have failed in the last propagation and the to_propagate_
// was not cleared.
fail_stamp_ = solver()->fail_stamp();
to_propagate_.clear();
}
to_propagate_.insert(box);
EnqueueDelayedDemon(delayed_demon_);
}
bool CanBoxedOverlap(int i, int j) const {
if (AreBoxedDisjoingHorizontallyForSure(i, j) ||
AreBoxedDisjoingVerticallyForSure(i, j)) {
return false;
}
return true;
}
bool AreBoxedDisjoingHorizontallyForSure(int i, int j) const {
return (x_[i]->Min() >= x_[j]->Max() + dx_[j]->Max()) ||
(x_[j]->Min() >= x_[i]->Max() + dx_[i]->Max()) ||
(!strict_ && (dx_[i]->Min() == 0 || dx_[j]->Min() == 0));
}
bool AreBoxedDisjoingVerticallyForSure(int i, int j) const {
return (y_[i]->Min() >= y_[j]->Max() + dy_[j]->Max()) ||
(y_[j]->Min() >= y_[i]->Max() + dy_[i]->Max()) ||
(!strict_ && (dy_[i]->Min() == 0 || dy_[j]->Min() == 0));
}
// Fill neighbors_ with all boxes that can overlap the given box.
void FillNeighbors(int box) {
// TODO(user): We could maintain a non reversible list of
// neighbors and clean it after each failure.
neighbors_.clear();
for (int other = 0; other < size_; ++other) {
if (other != box && CanBoxedOverlap(other, box)) {
neighbors_.push_back(other);
}
}
}
// Fails if the minimum area of the given box plus the area of its neighbors
// (that must already be computed in neighbors_) is greater than the area of a
// bounding box that necessarily contains all these boxes.
void FailWhenEnergyIsTooLarge(int box) {
int64_t area_min_x = x_[box]->Min();
int64_t area_max_x = x_[box]->Max() + dx_[box]->Max();
int64_t area_min_y = y_[box]->Min();
int64_t area_max_y = y_[box]->Max() + dy_[box]->Max();
int64_t sum_of_areas = dx_[box]->Min() * dy_[box]->Min();
// TODO(user): Is there a better order, maybe sort by distance
// with the current box.
for (int i = 0; i < neighbors_.size(); ++i) {
const int other = neighbors_[i];
// Update Bounding box.
area_min_x = std::min(area_min_x, x_[other]->Min());
area_max_x = std::max(area_max_x, x_[other]->Max() + dx_[other]->Max());
area_min_y = std::min(area_min_y, y_[other]->Min());
area_max_y = std::max(area_max_y, y_[other]->Max() + dy_[other]->Max());
// Update sum of areas.
sum_of_areas += dx_[other]->Min() * dy_[other]->Min();
const int64_t bounding_area =
(area_max_x - area_min_x) * (area_max_y - area_min_y);
if (sum_of_areas > bounding_area) {
solver()->Fail();
}
}
}
// Changes the domain of all the neighbors of a given box (that must
// already be computed in neighbors_) so that they can't overlap the
// mandatory part of the given box.
void PushOverlappingBoxes(int box) {
for (int i = 0; i < neighbors_.size(); ++i) {
PushOneBox(box, neighbors_[i]);
}
}
// Changes the domain of the two given box by excluding the value that
// make them overlap for sure. Note that this function is symmetric in
// the sense that its argument can be swapped for the same result.
void PushOneBox(int box, int other) {
const int state =
(x_[box]->Min() + dx_[box]->Min() <= x_[other]->Max()) +
2 * (x_[other]->Min() + dx_[other]->Min() <= x_[box]->Max()) +
4 * (y_[box]->Min() + dy_[box]->Min() <= y_[other]->Max()) +
8 * (y_[other]->Min() + dy_[other]->Min() <= y_[box]->Max());
// This is an "hack" to be able to easily test for none or for one
// and only one of the conditions below.
switch (state) {
case 0: {
solver()->Fail();
break;
}
case 1: { // We push other left (x increasing).
x_[other]->SetMin(x_[box]->Min() + dx_[box]->Min());
x_[box]->SetMax(x_[other]->Max() - dx_[box]->Min());
dx_[box]->SetMax(x_[other]->Max() - x_[box]->Min());
break;
}
case 2: { // We push other right (x decreasing).
x_[box]->SetMin(x_[other]->Min() + dx_[other]->Min());
x_[other]->SetMax(x_[box]->Max() - dx_[other]->Min());
dx_[other]->SetMax(x_[box]->Max() - x_[other]->Min());
break;
}
case 4: { // We push other up (y increasing).
y_[other]->SetMin(y_[box]->Min() + dy_[box]->Min());
y_[box]->SetMax(y_[other]->Max() - dy_[box]->Min());
dy_[box]->SetMax(y_[other]->Max() - y_[box]->Min());
break;
}
case 8: { // We push other down (y decreasing).
y_[box]->SetMin(y_[other]->Min() + dy_[other]->Min());
y_[other]->SetMax(y_[box]->Max() - dy_[other]->Min());
dy_[other]->SetMax(y_[box]->Max() - y_[other]->Min());
break;
}
default: {
break;
}
}
}
Constraint* MakeCumulativeConstraint(const std::vector<IntVar*>& positions,
const std::vector<int64_t>& sizes,
const std::vector<IntVar*>& demands,
int64_t capacity) {
std::vector<IntervalVar*> intervals;
solver()->MakeFixedDurationIntervalVarArray(positions, sizes, "interval",
&intervals);
return solver()->MakeCumulative(intervals, demands, capacity, "cumul");
}
std::vector<IntVar*> x_;
std::vector<IntVar*> y_;
std::vector<IntVar*> dx_;
std::vector<IntVar*> dy_;
const bool strict_;
const int64_t size_;
Demon* delayed_demon_;
absl::flat_hash_set<int> to_propagate_;
std::vector<int> neighbors_;
uint64_t fail_stamp_;
};
} // namespace
Constraint* Solver::MakeNonOverlappingBoxesConstraint(
const std::vector<IntVar*>& x_vars, const std::vector<IntVar*>& y_vars,
const std::vector<IntVar*>& x_size, const std::vector<IntVar*>& y_size) {
return RevAlloc(new Diffn(this, x_vars, y_vars, x_size, y_size, true));
}
Constraint* Solver::MakeNonOverlappingBoxesConstraint(
const std::vector<IntVar*>& x_vars, const std::vector<IntVar*>& y_vars,
absl::Span<const int64_t> x_size, absl::Span<const int64_t> y_size) {
std::vector<IntVar*> dx(x_size.size());
std::vector<IntVar*> dy(y_size.size());
for (int i = 0; i < x_size.size(); ++i) {
dx[i] = MakeIntConst(x_size[i]);
dy[i] = MakeIntConst(y_size[i]);
}
return RevAlloc(new Diffn(this, x_vars, y_vars, dx, dy, true));
}
Constraint* Solver::MakeNonOverlappingBoxesConstraint(
const std::vector<IntVar*>& x_vars, const std::vector<IntVar*>& y_vars,
absl::Span<const int> x_size, absl::Span<const int> y_size) {
std::vector<IntVar*> dx(x_size.size());
std::vector<IntVar*> dy(y_size.size());
for (int i = 0; i < x_size.size(); ++i) {
dx[i] = MakeIntConst(x_size[i]);
dy[i] = MakeIntConst(y_size[i]);
}
return RevAlloc(new Diffn(this, x_vars, y_vars, dx, dy, true));
}
Constraint* Solver::MakeNonOverlappingNonStrictBoxesConstraint(
const std::vector<IntVar*>& x_vars, const std::vector<IntVar*>& y_vars,
const std::vector<IntVar*>& x_size, const std::vector<IntVar*>& y_size) {
return RevAlloc(new Diffn(this, x_vars, y_vars, x_size, y_size, false));
}
Constraint* Solver::MakeNonOverlappingNonStrictBoxesConstraint(
const std::vector<IntVar*>& x_vars, const std::vector<IntVar*>& y_vars,
absl::Span<const int64_t> x_size, absl::Span<const int64_t> y_size) {
std::vector<IntVar*> dx(x_size.size());
std::vector<IntVar*> dy(y_size.size());
for (int i = 0; i < x_size.size(); ++i) {
dx[i] = MakeIntConst(x_size[i]);
dy[i] = MakeIntConst(y_size[i]);
}
return RevAlloc(new Diffn(this, x_vars, y_vars, dx, dy, false));
}
Constraint* Solver::MakeNonOverlappingNonStrictBoxesConstraint(
const std::vector<IntVar*>& x_vars, const std::vector<IntVar*>& y_vars,
absl::Span<const int> x_size, absl::Span<const int> y_size) {
std::vector<IntVar*> dx(x_size.size());
std::vector<IntVar*> dy(y_size.size());
for (int i = 0; i < x_size.size(); ++i) {
dx[i] = MakeIntConst(x_size[i]);
dy[i] = MakeIntConst(y_size[i]);
}
return RevAlloc(new Diffn(this, x_vars, y_vars, dx, dy, false));
}
} // namespace operations_research