Skip to content

Latest commit

 

History

History
37 lines (24 loc) · 847 Bytes

README.md

File metadata and controls

37 lines (24 loc) · 847 Bytes

portopt

Mean-variance portfolio optimization.

Usage

from portopt import PortOpt


portfolio = PortOpt(assets='MutualFunds.csv')               # assets: filename of csv in assets directory

correlation = portfolio.correlation(startdate='2020-6-1', matrix_plot=True)
covariance  = portfolio.covariance(startdate='2020-6-1', matrix_plot=True)

portfolio_data, allocations = portfolio.optimize(
    n=1000, rf=0.0009, startdate='2020-6-1', ef_plot=True
)
ef_plot
Efficient frontier graph
portfolio_data
Return, volatility & sharpe of optimized portfolio
allocations
Asset allocations of optimized portfolio
matrix_plot
Plot heatmap for correlation or covariance matrix
correlation
Correlation matrix
covariance
Covariance matrix