-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMCMC-revision.Rmd
140 lines (115 loc) · 3.3 KB
/
MCMC-revision.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
title: "R Notebook"
output:
pdf_document: default
html_notebook: default
---
# Reading the data
```{r}
mcmc <- setNames(data.frame(matrix(ncol = 6, nrow = 1)), c("n", "k", "D", "kD", "Stop_Time", "nu2"))
mcmc
read.mcmc <- function(D, K, n, df) {
tv.fileName = paste("data/TV-V", toString(n), "K", toString(K), "D", toString(D), ".csv", sep="")
nu2.fileName = paste("data/NU2-V", toString(n), "K", toString(K), "D", toString(D), ".csv", sep="")
KD <- paste(toString(K), toString(D), sep="/")
stop <- nrow(read.csv(tv.fileName, skip = 2))
nu2 <- tail(read.csv(nu2.fileName, skip=2), n=1)$NU2.est
row <- c(n, K, D, KD, stop, nu2)
df <- rbind(df, row)
return(df)
}
# degree 3
D = 3
for (K in 5:5){
for (n in seq(4, 10, 2)){
mcmc <- read.mcmc(D, K, n, mcmc)
}
}
for (K in 6:7){
for (n in seq(4, 8, 2)){
mcmc <- read.mcmc(D, K, n, mcmc)
}
}
# degree 4
D = 4
for (K in 6:7){
for (n in seq(5, 9, 1)){
mcmc <- read.mcmc(D, K, n, mcmc)
}
}
# degree 4
D = 4
for (K in 6:6){
for (n in seq(9, 11, 1)){
mcmc <- read.mcmc(D, K, n, mcmc)
}
}
# degree 4
D = 4
for (K in 7:7){
for (n in seq(9, 9, 1)){ # change to 10
mcmc <- read.mcmc(D, K, n, mcmc)
}
}
```
# Read V12 K5 D3
```{r}
D = 3
n = 12
K = 5
tv.fileName = paste("data/TV-V", toString(n), "K", toString(K), "D", toString(D), ".csv", sep="")
nu2.fileName = paste("data/NU2-V", toString(n), "K", toString(K), "D", toString(D), ".csv", sep="")
KD <- paste(toString(K), toString(D), sep="/")
stop <- nrow(read.csv(tv.fileName, skip = 2))
row <- c(n, K, D, KD, stop, NA)
mcmc <- rbind(mcmc, row)
```
# Ensure proper types
```{r}
mcmc <- mcmc[-1,]
mcmc$k <- as.integer(mcmc$k)
mcmc$D <- as.integer(mcmc$D)
mcmc$n <- as.integer(mcmc$n)
mcmc$Stop_Time <- as.integer(mcmc$Stop_Time)
mcmc$nu2 <- as.numeric(mcmc$nu2)
mcmc
```
```{r}
library(ggplot2)
ggplot(mcmc, aes(n, Stop_Time)) + geom_point(aes(colour = kD), size = 3) + geom_line(aes(colour = kD), size = 1.5) + ggtitle("Stop Time over n for k/D curves")
```
```{r}
ggplot(mcmc, aes(n, log(nu2))) + geom_point(aes(colour = kD), size = 3) + geom_line(aes(colour = kD), size = 1.5) + ggtitle("log(nu) for n and k/D")
# small nu => mixes more slowly
# as size of graph gets bigger, then spectral gap gets smaller
```
```{r}
# stopping time <= O(log(n / eps)/nu2)
# this bound is very loose - much bigger than stopping time
# using bounds w nu2 not great for proving conjecture
# ordering is similar to stopping vs n graph
# nu2 picks one random starting vector, will benefit from more trials
ggplot(mcmc, aes(log(n/0.01)/nu2, Stop_Time)) + geom_point(aes(colour = kD), size = 3) + geom_line(aes(colour = kD), size = 1.5) + ggtitle("log(n/eps) / nu2 and stopping time")
```
```{r}
ggplot(mcmc, aes(log(nu2), Stop_Time)) + geom_point(aes(colour = kD), size = 3) + geom_line(aes(colour = kD), size = 1.5) + ggtitle("Stopping Time and log(nu2)")
```
```{r}
# nlogn coefficient
mcmc$nlogn <- mcmc$n * log(mcmc$n)
lm2 <- lm(Stop_Time ~ nlogn + D + k, data=mcmc)
summary(lm2)
plot(lm2)
```
```{r}
lm1 <- lm(Stop_Time ~ nlogn, data=mcmc)
summary(lm1)
lm.n <- lm(Stop_Time ~ n, data=mcmc)
lm.nlogn <- lm(Stop_Time ~ nlogn, data=mcmc)
plot(Stop_Time ~ nlogn, data=mcmc)
anova(lm.n, lm.nlogn)
```
```{r}
lm4 <- lm(Stop_Time ~ (nlogn + D + k)^2, data=mcmc)
summary(lm4)
```