Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Copy v1beta1 preview SDK to GA directory #4702

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
179 changes: 179 additions & 0 deletions vertexai/rag/rag_retrieval.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,179 @@
# -*- coding: utf-8 -*-

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Retrieval query to get relevant contexts."""

import re
from typing import List, Optional
import warnings

from google.cloud.aiplatform import initializer
from google.cloud.aiplatform_v1 import RagQuery
from google.cloud.aiplatform_v1 import RagRetrievalConfig
from google.cloud.aiplatform_v1 import RetrieveContextsRequest
from google.cloud.aiplatform_v1 import RetrieveContextsResponse
from vertexai.rag.utils import _gapic_utils
from vertexai.rag.utils.resources import RagResource


def retrieval_query(
text: str,
rag_resources: Optional[List[RagResource]] = None,
rag_corpora: Optional[List[str]] = None,
similarity_top_k: Optional[int] = None,
vector_distance_threshold: Optional[float] = None,
rag_retrieval_config: Optional[RagRetrievalConfig] = None,
) -> RetrieveContextsResponse:
"""Retrieve top k relevant docs/chunks.

Example usage:
```
import vertexai

vertexai.init(project="my-project")

results = vertexai.preview.rag.retrieval_query(
text="Why is the sky blue?",
rag_resources=[vertexai.preview.rag.RagResource(
rag_corpus="projects/my-project/locations/us-central1/ragCorpora/rag-corpus-1",
rag_file_ids=["rag-file-1", "rag-file-2", ...],
)],
similarity_top_k=2,
vector_distance_threshold=0.5,
vector_search_alpha=0.5,
)
```

Args:
text: The query in text format to get relevant contexts.
rag_resources: A list of RagResource. It can be used to specify corpus
only or ragfiles. Currently only support one corpus or multiple files
from one corpus. In the future we may open up multiple corpora support.
rag_corpora: If rag_resources is not specified, use rag_corpora as a list
of rag corpora names.
similarity_top_k: The number of contexts to retrieve.
vector_distance_threshold: Optional. Only return contexts with vector
distance smaller than the threshold.
vector_search_alpha: Optional. Controls the weight between dense and
sparse vector search results. The range is [0, 1], where 0 means
sparse vector search only and 1 means dense vector search only.
The default value is 0.5.
rag_retrieval_config: Optional. The config containing the retrieval
parameters, including similarity_top_k, vector_distance_threshold,
vector_search_alpha, and hybrid_search.

Returns:
RetrieveContextsResonse.
"""
parent = initializer.global_config.common_location_path()

client = _gapic_utils.create_rag_service_client()

if rag_resources:
if len(rag_resources) > 1:
raise ValueError("Currently only support 1 RagResource.")
name = rag_resources[0].rag_corpus
elif rag_corpora:
if len(rag_corpora) > 1:
raise ValueError("Currently only support 1 RagCorpus.")
name = rag_corpora[0]
warnings.warn(
"rag_corpora is deprecated. Please use rag_resources instead.",
DeprecationWarning,
)
else:
raise ValueError("rag_resources or rag_corpora must be specified.")

data_client = _gapic_utils.create_rag_data_service_client()
if data_client.parse_rag_corpus_path(name):
rag_corpus_name = name
elif re.match("^{}$".format(_gapic_utils._VALID_RESOURCE_NAME_REGEX), name):
rag_corpus_name = parent + "/ragCorpora/" + name
else:
raise ValueError(
f"Invalid RagCorpus name: {rag_corpora}. Proper format should be:"
" projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}"
)

if rag_resources:
gapic_rag_resource = RetrieveContextsRequest.VertexRagStore.RagResource(
rag_corpus=rag_corpus_name,
rag_file_ids=rag_resources[0].rag_file_ids,
)
vertex_rag_store = RetrieveContextsRequest.VertexRagStore(
rag_resources=[gapic_rag_resource],
)
else:
vertex_rag_store = RetrieveContextsRequest.VertexRagStore(
rag_corpora=[rag_corpus_name],
)

# Check for deprecated parameters and raise warnings.
if similarity_top_k:
# If similarity_top_k is specified, throw deprecation warning.
warnings.warn(
"similarity_top_k is deprecated. Please use"
" rag_retrieval_config.top_k instead.",
DeprecationWarning,
)
else:
# If similarity_top_k is not specified, set it to default 10.
similarity_top_k = 10
if vector_distance_threshold:
# If vector_distance_threshold is specified, throw deprecation warning.
warnings.warn(
"vector_distance_threshold is deprecated. Please use"
" rag_retrieval_config.filter.vector_distance_threshold instead.",
DeprecationWarning,
)
else:
# If vector_distance_threshold is not specified, set it to default 0.3.
vector_distance_threshold = 0.3

# If rag_retrieval_config is not specified, set it to default values.
if not rag_retrieval_config:
rag_retrieval_config = RagRetrievalConfig(
top_k=similarity_top_k,
filter=RagRetrievalConfig.Filter(
vector_distance_threshold=vector_distance_threshold
),
)
else:
# If rag_retrieval_config is specified, check for missing parameters.
if not rag_retrieval_config.top_k:
rag_retrieval_config.top_k = similarity_top_k
if (
not rag_retrieval_config.filter
or not rag_retrieval_config.filter.vector_distance_threshold
):
rag_retrieval_config.filter = RagRetrievalConfig.Filter(
vector_distance_threshold=vector_distance_threshold
),
query = RagQuery(
text=text,
rag_retrieval_config=rag_retrieval_config,
)
request = RetrieveContextsRequest(
vertex_rag_store=vertex_rag_store,
parent=parent,
query=query,
)
try:
response = client.retrieve_contexts(request=request)
except Exception as e:
raise RuntimeError("Failed in retrieving contexts due to: ", e) from e

return response
122 changes: 122 additions & 0 deletions vertexai/rag/rag_store.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
# -*- coding: utf-8 -*-

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""RAG retrieval tool for content generation."""

import re
from typing import List, Optional, Union
from google.cloud.aiplatform_v1.types import tool as gapic_tool_types
from google.cloud.aiplatform import initializer
from vertexai.rag.utils import _gapic_utils
from vertexai.rag.utils.resources import RagResource
from vertexai.preview import generative_models


class Retrieval(generative_models.grounding.Retrieval):
"""Defines a retrieval tool that a model can call to access external knowledge."""

def __init__(
self,
source: Union["VertexRagStore"],
disable_attribution: Optional[bool] = False,
):
self._raw_retrieval = gapic_tool_types.Retrieval(
vertex_rag_store=source._raw_vertex_rag_store,
disable_attribution=disable_attribution,
)


class VertexRagStore:
"""Retrieve from Vertex RAG Store."""

def __init__(
self,
rag_resources: Optional[List[RagResource]] = None,
rag_corpora: Optional[List[str]] = None,
similarity_top_k: Optional[int] = 10,
vector_distance_threshold: Optional[float] = 0.3,
):
"""Initializes a Vertex RAG store tool.

Example usage:
```
import vertexai

vertexai.init(project="my-project")

results = vertexai.preview.rag.retrieval_query(
text="Why is the sky blue?",
rag_resources=[vertexai.preview.rag.RagResource(
rag_corpus="projects/my-project/locations/us-central1/ragCorpora/rag-corpus-1",
rag_file_ids=["rag-file-1", "rag-file-2", ...],
)],
similarity_top_k=2,
vector_distance_threshold=0.5,
)
```

Args:
rag_resources: List of RagResource to retrieve from. It can be used
to specify corpus only or ragfiles. Currently only support one
corpus or multiple files from one corpus. In the future we
may open up multiple corpora support.
rag_corpora: If rag_resources is not specified, use rag_corpora as a
list of rag corpora names.
similarity_top_k: Number of top k results to return from the selected
corpora.
vector_distance_threshold (float):
Optional. Only return results with vector distance smaller than the threshold.

"""

if rag_resources:
if len(rag_resources) > 1:
raise ValueError("Currently only support 1 RagResource.")
name = rag_resources[0].rag_corpus
elif rag_corpora:
if len(rag_corpora) > 1:
raise ValueError("Currently only support 1 RagCorpus.")
name = rag_corpora[0]
else:
raise ValueError("rag_resources or rag_corpora must be specified.")

data_client = _gapic_utils.create_rag_data_service_client()
if data_client.parse_rag_corpus_path(name):
rag_corpus_name = name
elif re.match("^{}$".format(_gapic_utils._VALID_RESOURCE_NAME_REGEX), name):
parent = initializer.global_config.common_location_path()
rag_corpus_name = parent + "/ragCorpora/" + name
else:
raise ValueError(
"Invalid RagCorpus name: %s. Proper format should be: projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}",
rag_corpora,
)
if rag_resources:
gapic_rag_resource = gapic_tool_types.VertexRagStore.RagResource(
rag_corpus=rag_corpus_name,
rag_file_ids=rag_resources[0].rag_file_ids,
)
self._raw_vertex_rag_store = gapic_tool_types.VertexRagStore(
rag_resources=[gapic_rag_resource],
similarity_top_k=similarity_top_k,
vector_distance_threshold=vector_distance_threshold,
)
else:
self._raw_vertex_rag_store = gapic_tool_types.VertexRagStore(
rag_corpora=[rag_corpus_name],
similarity_top_k=similarity_top_k,
vector_distance_threshold=vector_distance_threshold,
)