-
Notifications
You must be signed in to change notification settings - Fork 1
/
poplar_kge.cpp
1008 lines (902 loc) · 44.7 KB
/
poplar_kge.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2022 Graphcore Ltd. All rights reserved.
#include "poplar_kge.hpp"
#include "fructose/frnn.hpp"
#include "fructose/fructose.hpp"
#include <cmath>
#include <iostream>
#include <sstream>
#include <poplar/CSRFunctions.hpp>
#include <poplar/Device.hpp>
#include <poplar/DeviceManager.hpp>
#include <poplar/Engine.hpp>
#include <poplar/IPUModel.hpp>
#include <poplar/Type.hpp>
#include <poplin/codelets.hpp>
#include <popnn/NonLinearity.hpp>
#include <popops/DynamicSlice.hpp>
#include <popops/ElementWise.hpp>
#include <popops/Fill.hpp>
#include <popops/Loop.hpp>
#include <popops/TopK.hpp>
#include <popops/Zero.hpp>
#include <popops/codelets.hpp>
#include <poprand/codelets.hpp>
namespace poplar {
template <>
struct equivalent_device_type<poplar_kge::float16> {
const Type& value = HALF;
};
} // namespace poplar
namespace poplar_kge {
namespace {
template <class T>
const T& get(const std::unordered_map<std::string, T>& data, const std::string& key) {
auto it = data.find(key);
if (it == data.end()) {
std::ostringstream msg;
msg << "Key not found '" << key << "'";
throw std::invalid_argument(msg.str());
}
return it->second;
}
template <class T>
T& get(std::unordered_map<std::string, T>& data, const std::string& key) {
return const_cast<T&>(get(static_cast<const std::unordered_map<std::string, T>&>(data), key));
}
template <class T>
const T& extract(const Batch& data, const std::string& key) {
auto& value = get(data, key);
if (!std::holds_alternative<T>(value)) {
std::ostringstream msg;
msg << "Key '" << key << "' holds value of unexpected type. Expected: '" << typeid(T).name()
<< "', actual: '" << std::visit([](auto& v) { return typeid(v).name(); }, value)
<< "'.";
throw std::invalid_argument(msg.str());
}
return std::get<T>(value);
}
template <class T>
T& extract(Batch& data, const std::string& key) {
return const_cast<T&>(extract<T>(static_cast<const Batch&>(data), key));
}
template <class... Args>
struct GetData {};
template <class Head, class... Tail>
struct GetData<Head, Tail...> {
static std::tuple<void*, void*> value(const std::string& name,
const fr::Tensor::Spec& spec,
Batch::mapped_type& value) {
if (std::holds_alternative<ArrayView<Head>>(value)) {
auto& array = std::get<ArrayView<Head>>(value);
auto headType = poplar::equivalent_device_type<Head>().value;
if (headType != spec.dtype) {
std::ostringstream msg;
msg << "'" << name << "' expected array of type " << spec.dtype
<< ", actual: " << headType;
throw std::invalid_argument(msg.str());
}
if (fr::util::seq(spec.shape) != fr::util::seq(array.shape())) {
std::ostringstream msg;
msg << "'" << name << "' expected array of shape " << fr::util::seq(spec.shape)
<< ", actual: " << fr::util::seq(array.shape());
throw std::invalid_argument(msg.str());
}
return {array.data(), array.data() + fr::util::numElements(array.shape())};
}
return GetData<Tail...>::value(name, spec, value);
}
};
template <>
struct GetData<> {
static std::tuple<void*, void*> value(const std::string& name,
const fr::Tensor::Spec& spec,
Batch::mapped_type& value) {
std::ostringstream msg;
msg << "'" << name << "' expected type " << spec.dtype << ", actual: <not found> (index "
<< value.index() << ")";
throw std::invalid_argument(msg.str());
}
};
poplar::Device attach(const Batch& settings) {
auto nShard = extract<unsigned>(settings, "model.n_shard");
auto type = extract<std::string>(settings, "execution.device");
if (type == "cpu") {
return poplar::Device::createCPUDevice(nShard);
} else if (type == "ipu") {
auto manager = poplar::DeviceManager::createDeviceManager();
for (auto&& device : manager.getDevices(poplar::TargetType::IPU, nShard)) {
if (device.attach()) {
return std::move(device);
}
}
std::ostringstream msg;
msg << "Could not attach to an " << nShard << " IPU device";
throw std::runtime_error(msg.str());
} else if (type == "ipu_model") {
poplar::IPUModel model;
model.numIPUs = nShard;
return model.createDevice();
} else {
std::ostringstream msg;
msg << "Unexpected setting \"device\": '" << nShard << "', expected \"cpu\" or \"ipu\"";
throw std::invalid_argument(msg.str());
}
}
struct Model {
struct FeatureNetwork {
fr::Tensor featureProjection;
fr::Tensor mlpUpProjection;
fr::Tensor mlpDownProjection;
};
struct NormRegularisation {
float power;
float weight;
NormRegularisation(const Batch& settings, const std::string& prefix)
: power(extract<float>(settings, prefix + ".power")),
weight(extract<float>(settings, prefix + ".weight")) {}
};
// Settings
Batch settings;
unsigned seed;
std::string scoreFn;
std::string distanceFn;
unsigned nShard;
unsigned nEntity;
unsigned nRelationType;
unsigned entityEmbeddingSize;
unsigned relationEmbeddingSize;
unsigned entityFeatureSize;
unsigned featureMlpSize;
float featureDropout;
bool shareFeatureNetworks;
float gamma;
float initScale;
fr::nn::AdamParams adamParams;
std::unordered_map<std::string, float> learningRateModifiers;
unsigned batchSize;
unsigned a2aSize;
float negativeAdversarialScale;
std::string lossFn;
NormRegularisation embeddingRegularisation;
NormRegularisation featureRegularisation;
NormRegularisation hiddenRegularisation;
float softmaxLossCorrectionWeight;
float lossScale;
poplar::Type dtype;
unsigned trainStepsPerProgramRun;
unsigned rwBatchSize;
unsigned predictHrBatchSize;
unsigned predictTailBatchSize;
unsigned predictNBest;
// Variables/buffers
fr::Tensor relationEmbedding;
fr::Tensor relationNormal;
FeatureNetwork headFeatureNetwork;
FeatureNetwork tailFeatureNetwork;
fr::Buffer entityData;
// Parameters, a trainable subset of variables
std::unordered_set<std::string> parameters;
Model(const Batch& settings)
: settings(settings),
seed(extract<unsigned>(settings, "model.seed")),
scoreFn(extract<std::string>(settings, "model.score_fn")),
distanceFn(extract<std::string>(settings, "model.distance_fn")),
nShard(extract<unsigned>(settings, "model.n_shard")),
nEntity(extract<unsigned>(settings, "model.n_entity")),
nRelationType(extract<unsigned>(settings, "model.n_relation_type")),
entityEmbeddingSize(extract<unsigned>(settings, "model.embedding_size")),
entityFeatureSize(extract<unsigned>(settings, "model.entity_feature_size")),
featureMlpSize(extract<unsigned>(settings, "model.feature_mlp_size")),
featureDropout(extract<float>(settings, "model.feature_dropout")),
shareFeatureNetworks(extract<bool>(settings, "model.share_feature_networks")),
gamma(extract<float>(settings, "model.gamma")),
initScale(extract<float>(settings, "model.init_scale")),
adamParams{/*betaM*/ extract<float>(settings, "training.adam_beta_m"),
/*betaV*/ extract<float>(settings, "training.adam_beta_v"),
/*epsilon*/ extract<float>(settings, "training.adam_epsilon"),
/*weightDecay*/ extract<float>(settings, "training.weight_decay")},
learningRateModifiers{
extract<std::unordered_map<std::string, float>>(settings,
"training.learning_rate_modifiers")},
batchSize(extract<unsigned>(settings, "data.batch_size")),
a2aSize(extract<unsigned>(settings, "data.a2a_size")),
negativeAdversarialScale(extract<float>(settings, "model.negative_adversarial_scale")),
lossFn(extract<std::string>(settings, "training.loss.type")),
embeddingRegularisation(settings, "training.embedding_regularisation"),
featureRegularisation(settings, "training.feature_regularisation"),
hiddenRegularisation(settings, "training.hidden_regularisation"),
softmaxLossCorrectionWeight(
lossFn == "softmax" ? extract<float>(settings, "training.loss.correction_weight")
: 0),
lossScale(extract<float>(settings, "training.loss_scale")),
trainStepsPerProgramRun(
extract<unsigned>(settings, "execution.train_steps_per_program_run")),
rwBatchSize(extract<unsigned>(settings, "execution.rw_batch_size")),
predictHrBatchSize(extract<unsigned>(settings, "execution.predict_hr_batch_size")),
predictTailBatchSize(extract<unsigned>(settings, "execution.predict_tail_batch_size")),
predictNBest(extract<unsigned>(settings, "execution.predict_n_best")) {
if (extract<std::string>(settings, "execution.dtype") == "float32") {
dtype = poplar::FLOAT;
} else if (extract<std::string>(settings, "execution.dtype") == "float16") {
dtype = poplar::HALF;
} else {
std::ostringstream msg;
msg << "'execution.dtype' must either be 'float16' or 'float32', not '"
<< extract<std::string>(settings, "execution.dtype") << "'";
throw std::invalid_argument(msg.str());
}
// Register variables/parameters/buffers
relationEmbeddingSize =
(scoreFn == "RotatE") ? entityEmbeddingSize / 2 : entityEmbeddingSize;
relationEmbedding =
addParameter("relation_embedding", {nRelationType, relationEmbeddingSize});
if (scoreFn == "TransH") {
relationNormal =
addParameter("relation_normal", {nRelationType, relationEmbeddingSize});
}
auto createFeatureNetwork = [this](const std::string& prefix) {
FeatureNetwork network;
network.featureProjection = addParameter(prefix + "feature_projection",
{entityFeatureSize, entityEmbeddingSize});
if (featureMlpSize > 0) {
network.mlpUpProjection = addParameter(prefix + "mlp_up_projection",
{2 * entityEmbeddingSize, featureMlpSize});
network.mlpDownProjection = addParameter(prefix + "mlp_down_projection",
{featureMlpSize, entityEmbeddingSize});
}
return network;
};
if (shareFeatureNetworks) {
headFeatureNetwork = tailFeatureNetwork = createFeatureNetwork("");
} else {
headFeatureNetwork = createFeatureNetwork("head_");
tailFeatureNetwork = createFeatureNetwork("tail_");
}
entityData = fr::Buffer("entity_data",
{{nEntity, 3 * entityEmbeddingSize + entityFeatureSize}, dtype});
// Checks
for (auto& item : learningRateModifiers) {
if (!parameters.count(item.first) && item.first != "entity_embedding") {
std::ostringstream msg;
msg << "Bad training.learning_rate_modifier: unknown parameter '" << item.first
<< "'";
throw std::invalid_argument(msg.str());
}
}
}
// Utilities
fr::Tensor addParameter(const std::string& name, const fr::Tensor::Shape& shape) {
assert(parameters.find(name) == parameters.end() && "duplicate parameter");
parameters.insert(name);
if (shape[0] % nShard) {
std::ostringstream msg;
msg << "Parameter '" << name << "' shape[0] (" << shape[0]
<< ") is not divisible by n_shard (" << nShard
<< "). Note shape: " << fr::util::seq(shape);
throw std::invalid_argument(msg.str());
}
auto shardShape = shape;
shardShape[0] /= nShard;
return fr::ops::variable(name, {shardShape, poplar::FLOAT});
}
std::unordered_map<std::string, fr::Tensor::Spec> finaliseVariables() const {
std::unordered_map<std::string, fr::Tensor::Spec> result;
for (auto& entry : fr::Environment::rootFrame().variables) {
entry.second.hostAccess();
auto shape = entry.second.shape();
if (shape.empty()) {
shape.push_back(1);
}
shape.front() *= nShard;
result.insert({entry.first, {shape, entry.second.dtype()}});
}
return result;
}
// Helpers
fr::Tensor modifiedStepSize(const fr::Tensor& globalStepSize, const std::string& parameter) {
if (learningRateModifiers.count(parameter)) {
return globalStepSize * fr::ops::constant(learningRateModifiers[parameter]);
}
return globalStepSize;
}
void updateParameters(const fr::Tensor& stepSize) {
for (auto& name : parameters) {
auto& variable = get(fr::Environment::rootFrame().variables, name);
auto adamM = fr::ops::variable(variable.name() + "/adam_m", variable.spec(),
/*requiresGrad*/ false);
auto adamV = fr::ops::variable(variable.name() + "/adam_v", variable.spec(),
/*requiresGrad*/ false);
fr::nn::adam(variable, adamM, adamV, modifiedStepSize(stepSize, variable.name()),
adamParams);
}
}
fr::Tensor gatherShards(const fr::Tensor& shard) {
if (2 <= nShard) {
auto shape = shard.shape();
shape.front() *= nShard;
return fr::ops::allGather(shard).reshape(shape);
}
return shard;
}
/**
* Implements a dynamic slice with a switch statement, which gives more predictable memory
* usage than popops::dynamicSlice.
*/
static fr::Tensor switchedSlice(const fr::Tensor& tensor, const fr::Tensor& index) {
fr::Frame f("switchedSlice");
if (f.graph.requiresGrad(tensor.pag())) {
throw std::logic_error("switchedSlice does not support gradients");
}
auto poplarTensor = f.graph.unwrap(tensor.pag());
auto output = fr::Tensor::declare(
{{tensor.shape().begin() + 1, tensor.shape().end()}, tensor.dtype()},
/*requiresGrad*/ false, tensor.name() + "/switchedSlice");
fr::mapping::setDefault(fr::mapping::Copy(poplarTensor[0]), {output});
poplar::program::Switch switch_(f.graph.unwrap(index.pag()), f.di);
for (auto i = 0u; i < tensor.shape()[0]; ++i) {
std::ostringstream name;
name << "case_" << i;
switch_.add(i, poplar::program::Copy(poplarTensor[i], f.graph.unwrap(output.pag()),
/*dontOutline*/ false, {f.di, name.str()}));
}
f.tape.prog().add(switch_);
return output;
}
// Distance functions
// Note: these direct implementations show high memory usage
fr::Tensor l1distance(const fr::Tensor& a, const fr::Tensor& b) {
return fr::ops::sum(fr::ops::abs(a.reshape({a.shape().at(0), 1, a.shape()[1]}) -
b.reshape({1, b.shape().at(0), b.shape()[1]})),
{2});
}
fr::Tensor l2norm(const fr::Tensor& a) {
return fr::ops::sqrt(fr::ops::sum(fr::ops::square(a), {a.rank() - 1}));
}
fr::Tensor lpnorm(const fr::Tensor& a, float p) {
return fr::ops::pow(fr::ops::sum(fr::ops::abs(fr::ops::pow(a, p)), {a.rank() - 1}), 1. / p);
}
fr::Tensor l2distance(const fr::Tensor& a, const fr::Tensor& b) {
return l2norm(a.reshape({a.shape().at(0), 1, a.shape()[1]}) -
b.reshape({1, b.shape().at(0), b.shape()[1]}));
}
struct EntityEmbedding {
fr::Tensor value;
fr::Tensor adamM;
fr::Tensor adamSqrtV;
fr::Tensor feature;
};
EntityEmbedding getEntityData(const fr::Tensor& indices) {
auto data = entityData.read(indices).astype(poplar::FLOAT);
auto parts = data.split(
1u, {entityEmbeddingSize, entityEmbeddingSize, entityEmbeddingSize, entityFeatureSize});
return {parts[0], parts[1], parts[2], parts[3]};
}
void setEntityData(const EntityEmbedding& entities, const fr::Tensor& indices) {
auto data = fr::ops::concat(
{entities.value, entities.adamM, entities.adamSqrtV, entities.feature}, 1u)
.astype(dtype);
entityData.write(data, indices);
}
fr::Tensor entityHiddenPredict(const EntityEmbedding& entities, const std::string& part) {
fr::Tensor dummy;
return entityHidden(entities, part, dummy, /*training=*/false);
}
fr::Tensor entityHiddenTrain(const EntityEmbedding& entities,
const std::string& part,
fr::Tensor& regularisationLoss) {
return entityHidden(entities, part, regularisationLoss, /*training=*/true);
}
void addNormRegularisation(const NormRegularisation& regularisation,
const fr::Tensor& tensor,
fr::Tensor& loss) {
if (loss.valid() && regularisation.weight > 0) {
loss = loss + fr::ops::constant(regularisation.weight) *
fr::ops::sum(lpnorm(tensor, regularisation.power));
}
}
fr::Tensor entityHidden(const EntityEmbedding& entities,
const std::string& part,
fr::Tensor& regularisationLoss,
bool training) {
FeatureNetwork network;
if (part == "head") {
network = headFeatureNetwork;
} else if (part == "tail") {
network = tailFeatureNetwork;
} else {
assert(false && "unexpected part - expected 'head' or 'tail'");
}
auto featureHidden =
fr::ops::matMul(entities.feature, gatherShards(network.featureProjection));
if (featureMlpSize > 0) {
auto entityConcat = fr::ops::concat({entities.value, featureHidden}, 1u);
auto entityBoom =
fr::nn::relu(fr::ops::matMul(entityConcat, gatherShards(network.mlpUpProjection)));
featureHidden = fr::ops::matMul(entityBoom, gatherShards(network.mlpDownProjection));
}
if (training && featureDropout > 0) {
featureHidden = fr::nn::dropout(featureHidden, featureDropout);
}
auto hidden = entities.value + featureHidden;
addNormRegularisation(embeddingRegularisation, entities.value, regularisationLoss);
addNormRegularisation(featureRegularisation, featureHidden, regularisationLoss);
addNormRegularisation(hiddenRegularisation, hidden, regularisationLoss);
return hidden;
}
fr::Tensor distance(const fr::Tensor& a, const fr::Tensor& b) {
if (distanceFn == "L1") {
return fr::ops::l1distance(a, b);
} else if (distanceFn == "L1_old") {
return l1distance(a, b);
} else if (distanceFn == "L2") {
return fr::ops::l2distance(a, b);
} else if (distanceFn == "L2_old") {
return l2distance(a, b);
} else if (distanceFn == "MatMul") {
return fr::ops::matMul(a, b.transpose());
} else {
std::ostringstream msg;
msg << "'model.distance_fn' must be one of 'L1', 'L1_old', 'L2' or 'L2_old', not "
<< extract<std::string>(settings, "model.distance_fn") << "'";
throw std::invalid_argument(msg.str());
}
}
fr::Tensor transEPredict(const fr::Tensor& heads, const fr::Tensor& relationIndices) {
return heads + fr::ops::gather(gatherShards(relationEmbedding), relationIndices);
}
fr::Tensor transEScore(const fr::Tensor& predictedTails, const fr::Tensor& tails) {
// Note: copyToLinearTensor is a temporary workaround improve the exchange compilation
// time into l1distance
return fr::ops::constant(gamma) -
distance(
fr::ops::copyToLinearTensor(predictedTails, std::nullopt, entityEmbeddingSize),
fr::ops::copyToLinearTensor(tails, std::nullopt, entityEmbeddingSize));
}
fr::Tensor complExPredict(const fr::Tensor& heads, const fr::Tensor& relationIndices) {
auto dim = heads.rank() - 1;
auto relations = fr::ops::gather(gatherShards(relationEmbedding), relationIndices);
auto complexHeads = heads.split(dim, {entityEmbeddingSize / 2, entityEmbeddingSize / 2});
auto complexRels =
relations.split(dim, {relationEmbeddingSize / 2, relationEmbeddingSize / 2});
auto rePredictedTails = complexHeads[0] * complexRels[0] - complexHeads[1] * complexRels[1];
auto imPredictedTails = complexHeads[0] * complexRels[1] + complexHeads[1] * complexRels[0];
return fr::ops::concat({rePredictedTails, imPredictedTails}, dim);
}
fr::Tensor complExScore(const fr::Tensor& predictedTails, const fr::Tensor& tails) {
return distance(predictedTails, tails);
}
fr::Tensor rotatEPredict(const fr::Tensor& heads, const fr::Tensor& relationIndices) {
auto dim = heads.rank() - 1;
auto parts = heads.split(dim, {relationEmbeddingSize, relationEmbeddingSize});
auto reHead = parts[0];
auto imHead = parts[1];
auto relations =
fr::ops::gather(gatherShards(relationEmbedding), relationIndices).astype(poplar::HALF);
auto sinRelation = fr::ops::sin(relations).astype(poplar::FLOAT);
auto cosRelation = fr::ops::cos(relations).astype(poplar::FLOAT);
auto reHeadRel = reHead * cosRelation - imHead * sinRelation;
auto imHeadRel = imHead * cosRelation + reHead * sinRelation;
return fr::ops::concat({reHeadRel, imHeadRel}, dim);
}
fr::Tensor rotatEScore(const fr::Tensor& predictedTails, const fr::Tensor& tails) {
return fr::ops::constant(gamma) -
distance(
fr::ops::copyToLinearTensor(predictedTails, std::nullopt, entityEmbeddingSize),
fr::ops::copyToLinearTensor(tails, std::nullopt, entityEmbeddingSize));
}
fr::Tensor transHPredict(const fr::Tensor& heads, const fr::Tensor& relationIndices) {
auto normalVecs = fr::ops::gather(gatherShards(relationNormal), relationIndices);
normalVecs = normalVecs / l2norm(normalVecs).reshape({normalVecs.shape().at(0), 1});
// Project heads to hyperplane
auto headsNorm = fr::ops::sum(normalVecs * heads, {heads.rank() - 1});
auto projectedHeads = heads - normalVecs * headsNorm.reshape({headsNorm.shape().at(0), 1});
// Predict tails
auto predictedTails =
projectedHeads + fr::ops::gather(gatherShards(relationEmbedding), relationIndices);
return fr::ops::concat({normalVecs, predictedTails}, normalVecs.rank() - 1);
}
fr::Tensor transHScore(const fr::Tensor& normAndTails, const fr::Tensor& tails) {
auto rank = normAndTails.rank();
auto parts = normAndTails.split(rank - 1, {relationEmbeddingSize, relationEmbeddingSize});
auto normalVecs = parts[0];
auto predictedTails =
parts[1].reshape({normAndTails.shape().at(0), 1, entityEmbeddingSize});
// Project tails to hyperplane
auto tailsNorm = fr::ops::matMul(normalVecs, tails.transpose());
auto projectedTails =
tails.reshape({1, tails.shape().at(0), entityEmbeddingSize}) -
normalVecs.reshape({normalVecs.shape().at(0), 1, relationEmbeddingSize}) *
tailsNorm.reshape({tailsNorm.shape().at(0), tailsNorm.shape().at(1), 1});
return fr::ops::constant(gamma) -
fr::ops::sum(fr::ops::abs(predictedTails - projectedTails), {2});
}
fr::Tensor distMultPredict(const fr::Tensor& heads, const fr::Tensor& relationIndices) {
return heads * fr::ops::gather(gatherShards(relationEmbedding), relationIndices);
}
fr::Tensor distMultScore(const fr::Tensor& headTimesRel, const fr::Tensor& tails) {
return fr::ops::matMul(headTimesRel, tails.transpose());
}
fr::Tensor predictTail(const fr::Tensor& heads, const fr::Tensor& relationIndices) {
if (scoreFn == "TransE") {
return transEPredict(heads, relationIndices);
} else if (scoreFn == "ComplEx") {
return complExPredict(heads, relationIndices);
} else if (scoreFn == "RotatE") {
return rotatEPredict(heads, relationIndices);
} else if (scoreFn == "TransH") {
return transHPredict(heads, relationIndices);
} else if (scoreFn == "DistMult") {
return distMultPredict(heads, relationIndices);
} else {
std::ostringstream msg;
msg << "'model.score_fn' must be one of 'TransE', 'ComplEx', 'RotatE', 'TransH', or "
"'DistMult', not '"
<< extract<std::string>(settings, "model.score_fn") << "'";
throw std::invalid_argument(msg.str());
}
}
fr::Tensor score(const fr::Tensor& predictedTails, const fr::Tensor& tails) {
if (scoreFn == "TransE") {
return transEScore(predictedTails, tails);
} else if (scoreFn == "ComplEx") {
return complExScore(predictedTails, tails);
} else if (scoreFn == "RotatE") {
return rotatEScore(predictedTails, tails);
} else if (scoreFn == "TransH") {
return transHScore(predictedTails, tails);
} else if (scoreFn == "DistMult") {
return distMultScore(predictedTails, tails);
} else {
std::ostringstream msg;
msg << "'model.score_fn' must be one of 'TransE', 'ComplEx', 'RotatE', 'TransH', or "
"'DistMult', not '"
<< extract<std::string>(settings, "model.score_fn") << "'";
throw std::invalid_argument(msg.str());
}
}
fr::Tensor getLoss(const fr::Tensor& scores, const fr::Tensor& tailIndices) {
if (lossFn == "logsigmoid") {
auto nTails = nShard * a2aSize;
auto oneHotTails = fr::ops::oneHot(tailIndices, nTails, poplar::FLOAT);
auto negativeWeight = (0.5f * nTails) / (nTails - 1);
auto positiveWeight = 0.5f * nTails;
auto weight = fr::ops::constant(positiveWeight - negativeWeight) * oneHotTails +
fr::ops::constant(negativeWeight);
if (negativeAdversarialScale > 0) {
fr::Frame f;
auto negScoreSoftmax =
detachedSoftmax((fr::ops::constant(negativeAdversarialScale, poplar::FLOAT) *
fr::Tensor::wrap(f.graph.wrap(f.graph.unwrap(scores.pag()),
/*requiresGrad*/ false))) +
(fr::ops::constant(-10000.0f, poplar::FLOAT) * oneHotTails));
weight =
weight * (oneHotTails + fr::ops::constant(nShard * a2aSize - 1, poplar::FLOAT) *
negScoreSoftmax);
}
auto tailMask = fr::ops::constant(2.0f) * oneHotTails - fr::ops::constant(1.0f);
return -fr::ops::sum(weight * fr::ops::logSigmoid(tailMask * scores)) /
fr::ops::constant(nShard * batchSize * a2aSize * nShard, poplar::FLOAT);
} else if (lossFn == "softmax") {
auto correctedScores = scores;
if (softmaxLossCorrectionWeight) {
// The correction for noise scores includes:
// + log(nClasses) -- increase by size of vocabulary
// - log(nSamples) -- decrease according to sampling probability (flat sampling)
float correction = std::log(nEntity * nShard - 1) - std::log(nShard * a2aSize - 1);
correctedScores =
correctedScores +
fr::ops::constant(softmaxLossCorrectionWeight * correction) *
(fr::ops::constant(1.0f) -
fr::ops::oneHot(tailIndices, nShard * a2aSize, poplar::FLOAT));
}
return fr::ops::sum(fr::nn::softmaxCrossEntropy(correctedScores, tailIndices)) /
fr::ops::constant(nShard * batchSize, poplar::FLOAT);
} else {
std::ostringstream msg;
msg << "'training.loss.type' must be one of 'logsigmoid' or 'softmax', not '" << lossFn
<< "'";
throw std::invalid_argument(msg.str());
}
}
// Programs
fr::Tensor trainStep(const fr::Tensor& learningRate,
const fr::Tensor& remoteIndices,
const fr::Tensor& a2aIndices,
const fr::Tensor& headIndices,
const fr::Tensor& relationIndices,
const fr::Tensor& tailIndices) {
// 1. Gather entity embeddings and combine features
auto entities = getEntityData(remoteIndices);
entities.value = fr::ops::startGrad(entities.value);
auto regularisationLoss = fr::ops::constant(0.0f);
// 2. Redistribute negative samples
auto heads =
fr::ops::gather(entityHiddenTrain(entities, "head", regularisationLoss), headIndices);
auto tails = fr::ops::gather(entityHiddenTrain(entities, "tail", regularisationLoss),
a2aIndices.reshape({nShard * a2aSize}));
tails = fr::ops::allToAll(tails.reshape({nShard, a2aSize, entityEmbeddingSize}))
.reshape({nShard * a2aSize, entityEmbeddingSize});
// 3. Compute scores
auto predictedTails = predictTail(heads, relationIndices);
auto scores = score(predictedTails, tails);
// 4. Compute loss
auto loss = getLoss(scores, tailIndices) + regularisationLoss;
// 5. Compute update
loss.backward(fr::ops::constant(lossScale));
auto stepSize = fr::nn::adamStepSizeAutoIncrement(
fr::ops::variable("step", {{}, poplar::UNSIGNED_INT}), learningRate, adamParams);
updateParameters(stepSize);
{
fr::Frame f;
popops::squareInPlace(f.graph.poplar(), f.graph.unwrap(entities.adamSqrtV.pag()),
f.tape.prog(), f.di);
fr::nn::adam(entities.value, entities.adamM, entities.adamSqrtV,
modifiedStepSize(stepSize, "entity_embedding"), adamParams);
popops::sqrtInPlace(f.graph.poplar(), f.graph.unwrap(entities.adamSqrtV.pag()),
f.tape.prog(), f.di);
}
setEntityData(entities, remoteIndices);
return loss;
}
void trainStepLoop() {
auto nStep = trainStepsPerProgramRun;
// Input streams
auto learningRate = fr::ops::input("learning_rate", {{}, poplar::FLOAT});
auto remoteIndices =
fr::ops::input("remote", {{nStep, batchSize + nShard * a2aSize}, poplar::UNSIGNED_INT});
auto a2aIndices = fr::ops::input("a2a", {{nStep, nShard, a2aSize}, poplar::UNSIGNED_INT});
auto headIndices = fr::ops::input("head", {{nStep, batchSize}, poplar::UNSIGNED_INT});
auto relationIndices =
fr::ops::input("relation", {{nStep, batchSize}, poplar::UNSIGNED_INT});
auto tailIndices = fr::ops::input("tail", {{nStep, batchSize}, poplar::UNSIGNED_INT});
// Training step loop
auto totalLoss = fr::Tensor::declare({{}, poplar::FLOAT}, false, "total_loss");
fr::mapping::setDefault(fr::mapping::OneTile(), {totalLoss});
{
fr::Frame f("total_loss");
popops::zero(f.graph.poplar(), f.graph.unwrap(totalLoss.pag()), f.tape.prog(), f.di);
}
fr::ops::forN(nStep, [&](const fr::Tensor& index) {
fr::Frame f;
auto stepLoss =
trainStep(learningRate, switchedSlice(remoteIndices, index),
switchedSlice(a2aIndices, index), switchedSlice(headIndices, index),
switchedSlice(relationIndices, index), switchedSlice(tailIndices, index));
popops::addInPlace(f.graph.poplar(), f.graph.unwrap(totalLoss.pag()),
f.graph.unwrap(stepLoss.pag()), f.tape.prog(), f.di);
});
// Output streams
fr::ops::output("loss", totalLoss / fr::ops::constant<float>(nStep));
}
struct TopKCollector {
static constexpr float BadScore = -1e6f;
unsigned hrBatchSize;
unsigned tailBatchSize;
unsigned nBest;
TopKCollector(unsigned hrBatchSize, unsigned tailBatchSize, unsigned nBest)
: hrBatchSize(hrBatchSize), tailBatchSize(tailBatchSize), nBest(nBest) {
fr::Frame f("TopKCollector");
m_mergedScores = f.graph.poplar().addVariable(
poplar::FLOAT, {hrBatchSize, nBest + tailBatchSize},
poplar::VariableMappingMethod::LINEAR, {f.di, "mergedScores"});
popops::fill(f.graph.poplar(), m_mergedScores, f.tape.prog(), BadScore, f.di);
m_bestIndices = f.graph.poplar().addVariable(poplar::UNSIGNED_INT, {hrBatchSize, nBest},
poplar::VariableMappingMethod::LINEAR,
{f.di, "bestIndices"});
popops::zero(f.graph.poplar(), m_bestIndices, f.tape.prog(), f.di);
}
void add(const fr::Tensor& scores, const fr::Tensor& indices) {
fr::Frame f("TopKCollector::add");
f.tape.prog().add(
poplar::program::Copy(f.graph.unwrap(scores.pag()),
m_mergedScores.slice({nBest, nBest + tailBatchSize}, 1u),
/*dontOutline*/ false, f.di));
auto ki = popops::topKWithPermutation(
f.graph.poplar(), f.tape.prog(), m_mergedScores,
{nBest, /*largest*/ true, popops::SortOrder::NONE}, f.di);
f.tape.prog().add(poplar::program::Copy(ki.first, m_mergedScores.slice({0, nBest}, 1u),
/*dontOutline*/ false, f.di));
auto mergedIndices = poplar::concat(
{m_bestIndices,
f.graph.unwrap(indices.pag()).expand({0u}).broadcast(hrBatchSize, 0u)},
1u);
auto plan = popops::embedding::plan(f.graph.poplar(), poplar::UNSIGNED_INT,
/*groupSize*/ hrBatchSize,
/*numEntries*/ nBest + tailBatchSize,
/*outputSize*/ 1, /*numLookups*/ {nBest}, {});
auto newBestIndices =
popops::groupedMultiSlice(f.graph.poplar(), mergedIndices.expand({2u}),
ki.second.expand({2u}), {0u}, {1u}, f.tape.prog(), plan,
{}, f.di)
.squeeze({2u, 3u});
f.tape.prog().add(poplar::program::Copy(newBestIndices, m_bestIndices,
/*dontOutline*/ false, f.di));
}
fr::Tensor bestScores() const {
auto& f = fr::Environment::frame();
return fr::Tensor::wrap(
f.graph.wrap(m_mergedScores.slice({0, nBest}, 1u), /*requiresGrad*/ false));
}
fr::Tensor bestIndices() const {
auto& f = fr::Environment::frame();
return fr::Tensor::wrap(f.graph.wrap(m_bestIndices, /*requiresGrad*/ false));
}
private:
poplar::Tensor m_mergedScores;
poplar::Tensor m_bestIndices;
};
void predict() {
// 0. Input streams
auto headIndices =
fr::ops::input("predict_head", {{predictHrBatchSize}, poplar::UNSIGNED_INT});
auto relationIndices =
fr::ops::input("predict_relation", {{predictHrBatchSize}, poplar::UNSIGNED_INT});
// Note: entityCount should be the number of "real" entities (not including padding=#0)
auto entityCount = fr::ops::input("predict_entity_count", {{}, poplar::UNSIGNED_INT});
// 1. Head computation
const auto allHrBatchSize = nShard * predictHrBatchSize;
const auto predictedTailSize =
(scoreFn == "TransH") ? entityEmbeddingSize * 2 : entityEmbeddingSize;
auto predictedTails =
fr::ops::allGather(predictTail(entityHiddenPredict(getEntityData(headIndices), "head"),
relationIndices))
.reshape({allHrBatchSize, predictedTailSize});
// 2. Tail scoring loop
TopKCollector collector(allHrBatchSize, predictTailBatchSize, predictNBest);
auto baseIndexRange =
fr::ops::constant(fr::util::arange<unsigned>(1, 1 + predictTailBatchSize));
auto nLoop = (nEntity - 1 + predictTailBatchSize - 1) / predictTailBatchSize;
fr::ops::forN(nLoop, [&](const fr::Tensor& index) {
auto tailIndices = baseIndexRange + fr::ops::constant(predictTailBatchSize) * index;
auto tailMask = tailIndices < (entityCount + fr::ops::constant(1u));
auto tails = entityHiddenPredict(
getEntityData(tailIndices * tailMask.astype(poplar::UNSIGNED_INT)), "tail");
auto scores =
score(predictedTails, tails) +
(fr::ops::constant(TopKCollector::BadScore) * (~tailMask).astype(poplar::FLOAT));
collector.add(scores, tailIndices);
});
// 3. Swap results back to the original shard
auto bestScores = fr::ops::allToAll(
collector.bestScores().reshape({nShard, predictHrBatchSize, predictNBest}));
auto bestIndices = fr::ops::allToAll(
collector.bestIndices().reshape({nShard, predictHrBatchSize, predictNBest}));
// 3. Output streams
fr::ops::output("predict_scores", bestScores);
fr::ops::output("predict_indices", bestIndices);
}
void readEntity() {
auto indices = fr::ops::input("read_indices", {{rwBatchSize}, poplar::UNSIGNED_INT});
auto data = entityData.read(indices);
fr::ops::output("read_data", data);
}
/* N.B. also zeros the adam moments */
void writeEntity() {
auto embeddings = fr::ops::randomNormal(0.0f, initScale / entityEmbeddingSize,
{rwBatchSize, entityEmbeddingSize}, seed, dtype);
auto adamMoments = fr::ops::full({{rwBatchSize, 2 * entityEmbeddingSize}}, 0.0f, dtype);
auto features = fr::ops::input("write_features", {{rwBatchSize, entityFeatureSize}, dtype});
auto indices = fr::ops::input("write_indices", {{rwBatchSize}, poplar::UNSIGNED_INT});
entityData.write(fr::ops::concat({embeddings, adamMoments, features}, 1u), indices);
}
};
std::vector<size_t> extendReplicaShape(std::vector<size_t> shape) {
shape.insert(shape.begin(), fr::Environment::frame().replicationFactor());
return shape;
}
struct Program {
std::string name;
poplar::program::Sequence prog;
// includes any replicas as a leading axis
std::unordered_map<std::string, fr::Tensor::Spec> streams;
static Program build(const std::string& name, std::function<void()> func) {
fr::SubProgramFrame frame(name);
// At time of writing there are still some (non-breaking) exceptions generated
// so we are disabling these checks temporarily
// poplar::setFloatingPointBehaviour(
// frame.graph.poplar(), frame.tape.prog(),
// {/*inv*/ true, /*div*/ true, /*oflo*/ true, /*esr*/ false, /*nanoo*/ false},
// frame.di);
func();
std::unordered_map<std::string, fr::Tensor::Spec> streams;
for (auto& item : frame.streams) {
streams[item.first] = {extendReplicaShape(item.second.spec().shape),
item.second.spec().dtype};
}
return {name, frame.tape.prog(), streams};
}
};
} // namespace
fr::Tensor detachedSoftmax(const fr::Tensor& tensor) {
fr::Frame f("poplar_kge::detachedSoftmax");
fr::mapping::setDefault(fr::mapping::Linear(), {tensor});
auto poplarTensor = f.graph.unwrap(tensor.pag());
auto result = popnn::nonLinearity(f.graph.poplar(), popnn::NonLinearityType::SOFTMAX_STABLE,
poplarTensor, f.tape.prog(), f.di);
return fr::Tensor::wrap(f.graph.wrap(result, /*requiresGrad*/ false));
}
struct EngineImpl {
poplar::Engine engine;
std::unordered_map<std::string, fr::Tensor::Spec> variables;
std::vector<Program> programs;
static std::unique_ptr<EngineImpl> create(const Batch& settings, const std::string& gpFolder) {
auto device = attach(settings);
fr::RootFrame frame(device.getTarget());
popops::addCodelets(frame.graph.poplar());
poplin::addCodelets(frame.graph.poplar());
poprand::addCodelets(frame.graph.poplar());
frame.graph.poplar().addCodelets(gpFolder + "/poplar_extensions.gp");
Model model(settings);
std::vector<Program> programs(
// Order is important here - training first, as the backward() call may pollute things
{Program::build("train_step_loop", std::bind(&Model::trainStepLoop, model)),
Program::build("predict", std::bind(&Model::predict, model)),
Program::build("read_entity", std::bind(&Model::readEntity, model)),
Program::build("write_entity", std::bind(&Model::writeEntity, model))});
auto variables = model.finaliseVariables();
auto poplarPrograms =
fr::util::mapVector(programs, [](auto& p) { return poplar::program::Program(p.prog); });
// Only set target.extendedMemory when we have to (buffer >= 16 GiB), to
// keep support for legacy systems
poplar::OptionFlags engineOptions;
if (model.entityData.totalBytes(device.getTarget()) >= 16 * (size_t(1) << 30)) {
engineOptions.set("target.extendedMemory", "true");
}
poplar::Engine engine(frame.graph.poplar(), poplarPrograms, engineOptions);
engine.load(device);
return std::unique_ptr<EngineImpl>(new EngineImpl{std::move(engine), variables, programs});
}
Batch run(const std::string& command, Batch& data) {
for (auto i = 0u; i < programs.size(); ++i) {
if (command == programs[i].name) {
return runProgram(i, data);
}
}
if (command == "read" || command == "write") {
return runReadWrite(command, data);
} else if (command == "variables") {
return runVariables();
} else {
std::ostringstream msg;
msg << "Unknown command '" << command << "'";
throw std::invalid_argument(msg.str());
}
}
Batch runProgram(unsigned index, Batch& data) {
for (const auto& stream : programs[index].streams) {
auto ptr = GetData<float, uint32_t, float16>::value(stream.first, stream.second,
get(data, stream.first));
engine.connectStream(stream.first, std::get<0>(ptr));
}
engine.run(index);
return {};
}
Batch runReadWrite(const std::string& command, Batch& data) {
engine.disableExecutionProfiling();
auto name = extract<std::string>(data, "name");
auto spec = get(variables, name);
auto ptr = GetData<float, uint32_t, float16>::value(name, spec, get(data, "value"));
if (command == "read") {
engine.readTensor(name, std::get<0>(ptr), std::get<1>(ptr));
} else if (command == "write") {
engine.writeTensor(name, std::get<0>(ptr), std::get<1>(ptr));
} else {
assert(false && "bad command");
}
engine.enableExecutionProfiling();
return {};
}
Batch runVariables() {
return {{"variables", fr::util::mapVector(variables, [](auto& entry) {
return std::tuple<std::string, std::vector<unsigned>>{
entry.first, {entry.second.shape.begin(), entry.second.shape.end()}};
})}};
}
};